Reihen

Definition von Reihen

Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge, dann heißt die Folge

$$(S_n)_{n\in\mathbb{N}}$$
 mit $S_n = \sum_{k=1}^n a_k$

die der Folge $(a_n)_n$ zugeordnete Reihe. Diese wird auch notiert als

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Ist $s := \sum_{k=1}^{\infty} a_k < \infty$, so heißt die Reihe *konvergent*. In diesem Fall nennen wir s den *Wert* der Reihe. Ist $\sum_{k=1}^{\infty} |a_k| < \infty$, so heißt die Reihe *absolut konvergent*. Andernfalls heißt die Reihe *divergent*.

Aus absoluter Konvergenz folgt (normale) Konvergenz.

Die Folge $(S_n)_{n\in\mathbb{N}}$ heißt Folge der Partialsummen von $(a_n)_{n\in\mathbb{N}}$.

Eine Reihe ist genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert.

Konvergenzkriterien

Leibniz-Kriterium

Ist $(a_k)_{k\in\mathbb{N}}$ eine monoton fallende Nullfolge, dann konvergiert die alternierende Reihe

$$\sum_{k=1}^{\infty} (-1)^k a_k.$$

Cauchy-Kriterium

Eine Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut, wenn für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass für alle $m \geq n \geq N$ gilt:

$$\left| \sum_{k=m}^{n} a_k \right| < \varepsilon.$$

Majorantenkriterium

Ist $\sum_{k=1}^{\infty} b_k$ eine konvergente Reihe mit $|a_k| \leq b_k$ für fast alle $k \in \mathbb{N}$, dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ absolut.

Minorantenkriterium

Ist $\sum_{k=1}^{\infty} b_k$ eine divergente Reihe mit $a_k \geq b_k$ für fast alle $k \in \mathbb{N}$, dann divergiert die Reihe $\sum_{k=1}^{\infty} a_k$.

Quotientenkriterium

Ist $a_k \neq 0$ für alle $k \in \mathbb{N}$ und existiert

$$q := \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$$

dann konvergiert $\sum_{k=1}^{\infty} a_k$ für q < 1 absolut. Ist $\left| \frac{a_{k+1}}{a_k} \right| \ge 1$ für fast alle k, so divergiert die Reihe.

Wurzelkriterium

 Falls

$$q:=\lim_{k\to\infty}\sqrt[k]{|a_k|}$$

existiert und q < 1, konvergiert $\sum_{k=1}^{\infty} a_k$ absolut, im Fall q > 1 ist die Reihe divergent.

Erklärung

Rechenregeln

Sind $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ zwei konvergente Reihen und $c \in \mathbb{R}$, dann konvergieren auch:

$$\sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} (a_k + b_k) \text{ und } c \cdot \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (c \cdot a_k) \text{ und}$$

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{k=1}^{\infty} b_k\right) = \sum_{k=1}^{\infty} \sum_{i+j=k} (a_i \cdot b_j).$$

Für divergente Reihen gelten diese Rechenregeln im Allgemeinen nicht!

Wichtige Reihen

Die harmonische Reihe $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ ist divergent.

Die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^2}$ ist konvergent und hat den Wert $\frac{\pi^2}{6}$.

Die geometrische Reihe $\sum_{k=0}^{\infty} q^k$ ist nur für |q| < 1 konvergent und hat dann den Wert $\frac{1}{1-q}$.

Aufgaben

Definition von Reihen

Aufgabe 1. Berechnen Sie die folgenden endlichen Summen:

- $\begin{array}{ccc} \sum (-1)^k & \text{c} & \sum \pi \\ \sum (2k-4) & \text{f} & \sum 1/n^s \text{ mit } s > 0 \end{array}$

Aufgabe 2. Zeigen Sie per vollständiger Induktion, dass für jedes $q \in \mathbb{R}, q \neq 1$ gilt:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Folgern Sie daraus, dass $\sum_{k=0}^{\infty} q^k$ für |q| < 1 konvergiert und für |q| > 1 divergiert. Was gilt für q = 1?

Konvergenz von Reihen

Aufgabe 3. Überprüfen Sie die folgenden Reihen auf Konvergenz:

- b)
- c)
- $\sum_{k=0}^{\infty} \frac{1/k^3}{\sum_{k=0}^{\infty} (-1)^k (1/2 1/k)^k}$ $\sum_{k=0}^{\infty} \frac{1/\sqrt{k}}{k!} \text{ für } x \in \mathbb{R}, x \leq 1.$ $\sum_{k=0}^{\infty} (-1)^k 1/k$ d)

Aufgabe 4. Zeigen Sie: Ist $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge, so konvergiert $\sum_{k=1}^{\infty} (a_{n+1} - a_n)$. Bestimmen Sie ferner den Grenzwert.

Aufgabe 5. Zeigen Sie: Ist $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge mit Grenzwert a>0 und $a_n\geq a$ für alle $n \in \mathbb{N}$, so divergiert $\sum_{k=1}^{\infty} a_n$.

Rechenregeln

Aufgabe 6. Geben Sie ein Beispiel an, warum die Rechenregel $\sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} (a_k + b_k)$ nicht für divergenze Reihen gilt, d.h. geben Sie zwei Folgen $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ an, sodass $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ divergiert, aber $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergiert.