Press releases


Apr 18 2017

Proposal by young geoscientists and physicists shortlisted

Student experiment soon on the ISS?

Their own experiment on the International Space Station (ISS) is the dream of many young early career researchers. For some geosciences and physics students at Goethe University Frankfurt this could soon becoming intriguing reality. They answered a call by the German Aerospace Center and entered their own project proposal in the area of zero gravity.

A total of eight projects were selected from a large number of submissions. Three students from each project have now been invited by the centre in Bonn to present their concepts in person, including the EXCISS project of the student group in Frankfurt. EXCISS stands for Experiment on Chondrule Formation on the ISS. At the end of the selection procedure, German astronaut Alexander Gerst will take three experiments with him to the International Space Centre and conduct them there.

“What we want to solve with this experiment is nothing less than the origin of the most common solid objects in the early solar system”, reports group leader Tamara Koch. When our solar system was born about 4.56 billion years ago, the solar nebula was composed of gas and dust particles. These were made up either of calcium and aluminum-rich minerals or iron and magnesium-rich silicates. By means of a process as yet unexplained, these were suddenly heated up to several thousand degrees in the early phase of the solar system, only to solidify equally suddenly in droplet form, what are known as chondrules. This process has left researchers baffled up until today.

There are several hypotheses. For example, shock waves or flashes of lightning could have heated up the dust particles to such a high temperature. Another possibility could be a collision between asteroids. None of the three hypotheses has so far won through. The students want to examine now in the framework of the EXCISS project whether the chondrules in the dust-gas mix of the solar nebula could have evolved through high-energy lightning. The focus is on the iron and magnesium-rich silicates.

Tiny flashes of lightning in a weightless environment

“The idea behind this project is simple“, explains Tamara Koch. “We want to let dust particles collide in zero gravity under conditions such as prevailed in the solar nebula. Flashes of lightning are then repeatedly shot at the lumps of dust which have formed as a result. The lightning is created by discharging plate capacitors. What’s new about the idea is its implementation under realistic zero gravity conditions and with low gas pressure. Such experiments are not possible on Earth even in drop towers. The ISS offers a unique environment in which to test the lightning hypothesis.” 

“Carrying out such a project in a small box of less than 15 centimeters edge length and with a 2-volt electricity supply is certainly a challenge”, says Yannik Schaper, who together with his fellow students is taking care of the physics side of the project.

“Only through close cooperation between geoscientists and physicists can the project be put into practice successfully”, explains Frank Brenker, Professor for Nanogeoscience and project initiator. “The students have done a great job here and produced a sound concept in a very short time frame. That’s why we weren’t really surprised to be among the last eight”, he reports.

The group is now eagerly awaiting the meeting in Bonn and hopes to be one of the three projects which is awarded funding and ultimately flies to the ISS. The project is supported by the working groups on Nanogeoscience (Professor Frank Brenker) and Crystallography (Professor Björn Winkler) as well as by the glassblowing workshop of the Department of Chemistry at Goethe University Frankfurt (Michael Röder). Sponsors willing to give the project their financial support are greatly welcomed.


Apr 12 2017

Goethe University Frankfurt secures two ERC Advanced Investigator Grants / € 2.5 million each for five years

EU funds research on biofuels and infectious diseases

FRANKFURT.Two ERC Advanced Investigator Grants of the European Research Council to the amount of€2.5 million each are going to researchers at Goethe University Frankfurt. Biochemist and physician Professor Ivan Dikic and microbiologist Professor Volker Müller are very honoured that their pioneering research projects have been selected for this substantial financial support.

Environmentally friendly fuels

Volker Müller is one of the leading microbiologists worldwide in the field of microbial metabolism of microbes that grow in the absence of oxygen. His project centres on the production of biofuels with the help of bacteria that can use carbon dioxide as feedstock. Such fuels would have the advantage of making us independent of fossil fuels and reducing greenhouse gas emissions. For many years, Professor Müller’s research group at the Institute of Molecular Biosciences of Goethe University Frankfurt has been investigating a specific group of bacteria that convert carbon dioxide (CO2) and hydrogen (H2) or carbon monoxide (CO) to acetic acid in a fermentation process. The bacteria require neither light nor oxygen to do so.

What are known as acetogenic bacteria are already used on an industrial scale for exhaust gas fermentation American company LanzaTech. The aim here is primarily to render the exhaust gas harmless. Müller is already coordinating a pan-European consortium targeted at the optimization of gas fermentation. In the research project funded by the ERC, Müller wants now to further utilize the potential of Acetobacterium woodii. The bacterium can also process methanol or formic acid - both are cheap raw materials for biotechnology applications. Müller and his research group want to solve and then alter the metabolic pathways. The goal is to genetically modify acetogenic bacteria in such a way that they can produce environmentally friendly fuels and base chemicals on a large scale from various source materials.

New strategies to combat infectious diseases

It is the second time already that Ivan Dikic, who was born in Croatia, has been awarded an ERC Advanced Investigator Grant. He is one of the international pioneers in the area of ubiquitin research. Ubiquitin regulates many cellular processes; amongst others it controls the degradation of superfluous or harmful proteins and the repair of defective DNA, transmits signals within the cell and triggers cell death if damage cannot be controlled any more. In addition, ubiquitin has been recognized as being very important for fighting bacterial infections.

In his new ERC project, Dikic is investigating how bacteria manipulate the ubiquitin system of their host organism to their own advantage. In the focus are infections with Salmonella, Shigella and Legionella. Dikic’s research group at the Institute of Biochemistry II is e.g. searching for new signaling pathways which are activated by bacterial enzymes. They are employing high-resolution microscopy methods and cutting-edge mass spectrometry that allows the quantitative assessment of all cellular proteins and their ubiquitin modifications. By this approach, the cell biologists want to elucidate how various bacterial enzymes influence the severity and course of an infection and why serious secondary tissue damage sometimes occurs despite successful treatment with antibiotics. Such damage cannot only be caused by bacterial toxins, but also by signalling substances secreted by the host’s own immune cells following an infection. This secondary damage can be life-threatening.

In a second step, the researchers in Dikic’s group want to search for substances that actively interfere with this process and in particular limit tissue damage. To this purpose, Dikic is working together with partners in the pharmaceutical sector. The ultimate goal is to fully understand the role of the ubiquitin system in bacterial infections and to seize the newly obtained knowledge for developing new strategies for combating infectious diseases.

Pictures can be downloaded under the following link:

Further information: Professor Dr. Volker Müller, Institute of Molecular Biosciences, Faculty of Biological Sciences, Riedberg Campus, Tel.: +49(0)69-798-29507; -29508, Email:

Professor Dr. Ivan Dikic; Media contact: Dr. Kerstin Koch, Institute of Biochemistry II, Faculty of Medicine, Frankfurt University Hospital, Tel.: +49(0)69-6301-84250, Email:


Apr 12 2017

Event Horizon Telescope: Goethe University is participating via the ERC-project Black Hole Cam

Measuring the shadow of the black hole

As part of the collaboration "BlackHoleCam" the research group of Prof. Luciano Rezzolla of Goethe University Frankfurt contributes to the international Event Horizon Telescope (EHT) Collaboration, which is imagining for the first time the black-hole candidate at the Center of our Milky Way.

Frankfurt. The international Event Horizon Telescope (EHT) Collaboration, which is imaging for the first time the black-hole candidate at the center of our Milky Way, has a major research focus in Germany. A significant contribution to this experiment is part of “BlackHoleCam”, a German-Dutch experiment founded in 2014. The research group of Prof. Rezzolla at the Institute for Theoretical Physics at the Goethe University Frankfurt is part of the collaboration. BlackHoleCam is supported by the European Research Council via an ERC Synergy Grant of 14 Million Euros.

Due to the strong pull of gravity, not even light can escape from black holes, whose surface, i.e., the event horizon, cannot be observed directly. However, the boundary which separates photons that are trapped from those that can escape from the incredible gravitational pull is called the black-hole “shadow”, because it would appear as a shadow against a bright lit background. It is such a shadow that is the target of series of observations presently ongoing of Sgr A*, the name of the black-hole candidate in our Milky Way. During the observations, the researchers will analyze the radio emission emitted by Sgr A*, whose mass is 4.5 million times that of our Sun and whose shadow is about half of the size of the distance between the Sun and the Earth.

Despite being so massive, Sgr A* is also very far from us, at a 26,000 light years, making the angular size of the shadow extremely small. Measuring the emission from this surface is therefore equivalent to imaging an apple on the surface of the Moon. To accomplish this ambitious project several radio telescopes across the globe are connected and thus form a virtual telescope with a diameter comparable to the Earth. This technique is called Long Baseline Interferometry (VLBI).

The work of BlackHoleCam is lead by Prof. Luciano Rezzolla (ITP, Frankfurt), Prof. Michael Kramer (Max Planck Institute for Radio Astronomy, Bonn), and by Prof. Heino Falcke (Radboud-University Nijmegen, Netherlands); all of them are important contributors of the EHT collaboration. In the current observations of Sgr A*, network of radiotelescopes from Europe, the United States of America, Middle- and South America, and the South Pole telescope are participating at the same time. During the observations, each telescope records the data on hard disks which are shipped after the end of the campaign to one of the high-performance computer centers in the US or to Bonn. In these centers the individual data of the telescopes are combined by supercomputers and an image can be reconstructed.

This shadow image can be regarded as the starting point for the theoretical research of Prof. Rezzolla's group. Besides predicting theoretically what type of image scientists is expected to observe, the group in Frankfurt is also working on determining whether it will be possible to establish if Einstein’s theory of general relativity is the correct theory of gravity. There are several other theories of gravity besides the well-known one by Einstein and the observations of the black-hole shadow may help to identify the true one. Because of this, scientists in Frankfurt analyze the size and the geometry of the shadow and compare them to synthetic images generated on supercomputers which model accretion flows onto black holes..

These images are computed by solving the equations of relativistic magneto-hydrodynamics and tracing the orbit of photons around black holes in different theories of gravity using state-of-the art numerical tools developed in the group of Prof. Rezzolla. Comparing the synthetic shadow to the observed one may shed light on the existence of one of the most extreme predictions of Einstein’s theory of gravity: the existence of black holes. However, as Prof. Rezzolla remarks, “These observations represent a major step forward in the international attempt of understanding the nature of the dark and compact object at the centre of our Galaxy. However, they are just the first step and it is likely that many more observations of increasing precision will be necessary for finally settling this fundamental issue”.



Mar 22 2017

New technology enables detailed analysis of target proteins

Tracing down linear ubiquitination

FRANKFURT.Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many different forms, either as single molecule or in the form of distinct ubiquitin chains, leading to diverse conformations and varying cellular outcomes. Scientists often refer to it as the secret ubiquitin code, which still needs to be fully deciphered. Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have now developed a novel technology to tackle that.

Recently, scientists discovered that ubiquitin molecules are not only assembled in a non-linear manner, but also build linear chains, in which the head of one ubiquitin is linked to the tail of another ubiquitin molecule. So far, only two highly specific enzymes are known capable of synthesizing and degrading such linear ubiquitin chains, and both are being extensively studied at the Institute of Biochemistry II at the Goethe University Frankfurt. However, target proteins of linear ubiquitination, as well as their specific cellular functions, have largely remained elusive. The novel technology developed by the team around Koraljka Husnjak from the Goethe University Frankfurt now enables the systematic analysis of linear ubiquitination targets.

“The slow progress in this research area was mainly due to the lack of suitable methods for proteomic analysis of proteins modified with linear ubiquitin chains”, explains Koraljka Husnjak whose native country is Croatia. Her team solved the problem by internally modifying the ubiquitin molecule in such a way that it maintains its cellular functions whilst at the same time enabling the enrichment and further analysis of linear ubiquitin targets by mass spectrometry.

With this technology at hand, it is now possible to identify target proteins modified by linear ubiquitin, and to detect the exact position within the protein where the linear chain is attached. Scientists praise this highly sensitive approach as an important breakthrough that will strongly improve our understanding of the functions of linear ubiquitination and its role in diseases.

Dr. Husnjak already provided the proof of this concept and identified several novel proteins modified by linear ubiquitin chains. Amongst them are essential components of one of the major pro-inflammatory pathways within cells. “Linear ubiquitin chains relay signals that play an important role in the regulation of immune responses, in pathogen defence and immunological disorders. Until now we know very little about how small slips in this system contribute to severe diseases, and how we can manipulate it for therapeutic purposes” comments Husnjak the potential of the new technology.

Errors in the ubiquitin system have been linked to numerous diseases including cancer and neurodegenerative disorders such as Parkinson’s disease, but also to the development and progression of infections and inflammatory diseases.



Katarzyna Kliza, Christoph Taumer, Irene Pinzuti, Mirita Franz-Wachtel, Simone Kunzelmann, Benjamin Stieglitz, Boris Macek & Koraljka Husnjak. Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nature Methods 2017. doi:10.1038/nmeth.4228


Link to image

Caption: Schematic model of two linearly linked ubiquitin molecules. The internal tagging site is marked in black.

Image by Koraljka Husnjak using PyMOL software.



Mar 15 2017

Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers 2017

Volker Busskamp receives prize for application-oriented neurobiological research

The young researcher has been awarded for his contribution to a gene therapy approach to treat retinitis pigmentosa and for the development of artificial neuronal circuits. Retinitis pigmentosa is an inherited eye disease that leads to blindness.

FRANKFURT am MAIN. Dr. Volker Busskamp, Research Group Leader at the DFG Research Center for Regenerative Therapies at the TU Dresden (CRTD), receives today the €60,000 Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers for 2017 in Frankfurt's Paulskirche. As a biotechnologist, neuroscientist and stem cell researcher, Busskamp is receiving recognition for his exceptional application-oriented neurobiological research, which is reflected in clinical gene therapy studies on retinitis pigmentosa and a robust and versatile tool for basic research. "Busskamp's work is a good example of translational research, the rapid transfer of basic research findings into clinical research," wrote the Scientific Council in substantiating its decision. The Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers will be presented by Professor Harald zur Hausen.

Busskamp has worked on retinitis pigmentosa for almost a decade. The retina has two types of photoreceptors, known as rods and cones. The rods are responsible for sight in twilight and at night, while the cones are needed for seeing in daylight. In retinitis pigmentosa, the rods degenerate as a result of mutations. As the disease progresses, cones also lose their light-sensitive antennae, though they persist for some time in the retina before dying off gradually. Together with Botond Roska from the Friedrich Miescher Institute in Basel, Busskamp developed three gene therapy approaches. Busskamp was involved in developing one of the concepts, while the other two are based on his work. The concepts were developed in blind mice. One of the three concepts is now in the clinical development stage.

Busskamp was involved in an approach in which a foreign light-sensitive gene was implanted into inner retina cells, thereby creating artificial photoreceptors. Perception of light was shifted from the retina's defective photoreceptors to the inner retinal layer, which is normally not involved in light perception. A second gene therapy approach was to treat the defective photoreceptors directly. Busskamp inserted a light-sensitive gene in the non-functioning cones that had not yet degenerated and thereby restored their lost sensitivity to light. Of note, this approach was successfully tested into postmortem human retinae. Based on these concepts, the French start-up company Gensight is developing gene therapy approaches for clinical use. Busskamp also showed that the light-sensitive antennae of photoreceptors remain functional if only two small ribonucleic acids are present. These sequences are also under consideration for gene therapy. 

At the CRTD, Busskamp is working on artificial neuronal circuits that he assembles from different cell types. "These artificial circuits are like small biological computers," the Young Researcher Prizewinner explains. "They can be used as disease models or in basic research." Busskamp obtains neurons by means of differentiation of induced human pluripotent stem cells. Since this process has to be standardized so that the same neuronal cell types are produced and thus identical neuronal circuits can be assembled, Busskamp is investigating the conditions for robust differentiation. He aims to reliably produce as many as possible of the 320 different neuronal cell types. His approach is based on systems biology. "If we know the factors involved in the various differentiation processes, we can engineer certain cell types to obtain a unique toolbox for research," says Busskamp. "Something like a switch panel for directed neuronal differentiation from stem cells. The assembled circuits will contribute in understanding human neuronal processing and transmission in health and disease." 


Short biography of Dr. Volker Busskamp

Volker Busskamp was born in Bocholt, Germany, in 1980. He studied biotechnology at the TU Braunschweig. In 2006 Busskamp was accepted for the international "Frontiers in Genetics" program in Geneva, where he did his postgraduate diploma in biology. Busskamp completed his PhD with Prof. Botond Roska at the Friedrich Miescher Institute in Basel and was a postdoctoral fellow with Prof. George Church at the Harvard Medical School in Boston. In 2014, Busskamp was appointed Research Group Leader at theDFG Research Center for Regenerative Therapies at the TU Dresden (CRTD). The VolkswagenStiftung awarded a 'Freigeist' Fellowship to Busskamp and he received a starting grant from the European Research Council (ERC).


Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers

The Paul Ehrlich and Ludwig Darmstaedter Prize for Young Researchers, awarded for the first time in 2006, is conferred once a year by the Paul Ehrlich Foundation on a young investigator working in Germany for his or her outstanding achievements in the field of biomedical research. The prize money must be used for research purposes. University faculty members and leading scientists at German research institutions are eligible for nomination. The selection of the prizewinner is made by the Scientific Council on a proposal by the eight-person selection committee.


The Paul Ehrlich Foundation

The Paul Ehrlich Foundation is a legally dependent foundation which is managed in a fiduciary capacity by the Association of Friends and Sponsors of the Goethe University, Frankfurt. The Honorary Chairman of the Foundation, which was established by Hedwig Ehrlich in 1929, is the German Federal President, who also appoints the elected members of the Scientific Council and the Board of Trustees. The Chairman of the Scientific Council is Professor Harald zur Hausen, and the Chair of the Board of Trustees is Professor Dr. Jochen Maas, Head of Research and Development and Member of the Management Board, Sanofi-Aventis Deutschland GmbH. Professor Wilhelm Bender, in his function as Chair of the Association of Friends and Sponsors of the Goethe University, is Member of the Scientific Council. The President of the Goethe University is at the same time a member of the Board of Trustees.


Further information

You can obtain selected publications, the list of publications and a photograph of the prizewinner from the Press Office of the Paul Ehrlich Foundation, c/o Dr. Hildegard Kaulen, phone: +49 (0) 6122/52718, email: and at