Press releases – December 2020

 

Dec 14 2020
16:41

Geoscientists at Goethe University hope for certainty from asteroid samples from space - sample container safely landed on Saturday evening

Material sample from asteroid landed in Australia: Water on Earth possibly comes from asteroids

On Saturday evening (5.12.2020), a container containing a sample of the asteroid that had been dropped by the Hayabusa 2 space probe landed in the Australian desert. The chemical "fingerprint" of the water from the asteroid Ryugu could prove that the water on Earth actually originated from asteroid impacts in the early history of the Earth. Up to now, asteroids could only be examined after fragments impacted onto the Earth and therefore contamination by the Earth's water could not be ruled out. In the coming year, the material sample will be examined by scientists all over the world, including a scientific team from Goethe University.

FRANKFURT. When it was formed, the young proto-Earth was hot and probably circled around the sun in a very dry zone where water evaporated and was blown into space by the solar wind. According to one theory, our blue planet came to its great oceans through watery celestial bodies that hit the earth. As spectral analyses of comet tails have shown, it was most likely not comets.

This is because in their ice, the ratio of hydrogen with two protons in its nucleus, deuterium (D), to hydrogen with one proton in its nucleus (H) is usually different from that on Earth. On the other hand, the water trapped in certain meteorites - i.e. in fragments of asteroids that have hit the Earth - is almost exactly the same as terrestrial water. Such C-class asteroids are highly carbonaceous and come from the outer part of the asteroid belt that orbits the sun between Mars and Jupiter. Ryugu is one of them.

Prof. Frank Brenker, geoscientist at Goethe University, will examine the Ryugu sample together with his colleague Dr. Beverly Tkalcec. He explains: "There are very good scientific arguments that the D/H ratio we find in meteorites is indeed similar to that of asteroids in space. Nevertheless, we cannot rule out water vapour contamination on Earth: after all, 90 percent of an asteroid evaporates when it passes through the atmosphere, and even if it hits a dry desert, the meteorite can absorb water until it is found, for example from early morning fog. With the Ryugu sample we will finally get certainty on this issue".

To this end, from the middle of next year, the Frankfurt researchers will examine and screen Ryugu samples for their chemical composition at the particle accelerators ESRF in Grenoble and DESY in Hamburg. Later in the year, Ryugu samples will be cut with the help of a focused ion beam and will be examined with a transmission electron microscope at Goethe University. Tkalcec and Brenker want to determine the exact geological history of the asteroid. In order to be able to assess the measured values for the water, but also the organic compounds that occur, it is immensely important to understand all the processes that led to their formation in the first place. The temperature achieved by the asteroid is just as important here as the circumstances of the formation of water-containing minerals, and the influence of impacts on the surface of the asteroid.

The building blocks for life on Earth may also come from carbon-rich asteroids such as Ryugu, since sugars and components of proteins (amino acids) and the hereditary molecule DNA (nucleobases), which could have been formed from inorganic substances under suitable conditions, have already been found in meteorites. For this reason as well, numerous scientific teams from all over the world will be working on the analysis of the Ryugu samples.

Images for download:

  1. Prof. Dr. Frank Brenker, Institute für Geosciences, Goethe University Frankfurt. Credit: Jürgen Lecher for Goethe University. http://www.uni-frankfurt.de/95132289

  2. Prof. Dr. Frank Brenker, Institute für Geosciences, Goethe University Frankfurt. Credit: personal photo. http://www.uni-frankfurt.de/95132407

  3. Dr. Beverley Tkalcec, Institute für Geosciences, Goethe University Frankfurt. Credit: personal photo. http://www.uni-frankfurt.de/95132444

  4. Landing of space probe Hayabusa 2 on the asteroid Ryugu for the collection of samples. Illustration: Akihiro Ikeshita für JAXA. https://www.hayabusa2.jaxa.jp/en/galleries/cg/pages/touchdown1.html

  5. The asteroid Ryugu from a distance of 20 kilometres, photographed by the probe Hayabusa 2. Credit: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST. 
    https://www.hayabusa2.jaxa.jp/en/galleries/ryugu/pages/fig11_fmhome_front.html

  6. Hayabusa 2 passes by Earth: On its return, the probe flew past Earth on its way to another mission and sent a capsule containing the Ryugu sample to Earth. The capsule landed in the Australian desert on Saturday, 5 December 2020. Illustration: Akihiro Ikeshita for JAXA. 
    https://www.hayabusa2.jaxa.jp/en/galleries/cg/pages/swingby.html

Further information
Prof. Dr. Frank Brenker
Institute for Geosciences – Nanoscience
Phone: +49 151 68109472
f.brenker@em.uni-frankfurt

 

Dec 11 2020
11:29

International research team discovers shifts in small regulatory RNAs

tRNA fragments are involved in poststroke immune reactions

An ischemic stroke is an extreme disturbance of the homeostasis of brain and body. Among other things, the immune system triggers an inflammatory reaction that can either overshoot or turn into an immune deficiency. For the first time, an international team of researchers – among them scientists from Goethe University Frankfurt, Germany – has now shown that tRNA fragments play a role in this immune reaction. Fragments of tRNAs, which transport amino acids during protein synthesis (“transfer RNA"), were long merely considered cellular waste. The aim of the research is to find new target structures for therapeutics.

FRANKFURT. Sebastian Lobentanzer of Goethe University, Frankfurt, has been studying small RNA dynamics in various contexts using bioinformatic methods. Recently, small RNAs have become more and more interesting for researchers, primarily because of their extensive regulatory functions. To examine these functions in stroke, Lobentanzer joined Katarzyna Winek of Hebrew University, Jerusalem, to study microRNAs and tRNA fragments in blood samples from ischemic stroke patients collected at Charité, Berlin. “tRNA fragments, which until now were only thought to be debris of the amino acid-transporting tRNAs, have recently been shown to possess biological functions; naturally, we were very interested in that," explains the pharmacologist.

The project was initiated and led by Hermona Soreq (Hebrew University, Jerusalem, Israel) and Andreas Meisel (Charité, Berlin), who jointly study the contributions of small RNA regulators of cholinergic signaling in blood cells of stroke patients, funded by the Einstein Foundation. Katarzyna Winek from The Edmond and Lily Safra Center of Brain Science at The Hebrew University collaborated with Sebastian Lobentanzer at the Institute for Pharmacology and Clinical Pharmacy (AK Jochen Klein) at Goethe University Frankfurt, Germany.

This collaborative effort was able to show, for the first time, the involvement of monocytic tRNA fragments in the poststroke immune response. "Simply put, there may be a 'changing of the guards,' in which tRNA fragments replace microRNAs in monocytes," explains Lobentanzer. “Bioinformatic network analyses show that these two small RNA species have vastly different functional roles in the immune response, and thus may work in synergy in the regulation of homeostasis." In the long run, the researchers want to find therapeutics to modify these processes. Indeed, if the immune status of each patient after a stroke could be individually determined, many complications could be avoided.


Publication: Katarzyna Winek, Sebastian Lobentanzer, Bettina Nadorp, Serafima Dubnov, Claudia Dames, Sandra Jagdmann, Gilli Moshitzky, Benjamin Hotter, Christian Meisel, David S Greenberg, Sagiv Shifman, Jochen Klein, Shani Shenhar-Tsarfaty, Andreas Meisel, Hermona Soreq: Transfer RNA fragments replace microRNA regulators of the cholinergic post-stroke immune blockade. PNAS https://doi.org/10.1073/pnas.2013542117

Further Information:
Dr. Sebastian Lobentanzer,
Institute for Pharmacology and Clinical Pharmacy
Goethe-Universität Frankfurt
Tel.: +49 69 798-29370
lobentanzer@em.uni-frankfurt.de


 

Dec 9 2020
09:38

Approval by the German Research Foundation (DFG): CRC 1080 starts its third round

Collaborative Research Centre “Molecular and Cellular Mechanisms in Neural Homeostasis” is extended

The Collaborative Research Centre 1080 was successful in the German Research Foundation’s current round of approvals and will start its third funding period in 2021. The DFG is providing € 2 million per year for four years of research. In the CRC 1080, scientists from various disciplines investigate how the brain and nervous system maintain stability as a complex system while also remaining accessible and flexible.

FRANKFURT. One of the most remarkable features of our nervous systems is its ability to maintain a stable internal state (homeostasis) while having to constantly respond to an ever-changing environment. In the Collaborative Research Centre 1080, the participating scientists endeavour to understand the significance of homeostatic mechanisms for the human body, in particular for diseases of the nervous system. They investigate mechanisms which enable the brain to maintain network homeostasis as a balanced functional condition. This is decisive for the stability of the nervous system, and helps the brain process the constant flow of input.

The CRC 1080, which started in 2013, has been extended by four years for the second time, so that the funding will continue through to 2024. Goethe University is the coordinator, and the Johannes Gutenberg-Universität Mainz, the Max Planck Institute for Brain Research, the Institute for Molecular Biology in Mainz (IMB) and the Hebrew University of Jerusalem are cooperation partners.

CRC spokesperson Professor Amparo Acker-Palmer says: “The strength of the Collaborative Research Project 1080 is the integration of diverse research disciplines, we are not just looking at individual genes, cell types, pathological processes or structures. Instead, we engage experimental approaches and computer simulations that enable us to follow whole chains of events that lead to neural homeostasis. The Rhine-Main network of neurosciences rmn2, in which we are integrated, provides an optimal environment for the CRC.”

Further information:
Professor Amparo Acker-Palmer
Spokesperson for CRC 1080
Institute for Cell Biology and Neurosciences
Goethe University
Phone: + 49 69 798-42565
Acker-Palmer@bio.uni-frankfurt.de
https://www.crc1080.com/



 

Dec 7 2020
08:21

The research project “ZOWIAC“ by Goethe University and the Senckenberg Society for Nature Research will be funded with three fourths of a million euros

Raccoon, raccoon dog & Co: Risks of invasive and alien predator species for health and ecology

The raccoon, raccoon dog, mink and golden jackal are not native to Germany or Europe, but are increasingly spreading in these non-native regions. The joint research project ZOWIAC, “Zoonotic and ecological effects on wildlife of invasive carnivores" by Goethe University and the Senckenberg Society for Nature Research will study how these invasive and alien species threaten biological diversity and which diseases they can transmit to humans as well as animals. The project is mainly funded by the German Federal Environmental Foundation (DBU). The research project will receive additional funding and support from Senckenberg and the regional hunting associations in Hessen and Bavaria, and will also involve nature conservation groups, hunters and citizens.

FRANKFURT. More and more exotic animals and plants are being intentionally and unintentionally introduced into Europe from areas where they naturally occur. In Germany alone, more than one thousand invasive alien species (IAS) are registered. Invasive species cause significant changes to species communities and ecological systems and are considered one of the most important risks to biological diversity. Because they transmit diseases or serve as intermediate hosts for pathogens, they threaten the health of humans as well as pets, livestock and wildlife. The EU Commission estimates the annual economic and health damage caused by IAS in Europe at 9.6 to 12.7 million euros. In the course of globalisation and the increasing population and settlement density, invasive species are also attaining increasing significance in cities.

Among the species that are spreading more and more in Europe are the two predatory mammals raccoon (Procyon lotor) and raccoon dog (Nyctereutes procyonoides), which are considered invasive, as well as the mink (Neovision vison) and the golden jackal (Canis aureus), the latter occurring with increasing frequency in Germany over the last ten years. Due to their broad food spectrum and high adaptability these animals are able to live in almost any natural habitat. They are suspected to be among the factors responsible for the decline of numerous indigenous species, some of which are endangered, such as bats, various amphibian and reptile species, and ground-nesting birds. The project will also investigate whether their moving into urban areas favours the transmission of pathogens to humans and animals, so-called zoonoses.

A zoonosis introduced to Europe by the racoon is the racoon roundworm (Baylisascaris procyonis), whose eggs are spread through the animals' faeces. This poses a potential threat to human health, particularly in cities, where racoons utilise anthropogenic food resources and spaces. Racoons also serve as reservoir hosts for coronaviruses, lyssaviruses (rabies), canine distemper virus, and the West Nile virus. The spectrum of pathogens of the racoon dog resembles that of the racoon. In addition, it is considered the final host of the fox tapeworm (Echinococcus multilocularis). The mink is one of the most widely spread alien mammal species worldwide and is considered a carrier of a variety of zoonoses such as leptospirosis, trichinosis and toxoplasmosis. The golden jackal carries zoonosis pathogens as well. Some of them, such as the canine tapeworm (Echinococcus granulosus), the canine roundworm (Toxocara canis) and trichinae, can have significant effects on public health.

The joint project ZOWIAC will make an essential contribution to the development of up-to-date, sound and reliable data in order to better assess the health risk posed by the raccoon, raccoon dog, mink and golden jackal, and their impact on native species and ecosystems, says project leader Professor Sven Klimpel from Goethe University and the Senckenberg Society for Nature Research. A systematic monitoring of the most frequently associated pathogens will be carried out. Furthermore, spatial aspects will be considered in particular, i.e. established populations in urban and rural regions (agricultural/forestry/bodies of water), populations at their current distribution limits in Europe, as well as from the regions of origin (North America, Asia). Daliy movement patterns can be determined by radio collaring single individuals. Metabarcoding of stomach and faeces samples will provide detailed information on food spectrum and parasite fauna, in order to better estimate possible effects on biodiversity and the zoonosis potential. Various population and environmental parameters will be collected and used to create dispersal models to show the potential distribution and occurrence of these carnivorous mammals also under changing climatic conditions, Klimpel explains further.

Since the future success in mitigating negative effects from IAS will depend largely on public understanding and participation, all relevant groups and actors will be involved. In addition to cooperation partners from the scientific community, hunting associations and relevant ministries, citizens will also be involved in the research project (Citizen Science). As a basis for this exchange, an application and an online communication platform will be developed to generate data and provide information on current research findings. Since ZOWIAC includes aspects on wildlife ecology and health research, the project will also deliver results that can serve relevant ministries and authorities as a basis for decisions on how to handle invasive and alien predators in Germany and Europe.

Images for download:

1. http://www.uni-frankfurt.de/94824069
Caption: Raccoon dog (Nyctereutes procyonoides), Credit: Dorian D. Dörge, Goethe University Frankfurt

2. http://www.uni-frankfurt.de/94824102
Caption: Raccoon (Procyon lotor), Credit: Dorian D. Dörge, Goethe University Frankfurt

Further information:
Prof. Dr. Sven Klimpel
Chair for Integrative Parasitology and Zoophysiology
Institute of Ecology, Evolution and Diversity
Goethe University Frankfurt
Phone: +49 69 798 42249
Klimpel@bio.uni-frankfurt.de

Norbert Peter, M.Sc., Dipl.-Forsting. (FH)
Medical Biodiversity and Parasitology
Senckenberg Society for Nature Research
Phone: +49 69 798 42212