Press releases

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt


Jan 24 2022

Moreover, COVID-19 drugs remain active against Omicron in cell culture study

Researchers of the University of Kent and Goethe-University Frankfurt find explanation why the Omicron variant causes less severe disease

A new study by researchers from the University of Kent and the Goethe-University Frankfurt shows that the SARS-CoV-2 Omicron variant is less effective than Delta at blocking a cellular defence mechanism against viruses, the so-called “interferon response". Moreover, cell culture findings indicate that eight important COVID-19 drugs and drug candidates remain effective against Omicron.

FRANKFURT/CANTERBURY. The SARS-CoV-2 Omicron variant causes less severe disease than Delta although it is better at escaping immune protection by vaccinations and previous infections. The reasons for this have so far remained elusive.

A new study by a research team with scientists from the University of Kent and the Goethe-University Frankfurt has now shown that Omicron variant viruses are particularly sensitive to inhibition by the so-called interferon response, an unspecific immune response that is present in all body cells. This provides the first explanation of why COVID-19 patients infected with the Omicron variant are less likely to experience severe disease.

The cell culture study also showed that Omicron viruses remain sensitive to eight of the most important antiviral drugs and drug candidates for the treatment of COVID-19. This included EIDD-1931 (active metabolite of molnupiravir), ribavirin, remdesivir, favipravir, PF-07321332 (nirmatrelvir, active ingredient of paxlovid), nafamostat, camostat, and aprotinin.

Prof Martin Michaelis, School of Bioscience, University of Kent, said: “Our study provides for the first time an explanation, why Omicron infections are less likely to cause severe disease. Obviously, Omicron can in contrast to Delta not effectively inhibit the host cell interferon immune response.“

Prof. Jindrich Cinatl, Institute of Medical Virology at the Goethe-University, added: “Although cell culture experiments do not exactly recapitulate the more complex situation in a patient, our data provide encouraging evidence that the available antiviral COVID-19 drugs are also effective against Omicron.“

Publication: Denisa Bojkova, Marek Widera, Sandra Ciesek, Mark N. Wass, Martin Michaelis, Jindrich Cinatl jr. Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant SARS-CoV-2 isolates. In: Cell. Res. (2022)

Further information: The drug aprotinin inhibits entry of SARS-CoV-2 in host cells (23rd Nov 2020)

Scientific Contact:
Professor Jindrich Cinatl
Institute of MedicalVirology
Universitätsklinikum Frankfurt
Phone: +49 (0) 69 6301-6409

Professor Martin Michaelis
School of Biosciences
University of Kent
Phone: +44 (0)1227 82-7804
Mobile: +44 (0)7561 333 094

Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531,  


Jan 20 2022

Archaeologists and archaeobotanists from Goethe University reconstruct the roots of West African cuisine. 

Leafy greens first dished up 3,500 years ago

Leafy vegetables accompany many West African dishes, such as pounded yam in the south of the region. In collaboration with chemists from the University of Bristol, researchers from Goethe University have now successfully shown that the origins of such dishes date back 3,500 years.

FRANKFURT. Over 450 prehistoric pots were examined, 66 of them contained traces of lipids, that is, substances insoluble in water. On behalf of the Nok research team at Goethe University, chemists from the University of Bristol extracted lipid profiles, with the aim of revealing which plants had been used. The results have now been published in “Archaeological and Anthropological Sciences": over a third of the 66 lipid profiles displayed very distinctive and complex distributions – indicating that different plant species and parts had been processed.

Today, leafy vegetables, for example the cooked leaves of trees such as the baobab (Adansonia digitata) or of the shrubby – nomen est omen – bitter leaf (Vernonia amygdalina), accompany many West African dishes. These leafy sauces are enhanced with spices and vegetables as well as fish or meat, and complement the starchy staples of the main dish, such as pounded yam in the southern part of West Africa or thick porridge made from pearl millet in the drier savannahs in the north. By combining their expertise, archaeology and archaeobotany researchers at Goethe University and chemical scientists from the University of Bristol have corroborated that the origins of such West African dishes date back 3,500 years.

The studies are part of a project funded by the German Research Foundation, which was headed by Professor Peter Breunig and Professor Katharina Neumann and ended in December 2021. For over twelve years, archaeologists and archaeobotanists from Goethe University studied the Nok culture of Central Nigeria, which is known for its large terracotta figures and early iron production in West Africa in the first millennium BC – although the roots of the Nok culture in fact stretch back to the middle of the second millennium. Research focused above all on the social context in which the sculptures were created, that is, including eating habits and economy. Using carbonised plant remains from Central Nigeria, it was possible to prove that the Nok people grew pearl millet. But whether they also used starchy plants, such as yam, and which dishes they prepared from the pearl millet had so far been a mystery.

“Carbonised plant remains such as seeds and nutshells preserved in archaeological sediments reflect only part of what people ate back then," explains Professor Katharina Neumann. They hoped, she says, that the chemical analyses would deliver additional insights into food preparation. And indeed, with the help of lipid biomarkers and analyses of stable isotopes, the researchers from Bristol were able to show, by examining over 450 prehistoric pots, that the Nok people included different plant species in their diet.

Dr Julie Dunne from the University of Bristol's Organic Geochemistry Unit says: “These unusual and highly complex plant lipid profiles are the most varied seen (globally) in archaeological pottery to date." There appear to be at least seven different lipid profiles in the vessels, which clearly indicates the processing of various plant species and plant organs in these vessels, possibly including underground storage organs (tubers) such as yam.

Since the beginning of the project, the archaeobotanists have sought evidence for the early use of yam. After all, the Nok region is situated in the “yam belt" of West Africa, that is, the area of the continent in which yam is nowadays grown. Carbonised remains are of no further help here because the soft flesh of the tubers is often poorly preserved and mostly non-specific as well. The chemical analyses indicate that – apart from leaves and other as yet unidentified vegetables – the Nok people also cooked plant tissue containing suberin. This substance is found in the periderm of both overground and underground plant organs – possibly a first indication that yam was used, if not the unequivocal proof hoped for.

Through the archaeobotanical study of carbonised remains, pearl millet (Cenchrus americanus) and cowpea (Vigna unguiculata), the oily fruits of the African elemi (Canarium schweinfurthii) and a fruit known as African peach (Nauclea latifolia), which due to its high number of seeds is reminiscent of a large fig, were already known. Molecular analysis now rounds off the picture of food preparation at the sites of the Nok culture. Archaeobotanist Dr Alexa Höhn from Goethe University explains: “The visible and invisible remains of food preparation in the archaeological sediment and the pottery give us a much more complete picture of past eating habits. This new evidence suggests a significant time depth in West African cuisine."

Publication: Julie Dunne, Alexa Höhn, Katharina Neumann, Gabriele Franke, Peter Breunig, Louis Champion, Toby Gillard, Caitlin Walton‑Doyle, Richard P. Evershed Making the invisible visible: tracing the origins of plants in West African cuisine through archaeobotanical and organic residue analysis. Archaeological and Anthropological Sciences

Picture download:

Caption: Excavation of a Nok vessel at the Ifana 3 site. (Photo: Peter Breunig)

Further information
Dr Alexa Höhn
African Archaeology and Archaeobotany
Telephone +49 (0)69-798-32089

Editor: Dr. Anke Sauter, Science Editor, PR & Communication Department, Tel.: +49 69 798-13066, Fax +49 69 798-763-12531,  


Instruct-ERIC has appointed Professor Harald Schwalbe as its new Director, succeeding Professor Sir David Stuart in the role.

OXFORD/FRANKFURT. Integrated structural biology has demonstrated its innovative power in a breath-taking manner in recent years, notably with impressive technological advances. As a European distributed research infrastructure, Instruct-ERIC has been at the forefront of this technological innovation, with centres across the continent providing access to advanced structural biology equipment and techniques.

The COVID-19 pandemic made it increasingly clear that coordinated research is required to utilise the power of structural biology to structurally understand the impact of new mutations in variants of concern. Such coordinated research has been conducted within Instruct-ERIC centres, providing a huge boost for vaccine development and drug discovery.

It is at this transition period that Prof. Harald Schwalbe from Goethe-University Frankfurt becomes the new Instruct-ERIC director as successor of Prof. David Stuart from Oxford University and Diamond Light Source. 

David Stuart commented: “Instruct has been at the forefront of the transition of structural biology into a field that routinely provides deep insights from atomic structure to cellular function and disease. It has been a real privilege to have been involved in setting up the infrastructure and working with leading scientists across Europe and the fantastic staff at the Oxford hub, to realise a vision that, although now widely accepted, seemed far-fetched when it was laid out over ten years ago. The next ten years will see fundamental change across the experimental modalities with increasing integration of experiment with computation as AI and deep learning develop more predictive power to help make sense of the avalanche of experimental data. I look forward to seeing Harald lead Instruct as it responds to the exciting challenges and opportunities."

Harald Schwalbe: "It will be key to strengthen European research in Structural Biology. In NMR spectroscopy, new 1.2 GHz machines are available, pushing the boundaries for solid-state and liquid-state NMR spectroscopy. Technology advances for cryo-EM single particle and tomography analyses are impressive."

“The initiatives in structural biology have an impact not just on a continental scale, but also at a global level. Access needs to be provided to maximise the research impact. Given the pandemic - but also the requirements from global societal challenges - it will be important to link global research endeavours for the benefit of fundamental and applied research, and for fast reactions to immediate threats and challenges."

“I am taking over from Dave Stuart with huge gratitude. He has paved the way for coordinated European research in structural biology."

Professor Harald Schwalbe's career so far has led to him being well known both for development of NMR methods and pulse sequences, and their application to very challenging questions in Chemistry and Biology. His NMR contributions thus have tremendous impact to understand biological processes. 

Instruct-ERIC is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. ERIC stands for European Research Infrastructure Consortium, and refers to a specific legal form that facilitates the establishment and operation of Research Infrastructures with European interest, on a not-for-profit basis. ERICs are funded by subscription from member countries and governed by member country representatives. Instruct-ERIC is comprised of 15 Member Countries: Belgium, Czech Republic, EMBL, Finland, France, Israel, Italy, Latvia, Lithuania, Netherlands, Portugal, Slovakia, Spain and United Kingdom, and one Observer Country: Greece. Through its specialist research centres in Europe, Instruct-ERIC offers funded research visits, training, internships and R&D awards. By promoting integrative methods, Instruct-ERIC enables excellent science and technological development for the benefit of all life scientists. More on

Picture download:

Caption: Prof. Dr. Harald Schwalbe, Goethe University Frankfurt (Photo: Jürgen Lecher, Goethe University)

Further Information:
Prof. Dr. Harald Schwalbe
Institute for Organic Chemistry and Chemical Biology
Center for Biomolecular Magnetic Resonance (BMRZ)
Goethe University Frankfurt
Phone: +49 69 798-29737

Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531,  


Dec 16 2021

Cryo-electron microscopy and computer simulations of mitochondrial complex I

Proton translocation pathways in a molecular machine of cellular energy metabolism

The respiratory chain plays a central role in energy metabolism of the cell. It is localized in mitochondria, the cell´s own power plants. In a new study, researchers from Goethe University, the Max Planck Institute of Biophysics and the University of Helsinki have determined the high-resolution structure of a central component of the respiratory chain, mitochondrial complex I, and simulated its dynamics on the computer. These findings both support basic research and enhance our understanding of certain neuromuscular and neurodegenerative diseases that are linked with mitochondrial dysfunction.

FRANKFURT. All vital processes require a constant supply of energy. In the cell, the chemically “charged" molecule ATP is the main provider of this energy. The ATP power packs are produced, among others, in specialised small organs (“organelles") of the cell, the mitochondria.

There, the protein complexes of the respiratory chain pump hydrogen ions (protons with a positive charge) from one side of the inner mitochondrial membrane to the other (“uphill"), creating a chemical concentration gradient and an electrical voltage. The protons “flow downhill" along this electrochemical gradient through a kind of turbine that generates useful energy for the cell in the form of ATP.

One of the proton pumps in the first step of the process is a large, L-shaped biomolecule, mitochondrial complex I (in short: complex I). Its horizontal arm is anchored in the membrane. The vertical arm binds the electron carrier molecule NADH, which is produced during metabolic breakdown of sugar and other nutrients. Complex I catalyses the transfer of electrons from NADH to ubiquinone (Q10), and the energy released in this reaction is used to drive the proton pump.

The research team from Goethe University and the Max Planck Institute of Biophysics in Frankfurt used cryo-electron microscopy to determine the 3D structure of complex I at high resolution. The researchers were able to show that water molecules in the protein structure play an important role for establishing proton translocation pathways.

The high-resolution structural data enabled colleagues at the University of Helsinki to conduct extensive computer simulations, which show the dynamics of the protein structure during its catalytic cycle.

Dr Janet Vonck from the Max Planck Institute of Biophysics explains: “Our study delivers new insights into how a molecular machine in biological energy conversion works." Professor Volker Zickermann from the Institute of Biochemistry II at Goethe University says: “This knowledge can contribute to a better understanding of certain mitochondrial diseases, such as loss of vision in Leber hereditary optic neuropathy."

Publication: Kristian Parey, Jonathan Lasham, Deryck J. Mills, Amina Djurabekova, Outi Haapanen, Etienne Galemou Yoga, Hao Xie, Werner Kühlbrandt, Vivek Sharma, Janet Vonck, Volker Zickermann: High-resolution structure and dynamics of mitochondrial complex I – Insights into the proton pumping mechanism. Sci Adv. 2021 Nov 12;7 (46)

An image can be downloaded under:

Caption: A bit like a boot: The L-shaped structure of mitochondrial complex I at a resolution of 2.1 Ångström (0.00000021 millimetres), captured with a cryo-electron microscope. Image: Janet Vonck, MPI of Biophysics

Further information
Professor Volker Zickermann
Institute of Biochemistry II
Goethe University, Frankfurt am Main
Tel.: +49 (0)69 798-29575

Dr Janet Vonck
Max Planck Institute of Biophysics, Frankfurt am Main
Phone: +49 (0)69 6303-3004

Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, E-Mail:


Dec 16 2021

Letter of intent signed today in Frankfurt and Israel – GU-President Schleiff: “Start of even closer cooperation”

Goethe University and Tel Aviv University plan joint centre

Tel Aviv University and Goethe University want to work together even more closely in the future. A letter of intent was signed this morning in the framework of a high-profile Zoom conference, with the aim of establishing a joint research centre for religious studies and inter-religious dynamics.

FRANKFURT. A strategic partnership has already existed between the two universities since 1984, and the two cities have even been twinned since 1980. Tel Aviv University and Goethe University now want to intensify relations even further – and establish the first German-Israeli research institute. Scholars from both universities, above all in the fields of history and religious studies, have worked together regularly for many years – especially the Martin Buber Professorship at the Faculty of Protestant Theology maintains close ties with Israel. There is extensive networking between the newly founded Buber-Rosenzweig Institute for Modern and Contemporary Jewish Intellectual and Cultural History at Goethe University and the Centre for Religious and Inter-Religious Studies at Tel Aviv University in the framework of joint workshops and conferences.

The new centre will concentrate on interdisciplinary research in religious and inter-religious studies, with a focus on Judaism, Christianity and Islam. Apart from Protestant and Catholic theology, religious studies, Jewish studies and Islamic studies, other disciplines will be involved, including history, philosophy, philosophy of science and political science. Research topics are conceivable in the following areas: multicultural societies, religious conflicts, migration, fundamentalism and inter-religious dialogue. For the next 42 months, Goethe University will finance the new centre with € 50,000 per year and Tel Aviv University with an annual sum of € 20,000, especially for summer schools.

A joint directorate will be in charge of the new centre, which will bring together both senior scholars as well as early career researchers. There are also plans for joint courses from the 2022 summer semester onwards and the creation of a joint English-taught master's degree programme. Professor Christian Wiese, holder of the Martin Buber Professorship at Goethe University, Director of the Buber-Rosenzweig Institute and the research centre's initiator, sees great potential in the partnership: “In the framework of German-Israeli academic relations and the close connection between the cities of Frankfurt and Tel Aviv, we're creating something very special here – an international research hub in the field of interdisciplinary religious studies that looks at topics from a historical perspective as well as in the context of present times that challenge both societies, the German and the Israeli, each in different ways."

The contract was signed today in Tel Aviv in the presence of Dr Susanne Wasum-Rainer, German Ambassador to Israel. Due to the pandemic, the participants in Frankfurt joined the ceremony via Zoom. Professor Ariel Porat, President of Tel Aviv University, headed the meeting on the Israeli side.

Professor Enrico Schleiff, President of Goethe University
“What we are agreeing upon today is, as far as I am aware, unprecedented – at least in the humanities in Germany. It is not merely a formal cooperation between a German and an Israeli university, but rather the development of a highly visible, joint institutionalized international research centre.

The centre is cross-departmental on both sides and working in an area of study that is most relevant to the German and the Israeli society alike: the history of and the present challenges in religious diversity, difference and conflict in pluralistic societies. It will focus on questions regarding inter-religious dialogue, religious fundamentalism and conflict, but also on the rich cultural heritage and the potential inherent in religious traditions. This centre is the start of an even closer cooperation."

Dr Susanne Wasum-Rainer, German Ambassador to Israel
“Academic exchange and cooperation are not only a constitutive pillar of German-Israeli relations. They are also a contribution to strengthening research and scientific progress as a global endeavour, in science as well as in the humanities. By declaring their will to establish a joint Centre for the Study of Religious and Inter-religious Dynamics, Goethe University and Tel Aviv University are addressing one of the urgent questions of our time, the role of religious communities in a changing and conflictual world."

Professor Menachem Fisch, initiator at Tel Aviv University
“I'm delighted to be involved in the setting up of such a unique, first-of-its-kind centre for the study of the monotheistic faiths and their reciprocal development. It is a worthy initiative and another building block in academic collaboration between the two countries."

Uwe Becker, President of the German Friends Association of Tel Aviv University
“This MOU marks a new milestone in the special relationship between the two universities and is also another bridge of understanding between Frankfurt and Tel Aviv. The new centre will for sure contribute to a better inter-religious dialogue from different angles and perspectives. I am proud that with the launch of the new German Friendship Fund we will also help students to participate in this German-Israeli experience and benefit from the activities of the German Friends Association of Tel Aviv University."

Professor Milette Shamir, TAU Vice President (International)
“Tel Aviv University has a wide collaborative network with German universities, more than with any other country in Europe. This collaboration includes hundreds of joint research projects as well as hundreds of German students who come to our campus each year. The joint centre expands this collaboration in an important new direction and reinforces our existing partnership with Goethe University, one of the leading universities in Germany. We hope that in the near future GU and TAU will expand collaboration to several other areas of common strength."

An image for download

Goethe University and Tel Aviv University want to establish a joint research centre for religious studies and inter-religious dialogue. The letter of intent was signed at a large gathering, with GU president Professor Schleiff (left) and Professor Wiese participating via video link. (Photo: Uwe Dettmar)

Further information
Professor Christian Wiese
Buber-Rosenzweig Institute for Modern and Contemporary Jewish Intellectual and Cultural History
Faculty of Protestant Theology
Goethe University
Tel.: +49(0)69 798-33313

Editor: Dr. Anke Sauter, Science Editor, PR & Communication Department, Tel.: +49 69 798-13066, Fax +49 69 798-763-12531,