Press releases

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt


Apr 11 2023

Extension for the looted property project at Frankfurt University Library: 349 looted volumes identified to date

Virtual 360° Tour of Looted Property Exhibition to Mark International Provenance Research Day

The exhibition "StolperSeiten – NS-Raubgut in der Universitätsbibliothek Frankfurt am Main" (“Stumbling Pages – NS looted property in the Frankfurt University Library") will be made available online as a virtual 360° tour on Provenance Research Day, which falls on April 12, 2023 this year. The exhibit is based on a project funded by the German Lost Art Foundation (Deutsches Zentrum Kulturgutverluste) as part of which the library is researching books in its inventory that can be attributed to persecutees of the Nazi era. The extension is the direct result of comparatively frequent finds, with the project now running until November 2024. There have already been several restitutions to Jewish and other organizations. 

"StolperSeiten" (Stumbling Pages) was the title of a much-noticed 2022 exhibition at the library on Nazi looted property at the Frankfurt University Library (“NS-Raubgut in der Universitätsbibliothek Frankfurt am Main"). This exhibition is now open again, but in the form of a virtual 360° tour. It spans the historical framework that led to the looting of hundreds of thousands of cultural assets in Germany and Europe from 1933 onwards. With its focus on the city of Frankfurt, and the city's libraries in particular, the exhibit addresses the role libraries played in the organized looting and how they profited from it, pointing out many concrete cases of injustice. In addition, the use of partially interactive elements also makes the work of contemporary provenance researchers more accessible. 

The online exhibit was designed as part of a project run by “fuels – Future Learning Spaces". Funded by the Hessian Ministry of Higher Education, Research, Science and the Arts, the joint project of Goethe University, Darmstadt Technical University and Darmstadt University of Applied Sciences aims to bring innovative technologies such as 360°, augmented and virtual reality into the university landscape. For more information, visit: 

Project to identify looted National Socialist property
In November 2020, Frankfurt University Library's (UB JCS) Provenance Research team started a project to identify looted National Socialist property in a first sub-collection comprising around 80,000 volumes. The search focuses on so-called "cultural property seized as a result of persecution", i.e. books that were looted or extorted from persecuted persons or institutions during the Nazi era. Commenting on the motives for researching Nazi looted property in the library, UB JCS director Daniela Poth says: "We consider it a moral obligation to uncover the injustice committed during the Nazi era and to document it in public, even if this does not make up for it. That is something university management, library management and project management all agree on." The project at Goethe University's UB JCS is sponsored by the German Lost Art Foundation. In addition, given the fact that many of the affected books are on permanent loan at the UB JCS but historically belong to the municipality, the city of Frankfurt is also providing a subsidy for the project costs. 

Following the approval for an extension – itself based on the comparatively high number of finds – the project will now run until November 2024, and therefore already passed its halftime mark a few months ago. Time for an interim assessment. To date, almost 40,000 volumes have been individually checked on the shelf for any references to previous owners. This has turned out to be the case in an unusually high percentage of about 39%. As a result, more than 15,000 volumes have had to be examined more closely to clarify whether the suspicion of looted property is merited. Such an initial suspicion exists for over 3,800 books. Another 200 books have met with strong suspicion, whereas 349 books have been confirmed as cases of looted property. However, the project team's work does not end with the investigation into actual numbers or with the documentation of these cases on UB JCS' freely accessible search portal. For all confirmed cases of looted property, the project staff also researches the existence of descendants or successor institutions. If this search, which can be very complex, is successful, the library contacts the potential restitution recipients and clarifies whether they desire a return, or would prefer another "fair and just solution". 

The fact that it took some time after the start of the project before the first restitutions could be both prepared and carried out illustrates just how time-consuming research and coordination are. Within the last six months, three books were restituted to the Jewish Community of Munich and Upper Bavaria, one book to the Jewish Religious Community of Baden and eight volumes to the Minerva Lodge of the Three Palms in Leipzig. Corresponding references to these volumes are available in the library's search portal – as virtual "StolperSeiten". Further restitutions are in the preparatory stage and expected to be completed during the course of the year. 

Further information: Dr. Mathias Jehn, Head of the Department "Curating Subject Information Mediation", J. C. Senckenberg University Library, Bockenheimer Landstraße 134-138, 60325 Frankfurt, Tel: +49 (69) 798 39007, Mail: 

Contact for general press inquiries: Bernhard Wirth, Staff Development and Public Relations of the Library, Tel. +49 (69) 798 39223; Mail:

Editor: Dr. Dirk Frank, Press Officer, PR & Communication Office, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: +49 (0) 69 798-13753,


Apr 4 2023

International research team from Germany, Austria, Canada, the Netherlands and the USA applies new carbonate analysis method to eggshells from Troodon, reptiles and birds

Analysis of dinosaur eggshells: bird-like Troodon laid 4 to 6 eggs in a communal nest

An international research team led by Goethe University Frankfurt, Germany, determined that Troodon, a dinosaur very close to modern birds, was a warm-blooded animal (an endotherm), but had a reproductive system similar to that of modern reptiles. The scientists applied a new method which allowed for accurate determination of the temperature when the egg's carbonate shell was formed. Furthermore, the researchers showed that Troodon laid 4 to 6 eggs per clutch. As nests with up to 24 Troodon eggs had been found, the scientists conclude that several Troodon females laid their eggs in communal nests.

FRANKFURT. In millions of years and with a long sequence of small changes, evolution has shaped a particular group of dinosaurs, the theropods, into the birds we watch fly around the planet today. In fact, birds are the only descendants of dinosaurs which survived the catastrophic extinction 66 million years ago that ended the Cretaceous period.

Troodon was such a theropod. The carnivorous dinosaur was about two meters long and populated the vast semi-arid landscapes of North America about 75 million years ago. Like some of its dinosaur relatives, Troodon presented some bird-like features like hollow and light bones. Troodon walked on two legs and had fully developed feathery wings, but its relatively large size precluded it from flying. Instead, it probably ran quite fast and caught its prey using its strong claws. Troodon females laid eggs more similar to the asymmetric eggs of modern birds than to round ones of reptiles, the oldest relatives of all dinosaurs. These eggs were coloured and have been found half buried into the ground, probably allowing Troodon to sit and brood them.

An international team of scientists led by Mattia Tagliavento and Jens Fiebig from Goethe University Frankfurt, Germany, has now examined the calcium carbonate of some well-preserved Troodon eggshells. The researchers used a method developed by Fiebig's group in 2019 called “dual clumped isotope thermometry". By using this method, they could measure the extent to which heavier varieties (isotopes) of oxygen and carbon clump together in carbonate minerals. The prevalence of isotopic clumping, which is temperature-dependent, made it possible for scientists to determine the temperature at which the carbonates crystallized.

When analyzing Troodon eggshells, the research team was able to determine that the eggshells were produced at temperatures of 42 and 30 degrees Celsius. Mattia Tagliavento, leading author of the study, explains: “The isotopic composition of Troodon eggshells provides evidence that these extinct animals had a body temperature of 42°C, and that they were able to reduce it to about 30°C, like modern birds."

The scientists then compared isotopic compositions of eggshells of reptiles (crocodile, alligator, and various species of turtle) and modern birds (chicken, sparrow, wren, emu, kiwi, cassowary and ostrich) to understand if Troodon was closer to either birds or reptiles. They revealed two different isotopic patterns: reptile eggshells have isotopic compositions matching the temperature of the surrounding environment. This is in line with these animals being cold-blooded and forming their eggs slowly. Birds, however, leave a recognizable so-called non-thermal signature in the isotopic composition, which indicates that eggshell formation happens very fast. Tagliavento: “We think this very high production rate is connected to the fact that birds, unlike reptiles, have a single ovary. Since they can produce just one egg at the time, birds have to do it more rapidly."

When comparing these results to Troodon eggshells, the researchers did not detect the isotopic composition which is typical for birds. Tagliavento is convinced: “This demonstrates that Troodon formed its eggs in a way more comparable to modern reptiles, and it implies that its reproductive system was still constituted of two ovaries."

The researchers finally combined their results with existing information concerning body and eggshell weight, deducing that Troodon produced only 4 to 6 eggs per reproductive phase. “This observation is particularly interesting because Troodon nests are usually large, containing up to 24 eggs", Tagliavento explains. “We think this is a strong suggestion that Troodon females laid their eggs in communal nests, a behaviour that we observe today among modern ostriches."

These are extremely exciting findings, Jens Fiebig comments: “Originally, we developed the dual clumped isotope method to accurately reconstruct Earth's surface temperatures of past geological eras. This study demonstrates that our method is not limited to temperature reconstruction, it also presents the opportunity to study how carbonate biomineralization evolved throughout Earth's history."

Publication: Mattia Tagliavento, Amelia J. Davies, Miguel Bernecker, Philip T. Staudigel, Robin R. Dawson, Martin Dietzel, Katja Goetschl, Weifu Guo, Anne S. Schulp, François Therrien, Darla K. Zelenitsky, Axel Gerdes, Wolfgang Müller, Jens Fiebig: Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod. PNAS (2023)

Images for download:

Caption: Artist's impression of two Troodons with a common nest. Illustration: Alex Boersma/PNAS

Participating partners:
Institute of Geosciences, Goethe University Frankfurt, Germany.
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Germany.
Institute of Applied Geosciences, Graz University of Technology, Austria.
Royal Tyrrell Museum of Palaeontology, Drumheller, Canada.
Department of Geoscience, University of Calgary, Canada.
Naturalis Biodiversity Center, Leiden, the Netherlands.
Deptartment of Earth Sciences, Universiteit Utrecht, the Netherlands
Department of Geosciences, University of Massachusetts, USA.
Morrill Science Center, Amherst, USA
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, USA

Thermometers for Earth history: "Dual clumped isotope" method for carbonate analysis (2020).

Further information:

Goethe University Frankfurt
Institute for Geosciences

Dr. Mattia Tagliavento
Phone. +49 176 64735849

Professor Jens Fiebig
Phone: +49 (0) 69 798 40182

Naturalis Biodiversity Center
and Utrecht University, Leiden/Utrecht, The Netherlands

Professor Anne S. Schulp (English, German, Dutch)
Phone: +31 6 51229317 /

Twitter-Handles: @goetheuni @UUGeo @UMass @UniGraz @WHOI @Naturalis_Sci @RoyalTyrrell @UCalgarySWC @anneschulp  @Naturalis_Sci @museumnaturalis

Editor: Dr. Markus Bernards, Science Editor, PR & Communication Office, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531,


Mar 16 2023

International team from Goethe University and the University of Kent identifies nitroxoline as a potential drug

Known active ingredient as new drug candidate against “monkeypox”

Mpox – previously known as "monkeypox" – is currently spreading worldwide. An international research team from Goethe University and the University of Kent has now identified a compound that could help fight the disease. Their study has been published in the “Journal of Medical Virology". 

Nitroxoline is the name of the new drug candidate that could potentially be used to treat mpox. It was identified by scientists at Goethe University and the University of Kent as part of a multi-site study. The results of their research will now allow clinical trials to begin soon. 

The current mpox outbreak is the first of this size to occur outside of Africa and also the first mpox outbreak caused by human-to-human transmission. People with immunodeficiencies are particularly at risk from the disease. Although antiviral agents have already been shown to inhibit the replication of the mpox virus in experimental models, the efficacy of these substances has not yet been confirmed in humans and some may have significant side effects. In addition, there are insufficient stocks to treat all mpox patients. Moreover, resistance formation against tecovirimat, the most promising mpox drug candidate to date, has already been reported. 

In the present study, the international team led by Professor Jindrich Cinatl (of Goethe University Frankfurt and the Dr. Petra Joh-Research Institute) and Professor Martin Michaelis (School of Biosciences, University of Kent) has identified nitroxoline, a well-tolerated antibiotic, as a potential treatment alternative for the mpox virus based on experiments using cell culture and skin explant models. 

Nitroxoline is also effective against a tecovirimat-resistant strain of the mpox virus, as well as other bacterial and viral pathogens that are frequently co-transmitted with mpox viruses, meaning it simultaneously suppresses multiple pathogens that are often involved in severe courses of mpox. Since nitroxoline is a well-tolerated antibiotic that has long been used to treat humans, it can be tested directly against mpox in clinical trials. 

"The emergence of resistant virus strains is a cause of great concern," says Professor Jindrich Cinatl of Goethe University and the Dr. Petra Joh-Research Institute. "It is very reassuring that nitroxoline is effective against a tecovirimat-resistant virus." 

Professor Martin Michaelis of the University of Kent adds: "The more different drugs become available to treat viral diseases, the better. We hope that nitroxoline will turn out to be an effective treatment for mpox patients."

Publication: Denisa Bojkova, Nadja Zöller, Manuela Tietgen, Katja Steinhorst, Marco Bechtel, Tamara Rothenburger, Joshua Kandler, Sandra Ciesek, Holger Rabenau, Jindrich Cinatl (Goethe University Frankfurt); Mark Wass, Martin Michaelis (University of Kent); Julia Schneider, Victor Corman (Charité Berlin), Repurposing of the antibiotic nitroxoline for the treatment of mpox. In: Journal of Medical Virology

Further information
Prof. Jindrich Cinatl
Working Group Head
Institute for Medical Virology
Goethe University
Tel.: +49 (0)69 6301-6409

Editor: Dr. Anke Sauter, Science Editor, PR & Communication Office, Tel: +49 (0)69 798-13066, Fax: +49 (0) 69 798-763 12531,


Mar 14 2023

Award ceremony in Frankfurt’s Paulskirche – Acknowledgement of Frederick W. Alt and David G. Schatz, winners of the main prize, and of Leif S. Ludwig, winner of the Early Career Award 

Paul Ehrlich and Ludwig Darmstaedter Prize: Insights into the Origin, Evolution and Development of our Immune System 

The 2023 Paul Ehrlich and Ludwig Darmstaedter Prize, worth €120,000, will today be awarded to immunologists Frederick W. Alt and David G. Schatz in Frankfurt's Paulskirche for their discovery of molecules and mechanisms that enable our immune system to perform the astonishing feat of recognizing billions of different bacterial, viral and other antigens on first contact. The Early Career Award goes to Leif S. Ludwig, biochemist and physician, for a method he has devised to analyze the origin and development of human blood cells, which also include the cells of the immune system. 

Unlike more primitive organisms, jawed vertebrates like we humans not only have an innate immune system but also an adaptive one that is capable of preparing itself for all kinds of invaders. This is because – at some point in the course of evolution – one of our ancestors apparently succeeded in taming a DNA parasite that had implanted itself in his genome. This is how the parasite became the gene for an enzyme that advanced to become the command center of immunological diversity. This enzyme, RAG1/2, excises fragments from the DNA of certain chromosomes in maturing immune cells (lymphocytes) and recombines them to form functional genes in a random process. This somatic recombination multiplies the variability of antibodies and T cell receptors. It is a prerequisite for our body's ability to build around ten billion different antibodies, although it only has about 20,000 protein blueprints in the form of genes. David G. Schatz discovered the RAG1/2 enzyme, Frederick W. Alt the enzymes that repair the DNA excised by it. “In decades of research, Alt and Schatz have shed light on the previously hidden evolution of our adaptive immunity, and in so doing they have raised our knowledge of the development of the immune system to a new level," says Professor Thomas Boehm, Chairman of the Scientific Council of the Paul Ehrlich Foundation, commending the achievements of the two winners of the main prize. 

The RAG1/2 enzyme is the motor for somatic recombination. Without it, neither functional B and T cells nor effective adaptive immunity can develop. Many cases of severe immunodeficiency are caused by mutations of the RAG genes, and some lymphomas and leukemias are associated with malfunctions of the enzymes encoded by these genes. This makes understanding not only the molecular mechanism but also their evolutionary origin and how they behave in the living cell nucleus even more important. According to Schatz's findings, RAG1/2 originates from a gene that began jumping at will through the genome of our very early ancestors millions of years ago, like a kind of selfish parasite. In structural biology studies, Schatz has traced these jumps (transposons) over several stages of evolution. He has shown which biochemical tricks we vertebrates used to fix the jumping RAG1/2 gene at a certain position and harness it for the immune system. 

As they migrate through the cell nucleus of immature lymphocytes, RAG enzymes draw together chromatin clusters, in which the DNA is coiled up in a space-saving way, temporarily and again and again to form recombination centers. There, they perform chromatin scanning, which Alt has described for the first time. They draw a chromatin thread, which can be over a million DNA letters long, through the recombination center like a loop. The result is that gene segments previously far apart are suddenly opposite each other and can be joined firmly together. 

The B and T lymphocytes, on which acquired immunity rests, are components of our blood, in which at least 500 billion old cells per day are replaced by new ones in a healthy person. They originate from hematopoietic stem cells in the bone marrow and then mature on divergent developmental trajectories over several stages, like all other blood cells. Determining the resulting lineages and relationships is highly interesting for medicine, for example for identifying at which branch point a leukemia cell forms. Leif S. Ludwig, the winner of this year's Early Career Award, has devised a method that opens up the possibility for the first time for medicine to do this relatively inexpensively, quickly and reliably. Ludwig's method, which has already been tested on individual patients, combines the analysis of mutations in mitochondria with the latest technologies for the gene sequencing of individual cells. 

2023 Paul Ehrlich and Ludwig Darmstaedter Prize 

Dr. Frederick W. Alt is Charles A. Janeway Professor of Pediatrics and Director of the Program in Cellular and Molecular Medicine at Boston Children's Hospital, a Howard Hughes Medical Institute Investigator, and Professor of Genetics at Harvard Medical School. 

Dr. David G. Schatz is Professor of Molecular Biophysics and Biochemistry at Yale University and Chairperson of the Department of Immunobiology at Yale School of Medicine. 

2023 Paul Ehrlich and Ludwig Darmstaedter Early Career Award 

Dr. Leif S. Ludwig is the leader of the Emmy Noether Junior Research Group “Stem Cell Dynamics and Mitochondrial Genomics" at the Berlin Institute of Health at Charité and the Max Delbrück Center. 

Further information:
Press Office Paul Ehrlich Foundation
Joachim Pietzsch
Tel.: +49 (0)69 36007188

Editors: Joachim Pietzsch / Dr Markus Bernards, Science Editor, PR & Communication Department, Tel: +49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531,


Mar 10 2023

Defect in gene regulation is responsible for high leukaemia risk in children with Down syndrome – biochemical analysis creates basis for therapy development 

Cause of leukaemia in trisomy 21

People with a third copy of chromosome 21, known as trisomy 21, are at high risk of developing Acute Myeloid Leukaemia (AML), an aggressive form of blood cancer. Scientists led by the Department of Paediatrics at University Hospital Frankfurt have now identified the cause: although the additional chromosome 21 leads to increased gene dosage of many genes, it is above all the perturbation of the RUNX1 gene – a gene that regulates many other genes – that seems to be responsible for AML pathogenesis. Targeting the perturbed regulator could pave the way for new therapies. 

Leukaemia (blood cancer) is a group of malignant and aggressive diseases of the blood-forming cells in the bone marrow. Very intensive chemotherapy and in some cases a bone marrow transplant are the only cure. Like all cancers, leukaemia is caused by changes in the DNA, the heredity material present in human cells in the form of 46 chromosomes. In many forms of leukaemia, large parts of these chromosomes are altered. People with Down syndrome, who have three copies of chromosome 21 (trisomy 21), are highly vulnerable: the risk of developing aggressive Acute Myeloid Leukaemia (AML) in the first four years of their life is more than 100 times greater for children with Down syndrome. Down syndrome is the most common congenital genetic disorder, affecting about one in 700 newborn babies. 

RUNX1 transcription factor is responsible 

The research group led by Professor Jan-Henning Klusmann, Director of the Department of Paediatric and Adolescent Medicine at University Hospital Frankfurt, has now discovered how the additional chromosome 21 can promote AML. With the help of genetic scissors (CRISPR-Cas9), they examined each of the 218 genes on chromosome 21 for its carcinogenic effect. It emerged that the RUNX1 gene is responsible for the chromosome's specific carcinogenic properties. In further analyses, the researchers were able to corroborate that only one particular variant – or isoform – of the gene promotes the development of leukaemia. Klusmann explains: “Other RUNX1 isoforms were even able to prevent the cells from degenerating. This explains why RUNX1 has so far not stood out – in several decades of extensive cancer research." 

The RUNX1 gene encodes a “transcription factor" – a protein responsible for regulating the activity of other genes. RUNX1 regulates many processes, including embryonic development and early and late haematopoiesis, or blood formation. Disruption of this important regulator is therefore a key event in the development of AML. “Thanks to our research results, we now have a better understanding of what happens in leukemogenesis," explains Klusmann, an expert in paediatric cancer. “The study underlines how important it is to examine all gene variants in carcinogenesis. In many cases, certain mutations in cancer cells alter how these variants form," he says. 

Development of more sophisticated therapeutic approaches 

These insights are important for a better understanding of the complex mechanisms of carcinogenesis, as Klusmann explains: “In this way, we have laid the groundwork for developing more sophisticated therapeutic approaches. Through our biochemical analyses, we now know exactly how the gene variant alters the blood cells. From there, we were able to use specific substances that block the disease mechanism." The intention now is to further explore the effect of these substances for use in medical care. Klusmann: “On the basis of our expertise, we now want to develop therapies to correct this malfunction. Applying them in clinical practice will certainly take a few more years, but hopefully they will lead in the future to sparing our young patients from intensive chemotherapy."

Publication: Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regenyi EM, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21 associated myeloid leukemia. Blood (2023) 

Picture downloads:
Caption 1: Professor Jan Klusmann, MD, University Hospital Frankfurt. Photo credit: Klaus Waeldele, University Hospital Frankfurt
Caption 2: Bone marrow smear from a child with Down syndrome who suffers from leukemia. The purple-coloured leukemic blasts displace normal blood formation. Photo credit: Jan Klusmann, University Hospital Frankfurt 

Further information:
Professor Jan-Henning Klusmann
Department of Paediatric and Adolescent Medicine
University Hospital Frankfurt
Tel.: +49 69 6301-5094
Twitter: @UK_Frankfurt @goetheuni

Editor: Dr. Markus Bernards, Science Editor, PR & Communication Office, Tel: +49 (0) 69 798-12498,