Press releases

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to ott@pvw.uni-frankfurt.de

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt 
presse@uni-frankfurt.de

 

Jul 28 2022
16:58

Goethe University Frankfurt, the Institute of Ethnology, and the Frobenius Institute congratulate “their” social and cultural anthropologist

Prof. Mamadou Diawara Now a Fellow of the British Academy

In recognition of his accomplishments in the humanities and the social sciences, Mamadou Diawara has been elected a Fellow of the British Academy. Diawara is Professor for Social and Cultural Anthropology at the Institute of Ethnology and Deputy Director of the Frobenius Institute at Goethe University. He is also Director of Point Sud, the Center for Research on Local Knowledge in Bamako, Mali.

FRANKFURT/MAIN. Professor Mamadou Diawara has been elected a "Corresponding Fellow" of the British Academy at their Annual Meeting and is thus now a member of the Academy, where he will be responsible for the disciplinary section "Africa, Asia and the Middle East." Election to the "Corresponding Fellowship" is the highest scientific honor awarded by the Academy in the humanities and social sciences. According to the Academy statutes, only a person who has "achieved great international prestige" in one of the research areas to be promoted by the Academy may be elected. A permanent place of residence outside the United Kingdom, the Isle of Man or the Channel Islands is an additional criterion for appointment.

"The news caught me totally by surprise and made me very happy, of course," said Professor Diawara, adding that it was a great honor to be admitted to a circle containing so many luminaires. "The British Academy is an important authority which repeatedly voices its opinion in public debates, and its point of view carries great weight. He stated that he is personally looking forward to interesting lectures and a regular academic exchange with scholars in the humanities and social sciences from all over the world. He is now entitled to use the title "FBA" after his name for his entire life.

Mamadou Diawara, born in 1954, studied at the École Normale Supérieure in Bamako and the École des hautes études en sciences sociales in Paris. Diawara completed his doctorate in anthropology and history in Paris in 1985. This was followed, in 1998, by his habilitation at the University of Bayreuth in Germany and in 2004 by the call to Goethe University Frankfurt. Diawara has taught at universities in Europe and the Americas. He was a Henry Hart Rice Visiting Professor in Anthropology and History at Yale University in the USA and a Fellow at the Wissenschaftskolleg [Institute for Advanced Study] in Berlin. In 1998 Diawara founded Point Sud, the Center for Research on Local Knowledge in Bamako, Mali, together with Moussa Sissoko and other colleagues from Germany, Austria and Mali. Moreover, he was co-initiator of several research promotion projects aimed at the upcoming generation of scholars in Africa and played an active role in programs fostering cooperation between scientists in Africa and other parts of the world.

Mamadou Diawara's research deals with history, oral cultures, media, changing standards, mobility and migration in Africa. His regional focus is on Sub-Saharan Africa, in particular the Sahel countries, and relations between Africa and Southeast Asia, in particular Thailand, where he conducts research on trade, including trade in precious and semiprecious stones. He has received major support for this work from the Cluster of Excellence "The Formation of Normative Orders.”

The British Academy was founded in 1902 and is the national academy for the humanities and social sciences of the United Kingdom. It is a community of more than 1,400 leading minds in these areas. The Academy views itself as an institution devoted to promoting research on the national and international level and as a forum for discussion and engagement. This year a total of 85 Fellows were elected including 52 from the United Kingdom, 29 Corresponding Fellows and four Honorary Fellows. 

In her welcoming speech, Professor Julia Black, President of the British Academy, said: "I am delighted to welcome these distinguished and pioneering scholars to our Fellowship. (…) With our new Fellows’ expertise and insights, the Academy is better placed than ever to open new seams of knowledge and understanding and to enhance the wellbeing and prosperity of societies around the world. I congratulate each of our new Fellows on their achievement and look forward to working with them.” 

Portrait of Prof. Diawara for downloading: https://www.uni-frankfurt.de/122595166

Photo caption: The ethnologist Prof. Mamadou Diawara has been elected a Corresponding Fellow of the British Academy. (Photo: Normative Orders, Frankfurt/Main)

Further information
Institute of Ethnology
Administrative Office
Tel: +49 (0)69 798-33064
ethnologie@em.uni-frankfurt.de

PD Dr. Susanne Fehlings, Press and Public Relations, Frobenius Institute
Tel: +49 (0)69 798-33058
fehlings@uni-frankfurt.de


Editor: Dr. Anke Sauter, Science Editor, PR & Communication Office, Tel. +49 69 798-13066, Fax + 49 69 798-763-12531, sauter@pvw.uni-frankfurt.de

 

Jul 22 2022
20:50

Laboratory study: Lower level of protection as early as 3 months after a second vaccination or booster shot – monoclonal antibodies in part ineffective. However, results do not indicate how severely people fall ill

Neutralisation efficacy of antibodies against Omicron variants BA.1 and BA.2 declines quickly

The Omicron variants BA.1 and BA.2 of the SARS-CoV-2 virus, which dominated from about December to April, can already circumvent after three months the protection against infection offered by vaccinations and recovery from infection. This has been revealed in a study in Frankfurt lead-managed by University Hospital Frankfurt and Goethe University. Moreover, according to the study, various pharmaceutical antibody preparations (monoclonal antibodies) have widely differing effects on the two virus variants. The study authors emphasise how important it is to align protective measures to the genetic changes in the virus, therefore. 

FRANKFURT. The Omicron variant of the SARS-CoV-2 virus was first detected in South Africa in November 2021. The high level of infectiousness of the virus and its ability to quickly spawn additional variants has also been observed in Germany: Since January 2022 the Omicron variant BA.1 has dominated here, followed in subsequent months by the variant BA.2. In the meantime, the virus has mutated further, and since June the variants BA.4 and BA.5 have superseded their predecessors. 

This poses major challenges for the immune system of the human body: antibodies are formed in the course of a SARS-CoV-2 infection and these attach themselves to the surface structures of the virus, thus preventing it from penetrating human cells. The viral spike protein plays the key role here. In the Omicron variants, this has changed in more than 50 sites compared to the first SARS-CoV-2 virus identified in Wuhan. The consequence: the antibodies formed after an infection or a vaccination do not recognise the variants less efficient. This is why despite having overcome an infection, people can again become infected with a new SARS-CoV-2 variant, or there are breakthrough infections. However, how good the immunity response is to an infection depends on more than just antibodies. 

Researchers in Frankfurt headed by Marek Widera and Professor Sandra Ciesek from the Institute for Medical Virology at the University Hospital of the Goethe University Frankfurt have now examined how long the antibodies present in blood after a vaccination or recovery from an infection were still able to neutralise the virus variants Omicron BA.1 and BA.2. To this end, they collected blood samples from people who had been vaccinated twice or three times (booster shot), placed the liquid blood component (blood serum), which contains antibodies, together with SARS-CoV-2 viruses on cultivated cells and observed how many of the cells became infected. Furthermore, in each case they ascertained the quantity of antibodies in the samples that recognised the spike protein. 

The result: six months after the second vaccination, the tested sera practically had no neutralising effect on the Omicron variants BA.1 and BA.2. The effect of a booster vaccination declined rapidly: although the sera still provided very good protection shortly after the booster vaccination, three months later the protective effect was merely very weak, with the effect that the tested sera were no longer capable of neutralising the two virus variants. “This is due to the fact that the antibody titre in serum – the amount of antibodies, so to speak – after a vaccination or infection declines in the course of time," explains Widera. “Because the antibodies have a significantly lower ability to recognise newer virus variants, a lower level of antibodies is then no longer sufficient to neutralise the virus variants and prevent an infection of the cells in a cell culture. However, the data from this study does not allow any conclusions to be drawn regarding protection against the seriousness of the course of the disease." The decisive factor for the immune function is not just the antibody titre, but also the cellular immune response, which was not examined in this study, Widera adds. 

These results are particularly problematic for the use of monoclonal antibodies, which are administered to patients with a compromised immune system as a precautionary measure, for example, says Professor Sandra Ciesek. Ciesek is the Director of the Institute for Medical Virology at the University Hospital Frankfurt and the senior author of the study. She explains: “As an example we studied three such monoclonal antibodies in laboratory experiments and saw that their efficacy is very heavily dependent on the virus variant. So that we are able to protect vulnerable patients with such preparations, it is absolutely essential to also test in patients the extent to which such antibodies can neutralise the virus variants that are currently prevalent, therefore." Admittedly, the virus variants BA.1 and BA.2 examined in the study are no longer dominant in Germany in the meantime, adds the virologist. “Our study shows, however, that we cannot afford to let up in adapting our protective measures in line with the genetic changes in the SARS-CoV-2 virus, at present to the Omicron variants BA.4 und BA.5, therefore." 

Publication: Alexander Wilhelm, Marek Widera, Katharina Grikscheit, Tuna Toptan, Barbara Schenk, Christiane Pallas, Melinda Metzler, Niko Kohmer, Sebastian Hoehl, Rolf Marschalek, Eva Herrmann, Fabian A. Helfritz, Timo Wolf, Udo Goetsch, Sandra Ciesek: Limited Neutralisation of the SARS-CoV-2 Omicron Subvariants BA.1 and BA.2 by Convalescent and Vaccine Serum and monoclonal antibodies. eBioMedicine (2022) https://doi.org/10.1016/j.ebiom.2022.104158 

Further information: 
Professor Sandra Ciesek
Marek Widera, Ph.D.
Institute for Medical Virology
University Clinic Frankfurt via Press Office University Clinic Frankfurt
Christoph.Lunkenheimer@kgu.de
Tel. +49 (0)69 6301 – 86442


Editor: Dr Markus Bernards, Science Editor, PR & Communication Office, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, bernards@em.uni-frankfurt.de

 

Jul 22 2022
20:42

Researchers from Goethe University Frankfurt, together with teams from the universities of Marburg and Basel, have shed light on the atomic structure of a bacterial protein that stores hydrogen and carbon dioxide 

Research on bacteria: Electron highway for hydrogen and carbon dioxide storage discovered

Microbiologists at Goethe University Frankfurt, together with researchers from Marburg and Basel, have shed light on the structure of an enzyme that produces formic acid from molecular hydrogen (H2) and carbon dioxide (CO2). The enzyme of the bacterium Thermoanaerobacter kivui was discovered a few years previously by microbiologists at Goethe University Frankfurt, and the scientists have recently presented its potential for liquid hydrogen storage. The filamentous structure of the enzyme, now described at atomic level for the first time, acts like a nanowire and is evidently responsible for the extremely efficient conversion rates of the two gases (Nature, DOI 10.1038/s41586-022-04971-z).

FRANKFURT/MARBURG/BASEL. In 2013, a team of microbiologists led by Professor Volker Müller from Goethe University Frankfurt discovered an unusual enzyme in a heat-loving (thermophilic) bacterium: the hydrogen-dependent CO2 reductase HDCR. It produces formic acid (formate) from gaseous hydrogen (H2) and carbon dioxide (CO2), and in the process the hydrogen transfers electrons to the carbon dioxide. That makes this HDCR the first known enzyme which can directly utilise hydrogen. In contrast, all enzymes known until then that produce formic acid take a detour: they obtain the electrons from soluble cellular electron transfer agents, which for their part receive the electrons from the hydrogen with the help of other enzymes. 

The bacterium Thermoanaerobacter kivui thrives far away from oxygen, for example in the deep sea, and uses CO2 and hydrogen to produce cellular energy. The HDCR of Thermoanaerobacter kivui consists of four protein modules: one that splits hydrogen, one that produces formic acid and two small modules that contain iron sulphur. “It was already clear to us after our discovery that it had to be the two small subunits that transfer the electrons from one module to the other," says Müller. In 2016, the researchers observed that the enzyme forms long filaments. Müller: “We could see how important this structure was from the fact that filament formation massively stimulates enzyme activity." 

The researchers from Goethe University Frankfurt, together with the group led by Dr. Jan Schuller, University of Marburg and LOEWE Centre for Synthetic Microbiology, have now produced a molecular close-up of the enzyme. Through cryo-electron microscopy analysis, Schuller's group has succeeded in determining the HDCR structure at atomic resolution. This made details of the long filaments visible, which the enzyme forms under experimental conditions in the laboratory (in vitro): the filaments' backbone is composed of the two small HDCR subunits, which are arranged together to form a kind of nanowire with thousands of electron-conducting iron atoms. “This is the only enzymatically decorated nanowire discovered so far. On this wire, the hydrogenase module and the formate dehydrogenase module sit like mushroom heads on a cable," explains Schuller. 

Helge Dietrich, a doctoral researcher in Volker Müller's group at Goethe University Frankfurt, tested a genetic modification of the small modules that prevented the HDCR filaments from forming. The result: the individual components or monomers were far less active than the filament. 

Enzyme monomers arrange themselves into filamentous structures inside bacterial cells too. Professor Ben Engel, a structural cell biologist at the University of Basel, and his team contributed this finding by performing cryo-electron tomography. Using this cutting-edge technique, the researchers discovered something special: “Hundreds of filaments bundle together to form ring-shaped superstructures. These structures are really striking—we informally call them 'portals'," explains Engel. The bundles are evidently anchored in the inner membrane of the bacterial cell and span almost its entire width. Dr. Ricardo Righetto, senior scientist in Ben Engel's team, analyzed the structure of HDCR filaments within the native bacteria: “Cryo-electron tomography allows us to directly look inside cells at very high resolution. Using this approach, we were really surprised to not only confirm the occurrence of HDCR filaments in the cells but to find they form large bundles attached to membrane". 

This structure reveals why the HDCR enzyme is orders of magnitude more efficient than all chemical catalysts and far better than all known enzymes at producing formic acid as a “liquid organic hydrogen carrier" from hydrogen and CO2 (cf. background information). Volker Müller: “The hydrogen concentrations in the ecosystem of these bacteria are low, and, in addition, the CO2 and H2 concentrations can switch. Formation of filaments and bundling not only substantially increase the concentration of these enzymes in the cell. The thousands of electron-conducting iron atoms in this 'nanowire' can also store the electrons from hydrogen oxidation intermediately when even just one hydrogen bubble passes by the bacteria." 

The team is convinced that not all the enigmas surrounding the HDCR enzyme have yet been solved through the atomic resolution of the structure. Jan Schuller says: “We don't yet know how the wire stores the electrons, why filament formation stimulates enzymatic activity so intensively or how the bundles are anchored in the membrane. We're working on these research questions." But the HDCR's future could be very exciting, believes Volker Müller: “Perhaps one day we'll be able to produce synthetic nanowires which we can use to capture CO2 from the atmosphere. We're also a step closer now to biological hydrogen storage." 

Background information 

Publication: Helge M. Dietrich, Ricardo D. Righetto, Anuj Kumar, Wojciech Wietrzynski, Raphael Trischler, Sandra K. Schuller, Jonathan Wagner, Fabian M. Schwarz, Benjamin D. Engel, Volker Müller & Jan M. Schuller.

Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature (2022) https://www.nature.com/articles/s41586-022-04971-z 

Picture download: https://www.uni-frankfurt.de/122162542 

Caption: The filaments of the bacterial enzyme HDCR, which produces formic acid from gaseous H2 and CO2, are wound around each other like a plait. Credit: Verena Resch -- https://luminous-lab.com/ 

Further information:
Professor Volker Müller
Department of Molecular Microbiology & Bioenergetics
Institute for Molecular Biosciences
Goethe University Frankfurt
Tel.: +49 (0)69 798-29507
vmueller@bio.uni-frankfurt.de

Dr Jan Michael Schuller
KryoEM Molecular Machines
SYNMIKRO Research Center
University of Marburg
Tel.: +49-6421 28 22584
jan.schuller@synmikro.uni-marburg.de 

Professor Ben Engel
Biozentrum
University of Basel
Tel.: +41 61 207 65 55
ben.engel@unibas.ch


Editor: Dr Markus Bernards, Science Editor, PR & Communication Office, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, bernards@em.uni-frankfurt.de

 

Jul 11 2022
15:43

Prof. Dr. Luciano Rezzolla elected as Fellow of the International Society on General Relativity and Gravitation

International Gravitational society honours physicist Luciano Rezzolla from Goethe University

FRANKFURT. Every three years, the International Society on General Relativity and Gravitation hand-picks a few extraordinary scientists as Fellows, among them such famous personalities as Stephen Hawking and Nobel-laureate Roger Penrose. From now on, Luciano Rezzolla, professor for Relativistic Astrophysics at Goethe University Frankfurt, is among them. He has been honoured “for leading contributions to the development of robust numerical relativity simulations of astrophysical phenomena", that is, the very same calculations that are necessary to predict the gravitational-wave signal from merging neutron stars or to produce the image of the Black Hole Sagittarius A* at the centre of our Milky Way.

Rezzolla is the first professor of a German university receiving this special honour. “I was clearly overjoyed to think that my contributions to gravitational physics have been so influential to be enlisted in this very selected group of fellows." he says “I am very passionate about my research, so it is very gratifying when my peers acknowledge the hard work." The ceremony took place on 8 July in Beijing. Unfortunately, Rezzolla was not able to attend personally: “It is a pity. But the fellowship is a big motivation to face all the difficulties that research and academic life inevitably bring."

For the years to come, Rezzolla is focusing on the formation of heavy elements during the merger of neutron stars. As spokesperson of the research cluster ELEMENTS, a collaboration of Goethe University, TU Darmstadt, GSI, and JLU Gießen, he and a variety of physicists from different fields are searching for the origin of heavy elements such as gold and platinum in the universe.


Picture download: https://www.uni-frankfurt.de/121674596

Caption: Luciano Rezzolla, professor for Relativistic Astrophysics at Goethe University Frankfurt (Credit: Uwe Dettmar)

Further information:
Dr. Phyllis Mania
Science Communication Officer
Research cluster ELEMENTS
Department of Physics
Tel 0049 69 798-13001
mania@physik.uni-frankfurt.de
www.elements.science


Editor: Dr. Phyllis Mania, Science Communication Officer, PR & Communication Office, Tel: -49 (0) 69 798-13001, Fax: +49 (0) 69 798-763 12531, mania@physik.uni-frankfurt.de

 

Jun 30 2022
13:58

Bartonella bacteria use certain proteins – conserved pathomechanism in other bacterial species

How bacteria adhere to cells: Basis for the development of a new class of antibiotics

Researchers from University Hospital Frankfurt and Goethe University Frankfurt have unravelled how bacteria adhere to host cells and thus taken the first step towards developing a new class of antibiotics.

FRANKFURT. The adhesion of bacteria to host cells is always the first and one of the decisivesteps in the development of infectious diseases. The purpose of this adhesion by infectious pathogens is first to colonize the host organism (i.e., the human body), and then to trigger an infection, which in the worst case can end fatally. Precise understanding of the bacteria's adhesion to host cells is a key to finding therapeutic alternatives that block this critical interaction in the earliest possible stage of an infection.

Critical interaction with the human protein fibronectin
In collaboration with other researchers, scientists from University Hospital Frankfurt and Goethe University Frankfurt have now explained the exact bacterial adhesion mechanism using the human-pathogenic bacterium Bartonella henselae. This pathogen causes “cat-scratch disease", a disease transmitted from animals to humans. In an international collaborative project led by the Frankfurt research group headed by Professor Volkhard Kempf, the bacterial adhesion mechanism was deciphered with the help of a combination of in-vitro adhesion tests and high-throughput proteomics. Proteomics is the study of all the proteins present in a cell or a complex organism.

The scientists have shed light on a key mechanism: the bacterial adhesion to the host cells can be traced back to the interaction of a certain class of adhesins – called “trimeric autotransporter adhesins" – with fibronectin, a protein often found in human tissue. Adhesins are components on the surface of bacteria which enable the pathogen to adhere to the host's biological structures. Homologues of the adhesin identified here as critical are also present in many other human-pathogenic bacteria, such as the multi-resistant Acinetobacter baumannii, which the World Health Organization (WHO) has classified as the top priority for research into new antibiotics.

State-of-the-art protein analytics were used to visualize the exact points of interaction between the proteins. In addition, it was possible to show that experimental blocking of these processes almost entirely prevents bacterial adhesion. Therapeutic approaches that aim to prevent bacterial adhesion in this way could represent a promising treatment alternative as a new class of antibiotics (known as “anti-ligands") in the constantly growing domain of multi-resistant bacteria.

Prestigious funding
The research work was funded as part of an Innovative Training Network (“ViBrANT: Viral and Bacterial Adhesin Network Training") under the Marie Skłodowska-Curie Actions (MSCA) of the European Union's HORIZON 2020 research and innovation programme.

The scientific paper has been published in the prestigious journal “Microbiology Spectrum" of the American Society of Microbiology (ASM) and was acknowledged as “Paper of the Month" by the German Society for Hygiene and Microbiology (DGHM) on 18 June 2022.

Publication: Vaca, D. J., Thibau, A., Leisegang, M. S., Malmström, J., Linke, D., Eble, J. A., Ballhorn, W., Schaller, M., Happonen, L., Kempf, V. A. J.; Interaction of Bartonella henselae with Fibronectin Represents the Molecular Basis for Adhesion to Host Cells; Microbiology Spectrum, 18 April, 2022. https://doi.org/10.1128/spectrum.00598-22

Picture download:
https://www.kgu.de/fileadmin/redakteure/Presse/Bilder_Pressmitteilungen/2022/Vaca_Diana_Jaqueline.jpgCaption: First author of the study: Diana Jaqueline Vaca, Institute of Medical Microbiology and Hospital Hygiene at University Hospital Frankfurt. Photo: University Hospital Frankfurt

https://www.kgu.de/fileadmin/redakteure/Presse/Bilder_Pressmitteilungen/2022/Bartonella_henselae.jpg
Adhesion of Bartonella henselae (blue) to human blood vessel cells (red). The bacterium's adhesion to the host cells could be blocked with the help of what are known as “anti-ligands".

Credit: https://www.mdpi.com/2075-4418/11/7/1259

Further information:
Professor Volkhard A. J. Kempf
Director of the Institute of Medical Microbiology and Hospital Hygiene
University Hospital Frankfurt
Tel.: +49 (0)69 6301–5019
volkhard.kempf@kgu.de
Website: https://www.kgu.de/einrichtungen/institute/zentrum-der-hygiene/medizinische-mikrobiologie-und-krankenhaushygiene


Editor: Christoph Lunkenheimer, Press Officer, Staff Unit Communication at Universitätsklinikum Frankfurt, Phone: +49 (0)69 6301–86442, christoph.lunkenheimer@kgu.de