Press releases – 2018

 

Dec 13 2018
09:04

Goethe University and partner universities want to form network as “European University“ – “Trust through mobility“ as central theme

Standing shoulder to shoulder with Milan, Lyon and Birmingham

FRANKFURT. Goethe University has joined ranks with universities in Milan, Lyon and Birmingham to form an alliance of European universities for more intensive cooperation in the future. In February they will together apply for the title “European University” and funding by the EU. On Monday and Tuesday, the partners met in Frankfurt to discuss goals and opportunities of the collaboration.

“This application for ‘European University’ is a great opportunity for Goethe University,” said Professor Rolf van Dick, Vice President of Goethe University and responsible for international affairs, speaking informally during the meeting. As European University, networking in Europe would be strengthened and scientific and non-scientific projects could be tackled.

Three to five universities can apply together for the title “European University” with the European Commission. Important requirements are a common, long-term education strategy; a common (virtual) “European Campus”; and research and a student body characterized by diversity that can place their focus on the challenges of the future. Goethe University already has a partnership with the University of Birmingham, the Université Lumière Lyon II and Sciences Po Lyon, and the Università Cattolica del Sacro Cruce in Milan, and as partner cities, all four cities are furthermore on friendly and familiar terms. As “European University”, their cooperation could be intensified and made more concrete. If successful, the consortium will receive funding amounting to € 5 million for an initial three years.

In a well-received speech in September 2017, French President Emmanuel Macron proposed the creation of 20 European universities by 2024, referring to networking and alignment between existing European universities as opposed to the creation of new institutions. In difficult times for the European Union, university science and scholarship should be strengthened as an important engine for European integration. This would enable the younger generation, in particular, to again develop a stronger connection to the project of Europe. But scientific knowledge and learning are in general of great significance for developing a European identity – as manifested in the past by examples such as the Erasmus exchange programme, and collaborative research projects funded by the EU.

Macron affirmed his ideas impressively at Goethe University in October 2017. “It really inspired all of us,” says van Dick. In April, a task force was created, headed by van Dick. “It’s exciting, actually,” said James Walker from the Université Lumière Lyon II, praising Goethe University’s initiative. “We quickly found ourselves on the same page regarding our objectives and values. It almost doesn’t matter if our application isn’t successful. We’ll cooperate anyway,” says Walker. “It’s vital for us, as universities, to work together. If we cannot cooperate, how can we expect it of our politicians?” said Michael Whitby from the University of Birmingham, alluding to the Brexit crisis. And Edilio Mazzolini from Università Cattolica in Milan is “proud to be a part of this network“, because the identity of his university is “deeply European“.

Mobility, the meeting summed up, should be a central issue of the European University. Mobility of students, of scientific and non-scientific personnel, and also the mobility of ideas. The universities face similar challenges, for example in teaching, and together they will be able find better solutions. Birmingham has been a strategic partner for years; cooperation between the faculties of law and economics has existed for several years with Université Lumière Lyon II; with Sciences Po Lyon there is a lively partnership between the political science faculties; and Goethe University has a common master’s degree in film studies with Milan.

An image may be downloaded at: www.muk.uni-frankfurt.de/75375741

Further information: Andrea Grebe, Office of the Vice President Professor Rolf van Dick, Tel: -49 69 798-12242, E-Mail: grebe@pvw.uni-frankfurt.de

 

Dec 10 2018
10:38

Economist Nicola Fuchs-Schündeln awarded € 1.6 million ERC Consolidator Grant

A better understanding of labour market behaviour and success

FRANKFURT. Why do some groups behave differently in the labour market than others? What determines labour market success? And which effect do public policies have in this context? These questions are at the centre of a new research project by Frankfurt economist and Leibniz Award winner Nicola Fuchs-Schündeln. The project has been made possible by the European Research Council (ERC)’s Consolidator Grant, one of the largest awards funding scientific research in the European Union. It has just been announced that Fuchs-Schündeln, who is currently in Australia for a research sabbatical, will receive a Consolidator Grant this year. Her project is titled: “Macro- and Microeconomic Analyses of Heterogeneous Labor Market Outcomes.” 

“For the second time within a very brief period, I have the pleasure of congratulating Nicola Fuchs-Schündeln on an impressive distinction,” comments University President Birgitta Wolff. “Following the Leibniz Prize from the Deutsche Forschungsgemeinschaft (German Research Foundation), this exceptional economist has now also brought an ERC Consolidator Grant to Frankfurt, which is an enormous success. It demonstrates the great recognition Fuchs-Schündeln enjoys also in the international research community. We are happy to have a colleague like her, with her innovative research approach, among us. In her research, she combines macro- and microeconomic methods and directs her view towards unconventional and innovative questions – a great enrichment for scientific dialogue and for Goethe University.” 

Since 2009, Nicola Fuchs-Schündeln has been Professor for Macroeconomics and Development at Goethe University Frankfurt. She is a principle investigator in the Excellence Cluster “The Formation of Normative Orders”, as well as in the LOEWE Centre “Sustainable Architecture for Finance in Europe”. From 2015 to 2016, she was a Visiting Professor at Stanford University in California. Fuchs-Schündeln received her Ph.D. from Yale and worked at Harvard as an Assistant Professor of Economics before joining Goethe University. She studied Latin American studies and economics at the University of Cologne.

As in her previous work, in the ERC project “Macro- and Microeconomic Analyses of Heterogeneous Labor Market Outcomes”, Fuchs-Schündeln remains true to her research style of combining macro- and microeconomic methods. The 46 year-old economist plans to carry out four subprojects; three examine differences in labour market behaviour and success of men and women, while the fourth one is concerned with differences in hours worked between poor and rich countries. Labour market data from the Institute for Employment Research (IAB) and the Federal Statistical Office will serve as primary data sources. Individual work biographies, as well as company personnel strategies, can be gleaned from anonymized social insurance data from employees and employers.

One of the subprojects will pursue the question of how maternity leave policies affect the labour market success of women of child-bearing age, explains Fuchs-Schündeln. Although intended as not only family-friendly, but more specifically female-friendly policies, maternity leave policies may have negative consequences, because they could make employers more cautious about employing and promoting women. “These potential negative effects have not been investigated yet,” says the researcher. Such insights are not only of interest for Germany, since maternity leave policies are being discussed and implemented in many countries. Another subproject deals with the phenomenon that an increasing female share in an occupation correlates with decreasing relative wages of this occupation. “There are several hypotheses to explain this: It might be the case that an increasing female share lowers the prestige of an occupation – or the correlation might arise because women place a higher value on amenities such as flexibility, and greater flexibility comes with lower wages,” explains Fuchs-Schündeln. Along with other sources, this research will be based on data from East Germany, where women had made greater advances in technical occupations.

Fuchs-Schündeln will not carry out all this research alone. Several doctoral candidates and a postdoc will be involved in the project. “The research agenda is rather data-intensive,” states the economist. There are enough qualified candidates for these doctoral positions in Frankfurt, Fuchs-Schündeln observes. “At the faculty of economics and business administration, we have a structured doctoral program - the Graduate School of Economics, Finance, and Management, GSEFM - in which we jointly educate and train young researchers. That’s one of Goethe University’s great strengths.” The ERC project will be funded through 2024 with € 1.6 million.

The ERC Consolidator Grant is the latest in a series of honours: At the beginning of 2018, Fuchs-Schündeln won the Leibniz Award, the most prestigious German research award. In 2016, she was given the Gossen Award by the Verein für Socialpolitik (German Economic Association), the most important German award for economics. In 2010 she also already received a Starting Grant from the European Research Council.

A picture may be downloaded here: www.uni-frankfurt.de/75159663

Further information: Professor Nicola Fuchs-Schündeln, Professorship for Macroeconomics and Development, Faculty 02, Theodor-W.-Adorno-Platz 3, Westend Campus, Tel.: -49 69 798-33815, E-Mail: fuchs@wiwi.uni-frankfurt.de.

 

Nov 29 2018
09:07

Significant increase in number of successful scientists in Clarivate Analytics ranking

Thirteen Goethe University researchers among most highly cited

FRANKFURT. Every year, a list is published of the top one percent of researchers worldwide, based on the frequency with which their work is cited by other scientists according to data from the “Web of Science”. The number of natural and medical scientists from Goethe University on the list increased from three to thirteen in the past year. 

Goethe University also stands out in comparison with other German universities: only Heidelberg University has one more researcher listed. The German research institution with the greatest number of highly cited researchers is the Max Planck Institute, which had 76 researchers on the list. A total of 256 researchers form German institutions made it on the list, which includes 6078 researchers in 22 different scientific disciplines. 

The most highly cited researchers at Goethe University are atmospheric researcher

Joachim Curtius, biochemist Ivan Dikic, biologist Stefanie Dimmeler, hydrologist Petra Döll, pharmacologist Jennifer Dressman, geographer Thomas Hickler, cardiologist Stefan Hohnloser, pharmacist Stefan Knapp, cancer researcher Sibylle Loibl, medical scientist Christoph Sarrazin, brain researcher Wolf Singer, physicist Ernst Stelzer, and medical scientist Stefan Zeisel.

“Web of science“ is a platform for researching academic literature. It indexes all scientific and reviewed publications, and also determines how frequently each publication is cited. It is operated by the company Clarivate Analytics.

Further information: Prof. Dr. Joachim Curtius, Institute for Geosciences, Riedberg Campus, Tel.: -49 69 798-40258, curtius@iau.uni-frankfurt.de.

List of highly cited researchers: https://hcr.clarivate.com/ 

 

Nov 29 2018
08:41

Award winner Alexander Vogel carries out research for better air quality

Searching for the sources of particulate matter

FRANKFURT. Particulate matter is a form of pollution whose sources are not all understood to this day. The very complex mixture is formed in the atmosphere from various gaseous precursor molecules. Identifying their sources and improving air quality is the goal of Alexander Vogel, Professor for Atmospheric Environmental Analytics at Goethe University. For his research projects, he received the Adolf Messer Foundation Award at a ceremony on 26th November. In honour of its 25th anniversary, the award amounts to € 50,000 this year. 

University President Professor Birgitta Wolff: “Congratulations to Alexander Vogel! He is doing research on an issue of global importance that affects us all, especially in metropolitan areas: particulate matter. His research can contribute to a better understanding of this threatening phenomenon and make the cities of the world healthier. We thank the Foundation for its tireless work on behalf of early career researchers at Goethe University. And we welcome the fact that the Foundation has addressed its historical responsibility in its recently published clarification on the role of its namesake Adolf Messer.” 

Hessian Minister for Education, Culture and the Arts Boris Rhein: „My warmest congratulations to Professor Alexander Vogel. His research is highly relevant – particulate matter threatens our health and is something we must understand and learn to combat. Excellent research, such as that done by Professor Vogel and many of his colleagues, requires excellent conditions. Now the government of the state of Hesse and the universities in Hesse have both signed the Higher Education Pact for the years 2016 to 2020, creating financial planning certainty for Hesse’s universities through 2020. The Higher Education Pact is a milestone for Hesse as a science location and guarantees Hesse’s universities € 9 million in financial resources for the next five years. That is the largest sum ever made available to Hesse’s universities.” 

Foundation Board Chair, Stefan Messer, stressed: “Every foundation should make it their job to support projects and ideas that are not adequately covered by basic government funding. This is the idea pursued by our non-profit foundation in its funding and recognition of scientists stand out due to their exceptional achievements. We are very happy that in 2018, innovation, scientific curiosity, and pioneering spirit have been recognized for the 25th time in this manner.” 

About the award winning project

According to estimates by the World Health Organisation, about 6.5 million people worldwide die prematurely due to air pollution, most of which can be attributed to particulate air pollution. Contrary to popular opinion, most particulate matter doesn’t enter the atmosphere straight from tailpipes or power plants, but is formed in the atmosphere itself out of gaseous precursor molecules. This secondary particulate matter consists of the tiniest particles with an average diameter in the nanometre-range. These can penetrate deep into the lung and even enter the blood via the alveoles.  An example for the formation of secondary particulate matter is the oxidation of nitrogen oxides from diesel engines: the resulting nitric acid molecules react with ammonia in the atmosphere to create ammonium nitrate.

The inorganic precursor molecules and their development to secondary particulate matter have been well investigated: nitrogen oxides from traffic and industry, sulphur dioxide from coal-burning power plants and ammonia from agriculture. But there are numerous organic molecules on top of this that also occur in nature, such as the terpenes emitted by spruce forests. Organic precursor molecules emitted by human activity in relation to the formation of secondary particulate matter is a highly topical research area. These precursor molecules and their interaction with inorganic trace gases have only been rudimentarily investigated to date. The clear identification of the products of these chemical reactions is made difficult by the fact that the molecules often have the same mass, although their structures are different.

While he was a postdoctoral fellow at the Paul Scherrer Institute in Switzerland, Alexander Vogel developed a method for creating a molecular fingerprint from atmospheric particular matter samples. By analysing them, he can determine the secondary formation mechanism. The molecular fingerprint of particulate matter samples from Los Angeles, for example, exhibits a high percentage of nitrogen-containing organic molecules. “This allows the assumption that a reduction in nitrogen oxide emissions would also lead to a reduction of organic particulate air pollution in urban areas,” Vogel explains.

However, to elucidate the formation mechanisms of individual substances, further analyses of atmospheric samples and specific laboratory experiments in which the formation of particulate matter is simulated are necessary. By comparing field measurements with experiments, Alexander Vogel can already assign a portion of the signals in the real samples to certain processes and precursor molecules. Of the remaining unknowns, at least the molecular formula can be determined, so that potential sources and formation mechanisms can be investigated in further laboratory tests.

Alexander Vogel will now set up the experimental method he developed at the Paul Scherrer Institute at Goethe University. Among other things, he requires a machine for high performance liquid chromatography, which thanks to the Adolf Messer Foundation can now be acquired. His research approach has been met with great interest among environmental science master degree students. The measurements are due to begin at the start of 2019. Applications for master’s and doctoral theses are already coming in.

The great relevance of this topic will also be emphasized in a symposium accompanying the award. With the title “Understanding particulate matter: A grand challenge of the 21st century?”, particulate matter measurement at the Frankfurt International Airport, smog in Chinese cities, and the health effects of particulate matter will be discussed.

Alexander Vogel, born in 1984, studied chemistry at Johannes Gutenberg-Universität Mainz. After receiving his Ph.D. (2014), research on the CLOUD experiment took him to the European Organization for Nuclear Research CERN by Geneva and the Paul Scherrer Institute in Villigen, Switzerland. He has been a tenure-track professor for atmospheric environmental analysis at Goethe University since January 2018.

Further information: Professor Alexander Vogel, Institute for Atmosphere and Environment, Faculty of Geosciences, Riedberg Campus, Tel.: +49 69 798-40225, vogel@iau.uni-frankfurt.de.

 

Nov 29 2018
08:27

The exchange of water between the North and South Atlantic became significantly larger fifty-nine million years ago

Scientists discover how the Atlantic Ocean became part of the global circulation at a climatic tipping point

A team of scientists, led by Dr Sietske Batenburg at the University of Oxford’s Department of Earth Sciences, in close collaboration with Goethe University and other German and UK institutions, have discovered that the exchange of water between the North and South Atlantic became significantly larger fifty-nine million years ago. 

The scientists made this discovery when they compared neodymium isotope signatures of deep sea sediment samples from both regions of the Atlantic. Their paper – ‘Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth’ – published today in Nature Communications, reveals that the more vigorous circulation together with an increase in atmospheric CO2 led to a climatic tipping point. With a resulting more even distribution of heat over the earth, a long-term cooling phase ended and the world headed into a new greenhouse period. 

Neodymium (Nd) isotopes are used as a tracer of water masses and their mixing. Surface waters acquire a Nd-isotope signature from surrounding land masses through rivers and wind-blown dust. When surface waters sink to form a deep-water mass, they carry their specific Nd-isotope signature with them. As a deep-water mass flows through the ocean and mixes with other water masses, its Nd-isotope signature is incorporated into sediments. Deep sea sediments are valuable archives of ocean circulation and past climates.

The story revealed in this paper begins at the end of the Cretaceous period (ending 66 million years ago), when the world was between two greenhouse states. Climate had been cooling for tens of millions of years since the peak hothouse conditions of the mid-Cretaceous, around 90 million years ago. Despite long-term cooling, temperatures and sea level at the end of the Cretaceous period were higher than at present day.

Dr Sietske Batenburg says: ‘Our study is the first to establish how and when a deep-water connection formed. At 59 million years ago, the Atlantic Ocean truly became part of the global thermohaline circulation, the flow that connects four of the five main oceans.’

The Atlantic Ocean was still young, and the North and South Atlantic basins were shallower and narrower than today. The equatorial gateway between South America and Africa only allowed a shallow, surface-water connection for much of the late Cretaceous period. Active volcanism formed underwater mountains and plateaus that blocked deep-water circulation. In the South Atlantic, the Walvis Ridge barrier formed above an active volcanic hotspot. This ridge was partially above sea level and formed a barrier for the flow of deep-water masses.

As the Atlantic Ocean continued to open, the oceanic crust cooled and subsided. Basins became deeper and wider, and submarine plateaus and ridges sank, along with the crust. At some point, deep water from the Southern Ocean was able to flow north across the Walvis Ridge and fill the deeper parts of the Atlantic basins.

From 59 million years ago onwards, Nd-isotope signatures from the North and South Atlantic were remarkably similar. This may indicate that one deep-water mass, likely originating from the south, made its way through the Atlantic Ocean and filled the basin from deep to intermediate depths. The enhanced deep water exchange, together with increasing atmospheric CO2, may have enabled a more efficient distribution of heat over the planet.

This study shows that to understand the role of ocean circulation in past greenhouse climates, it is important to understand the different roles of geography and climate.

The current rate of climate change by CO2 emissions from human activity by far surpasses the rate of warming during past greenhouse climates. Studying ocean circulation during the most recent greenhouse interval in the geologic past may provide clues as to how ocean circulation might develop in the future, and how heat will be distributed over the planet by ocean currents.

This research is the result of an international collaboration with the Goethe-University Frankfurt; the Ruprecht-Karls-University of Heidelberg; the GEOMAR Helmholtz Centre for Ocean Research Kiel; the Federal Institute for Geosciences and Natural Resources in Hannover; the Royal Holloway University of London and the University of Oxford.

The sediments for this study were all taken from long ocean drill cores. The International Ocean Discovery Program (IODP) coordinates scientific expeditions to drill the ocean floor to recover these sediments, and stores the sediment cores so that they are available to the whole scientific community.

Publication: S.J. Batenburg, S. Voigt, O. Friedrich, A.H. Osborne, A. Bornemann, T. Klein1, L. Pérez-Díaz und M. Frank: Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth, in: Nature Communications, DOI: 10.1038/s41467-018-07457-7

Images may be downloaded at: www.uni-frankfurt.de/74972308; Credit: Sietske Batenburg

Further information: Professor Silke Voigt, Institute for Geosciences, Geology, Riedberg Campus, Tel.: +49 69 798-40190, s.voigt@em.uni-frankfurt.de.