stochastic modelling

Stochastic methods are an interesting tool for the representation of subgrid-scale dynamics in weather and climate models. Our interest is in the derivation of corresponding approaches with minimal tuning, thereby hopefully most robust under external modifications, e.g. climate change.



Zacharuk, M., Dolaptchiev, S.I., Achatz, U. and Timofeyev, I. 2018: Stochastic subgrid-scale parameterization for one-dimensional shallow water dynamics using stochastic mode reduction. Quart. J. Roy. Met. Soc.,  144:1975–1990 (pdf)


Berner J., Achatz U., Batte L., Bengtsson L., de la Cámara A., Christensen H., Colangeli M, Coleman D., Crommelin D., Dolaptchiev S.I., Franzke C., Friederichs P., Imkeller P., Järvinen H., Juricke S., Kitsios V., Lott F., Lucarini V.; Mahajan S., Palmer T., Penland C.,  Sakradzija M., von Storch J.-S., Weisheimer A., Weniger M., Williams P.,  and J.-I. Yano 2017: Stochastic parameterization: Towards a new view of weather and climate models. Bull. Am. Met. Soc., 98, 565 – 587  (pdf)


Wouters, J., Dolaptchiev, S.I., Lucarini. V., and U. Achatz 2016: Parametrization of stochastic multiscale triads. Nonlin. Processes Geophys., 23, 435–445  (pdf)


Dolaptchiev, S.I., Achatz U. and I. Timofeyev , Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation. Theor. Comput. Fluid Dyn. 27, 297-317  (pdf)

Dolaptchiev, S.~I., Timofeyev, I. and Achatz, U., Subgrid-scale closure for the inviscid Burgers-Hopf equation, Commun. Math. Sci., 11, 757–777  (pdf)

Achatz, U., U. Löbl, S. Dolaptchiev and A. Gritsun, Fluctuation-Dissipation Supplemented by Nonlinearity: A Climate-Dependent Sub-Grid-Scale Parameterization in Low-Order Climate Models. J. Atmos Sci., 70, 1833-1846  (pdf)