Press releases – February 2015

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt


Feb 4 2015

Large structures for the rural extended family, small structures for the urban couple

In the city, rabbits build more densely

FRANKFURT. European wild rabbits (Oryctolagus cuniculus) not only achieve high population densities in the city, their burrows are also built more densely and on a smaller external scale. That is something researchers in theGoetheUniversity's Task Force on Ecology and Evolution have discovered in their study on wild rabbit populations in and aroundFrankfurt. As they report in the advance version of the Journal of Zoology, small burrow structures with fewer entrances and exits predominate inFrankfurt's inner city. These structures are inhabited by few animals - often only pairs or single wild rabbits. In contrast to this, the structural systems in the rural environs ofFrankfurt are substantially larger and are also inhabited by larger social rabbit groups.

"The optimal habitat for a wild rabbit offers both, access to sufficient nourishment and the opportunity to establish rabbit burrows in very close proximity, or to seek out protective vegetation" explains doctoral candidate Madlen Ziege, a member of Prof. Bruno Streit's team. In rural, often agricultural used areas, with their cleared and open landscapes, these conditions are getting harder to find. Apparently, urban and suburban habitats satisfy the needs of wild rabbits far better.

In view of the fact that in some cities there is already talk of a "rabbit infestation", while in recent years the rabbit population in many rural areas of Germany has declined significantly, the scientists currently want to determine whether in the future urban populations could play a significant role as the source populations for the preservation of this wild animal species in Germany. They are therefore examining the population genetics or dynamics, their use of habitat and the state of health of rural, urban and suburban wild rabbit populations.

Link to the publication:

You can find an image for the download at:

Caption: European wild rabbits Oryctolagus cuniculus in the inner city of Frankfurt.

Information: Madlen Ziege, Institute for Ecology, Evolution and Diversity, Campus Riedberg, tel.: 015773883101,

Diese Pressemitteilung in deutsch lesen »


Feb 2 2015

A new DFG Research Unit looks at the behaviour of the mineral under high pressures and temperatures

How carbonates behave in the Earth's interior

FRANKFURT. Carbonates are the most important carbon reservoirs on the planet. But what role do they play in the Earth's interior? How do they react to conditions in the Earth's mantle? These are the questions being asked by a group of scientific researchers from Frankfurt, Bayreuth, Berlin/Potsdam, Freiberg and Hamburg, in a project funded by the DFG. The Research Unit brings together experts from various geoscience disciplines and cutting edge technology.

The Earth has an average radius of around 6,400 kilometers. However, the deepest borehole thus far drilled has only reached a depth of twelve kilometers. And even with huge technical advances, it is unthinkable that we will ever be able to carry out empirical research on the deepest layers, according to Björn Winkler, Professor of Crystallography at the Goethe University Frankfurt and coordinator of the new Research Unit. "We can only get an idea of the conditions in the Earth's interior by combining experiments and model calculations", he explains. While we already have detailed knowledge of silicates, which are a key component of the earth's mantle, very little research on carbonates has been done to date. "The composition of the earth can be explained without carbonates - but the question is, how well?", continues Winkler.

 "Structures, Properties and Reactions of Carbonates at High Temperatures and Pressures" is the title of the project being funded by the DFG as of mid-February. "We want to understand how the Earth works", is the way Winkler describes the primary research goal of the approximately 30 scientists and their teams. What possibilities our planet has for storing carbon, how much carbon there actually is on the earth – the entire carbon cycle is still a complete mystery.

The research group, which combines seven individual projects, is focusing its attention on the Earth's mantle: the 2,850 kilometer thick middle layer in the internal structure of the earth. The aim is to come to a better understanding of the phase relationships, crystal chemistry and physical properties of carbonates. To that end, the plan is to simulate the conditions of the mantle transition zone and the lower earth mantle below it – namely very high temperatures and very high pressure. Each of the seven projects examines a different aspect; for example the carbonate calcite, or the combination of carbonates with iron or silicates, or the behavior of carbonates under shock.

Winkler and his team have been dealing with this issue for six years already. His colleague, Dr. Lkhamsuren Bayarjargal has already been awarded the Max-von-Laue Prize from the German Association of Crystallography for his work with high-power lasers, and has received funding from the Focus Program of the Goethe University. The nationwide collaboration among the researchers is not an entirely new phenomenon either. The DFG funding will enable them to build special equipment to simulate the conditions in the Earth's mantle. This research apparatus includes diamond anvil cells, capable of producing pressures a million times greater than atmospheric pressure, and high-power lasers that can generate temperatures of up to 5,000 degrees Celsius. Calculations have shown that these are the conditions that prevail in the Earth's mantle.

The tiniest amounts of a carbonate are enough for an experiment. During the experiment, the substance is exposed to the respective conditions while the researchers examine it for any changes. A variety of techniques are used for this, such as Raman spectroscopy in Frankfurt, and infrared spectroscopy in Potsdam. "If we come to the same conclusions using different methods, we will know that we have got it right", says Prof. Winkler.
Information: Prof. Dr. Björn Winkler, Faculty of Mineralogy, Institute for Geosciences, Riedberg Campus, Phone: (069) 798-40107, b.winkler@

Diese Pressemitteilung in deutsch lesen »