Gruppen

(Abelsche) Gruppe

Eine **Gruppe** (G, \circ) ist eine Menge G und eine Verknüpfung $\circ: G \times G \to G$, die die folgenden Bedingungen erfüllen

(i) Die Verknüpfung ist assoziativ, das heißt

$$a \circ (b \circ c) = (a \circ b) \circ c, \quad \forall \ a, b, c \in G.$$

(ii) Es gibt ein neutrales Element $e \in G$ mit $a \circ e = e \circ a$, $\forall a \in G$.

(iii) Für jedes Element $a \in G$ existiert ein $\mathit{Inverses}\ a^{-1} \in G$ mit

$$a \circ a^{-1} = a^{-1} \circ a = e \quad \forall \ a \in G.$$

Das neutrale Element e von G und das Inverse a^{-1} von $a \in G$ sind eindeutig.

Ist die Verknüpfung noch kommutativ, das heißt es gilt $a \circ b = b \circ a$ für alle $a, b \in G$, so nennt man die Gruppe (G, \circ) abelsch.

Untergruppe

Sei (G, \circ) eine Gruppe. Eine Teilmenge $U \subseteq G$ heißt **Untergruppe von** G, wenn

- (i) $e \in U$,
- (ii) für alle $a, b \in U$ gilt $a \circ b \in U$
- (iii) und aus $a \in U$ folgt, dass $a^{-1} \in U$.

- G und $\{e\}$ sind die trivialen Untergruppen von G.
- Eine von G verschiedene Untergruppe U wird auch echte Untergruppe genannt.

Gruppenordnung und Ordnung von Gruppenelementen

Sei $G = (G, \circ)$ eine Gruppe. Die Mächtigkeit |G| der Menge G wird auch als **Ordnung von** G bezeichnet. Ist $|G| < \infty$, so nennt man die Gruppe (G, \circ) endlich, sonst unendlich.

Ist für $g \in G$ die Zahl m die kleinste natürliche Zahl mit $g^m = e$, so nennt man $m := \operatorname{ord}(g)$ die **Ordnung von** g.

Satz. Alle Elemente einer endlichen Gruppe haben eine endliche Ordnung, die ein Teiler der Gruppenordnung ist.

Verknüpfungstafel

Eine Verknüpfungstafel ist eine Tabelle, mit der zweistellige Verknüpfungen dargestellt werden können. Für eine vorgegebene Menge G und Verknüpfung $\circ: G \times G \to G$ ergeben sich die Einträge als alle möglichen Verknüpfungen von je zwei Gruppenelementen. Damit lässt sich prüfen, ob (G,\circ) eine Gruppe bildet.

				1
♦	a	b	c	
a	a	b	c	
b	b	С	a	
c	c	a	b	

				Y
*	a	b	c	
a	a	b	c	
b	b	b	b	
С	С	b	С	

Gruppenhomomorphismus

Seien (G, \circ) und (H, *) Gruppen. Eine Abbildung $f: G \to H$ heißt **Gruppenhomomorphismus**, wenn für alle $a, b \in G$ gilt

$$f(a \circ b) = f(a) * f(b).$$

Ein Homomorphismus ist strukturerhaltend: Es ist egal, ob man erst zwei Elemente verknüpft und das Ergebnis abbildet oder ob man erst die zwei Elemente abbildet und dann die Bilder verknüpft.

Isomorphie von Gruppen

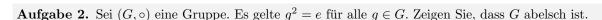
Seien (G, \circ) und (H, *) Gruppen. Existiert ein ein bijektiver Gruppenhomomorphismus (kurz: Gruppenisomorphismus) $f: G \to H$, so nennen wir die Gruppen (G, \circ) und (H, *) **isomorph**.

Aufgaben

(Abelsche) Gruppe

Aufgabe 1. Prüfen Sie, ob es sich bei den folgenden Paaren (G, \circ) um Gruppen handelt.

- (a) Teilmengen der ganzen Zahlen \mathbb{Z} der Form $n\mathbb{Z} := \{n \cdot k \mid k \in \mathbb{Z}\}$ für $n \in \mathbb{N}$ zusammen mit der gewöhnlichen Addition auf \mathbb{Z} . Bemerkung: Die Teilmengen der Form $n\mathbb{Z}$ sind sogar die einzigen Untergruppen von $(\mathbb{Z}, +)$.
- (b) Die reellen Zahlen $\mathbb R$ zusammen mit der Verknüpfung $x \circ y = x + y x \cdot y$.
- (c) Die symmetrische Gruppe S_3 , die aus allen Permutationen einer dreielementigen Menge besteht, zusammen mit der Komposition \circ .



Aufgabe 3. Zeigen Sie, dass (S_3, \circ) nicht abelsch ist.

Aufgabe 4. Man zeige durch Bestätigung der Gruppenaxiome, dass die Menge

$$M := \{ x \in \mathbb{Q} | \exists n \in \mathbb{Z} : x = 2^n \}$$

zusammen mit der gewöhnlichen Multiplikation eine abelsche Gruppe bildet, die zu $(\mathbb{Z}, +)$ isomorph ist.

Gruppenordnung und Ordnung von Gruppenelementen

Aufgabe 5. Bestimmen Sie die Ordnung von $(\mathbb{Z}/7\mathbb{Z})^*$ sowie die Ordnung jedes Gruppenelements.

Erinnerung: $(\mathbb{Z}/7\mathbb{Z})^*$ ist die multiplikative Gruppe des Restklassenrings $\mathbb{Z}/7\mathbb{Z}$. Sie besteht aus den zu 7 teilerfremden Restklassen.

Verknüpfungstafel

Aufgabe 6. Sei (G, \circ) eine endliche Gruppe. Können in der Verknüpfungstafel von G in einer Zeile (oder Spalte) an verschiedenen Stellen zwei gleiche Elemente stehen?

Aufgabe 7. Ist e neutrales Element einer vierelementigen Gruppe (G, \circ) mit $G := \{a, b, c, e\}$, so ist die Verknüpfungstafel mit der Angabe $c \circ c = b$ bereits eindeutig bestimmt. Wie lautet demnach die Tafel?

Gruppenhomomorphismen und Isomorphie von Gruppen

Aufgabe 8. Welche der angegebenen Abbildungen $f:G\to H$ sind Gruppenhomomorphismen oder sogar Gruppenisomorphismen?

- (a) $G = (\mathbb{Z}, +), H = (\mathbb{Z}/3\mathbb{Z}, +), z \mapsto z \mod 3;$
- (b) $G = H = (\mathbb{R}, +), x \mapsto x^2;$
- (c) $G = H = (\mathbb{Z}/2\mathbb{Z}, +), x \mapsto x^2$.

Aufgabe 9. Sei (G, \circ) eine Gruppe und die Abbildungen f und g_a für $a \in G$ folgendermaßen definiert

$$f: G \to G, x \mapsto x \circ x,$$

$$g_a: G \to G, x \mapsto a \circ x \circ a^{-1}.$$

Man zeige:

- (a) Die Abbildung f ist genau dann ein Gruppenhomomorphismus, wenn die Verknüpfung \circ kommutativ ist.
- (b) Die Abbildung g_a ist ein Isomorphismus von G nach G.

Aufgabe 10. Zeigen Sie, dass die Menge der Kongruenzabbildungungen eines gleichseitigen Dreiecks zusammen mit der Hintereinanderausführung \circ eine Gruppe bildet. Zeigen Sie, dass diese Gruppe isomorph zu (S_3, \circ) ist.

