Vergleichende Bewertung der Paketdistribution mit Drohnen und Lieferwagen

Thomas Kirschstein

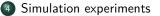
Martin-Luther-Universität Halle-Wittenberg

82. Jahrestagung des VHB

Frankfurt, 19.03.2020

Conclusion 00

Outline



Introduction

Energy consumption of DVs and EVs

Introduction	
000	

Energy consumption of UAVs 0000000 Simulation experiment

Conclusion 00

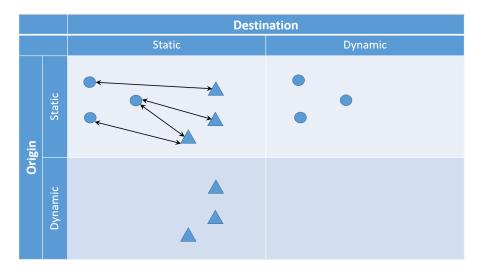
Motivation

© Amazon.com

© Alphabet.com

© DHL.com

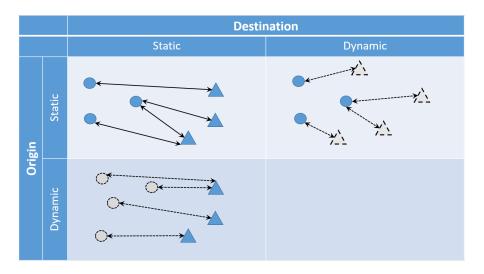
Perceived advantages:


- fast & flexible \rightarrow same-day deliver within 30 minutes [Amazon, 2019]
- cost efficient \rightarrow 1 \$ per delivery [Wang, 2016], 1-5 ct per mile [Peers, 2018]
- $\bullet~{\rm green} \rightarrow {\rm no}/{\rm less}~{\rm GHG}$ emissions than trucks [Goodchild and Toy, 2018]
- $\bullet~$ save $\rightarrow~$ less accidents, less congestion [Crowe, 2019]

Current status:

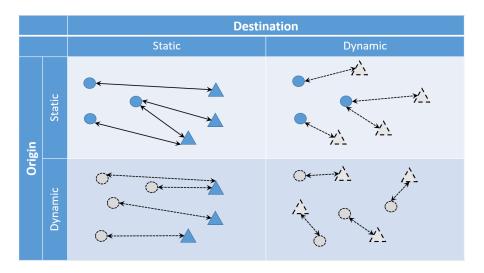
- some pilot projects [e.g. blood samples, Scott et al., 2017]
- Alphabet Wing drones received regulatory permission in US and Australia [Lee, 2019]
- Amazon Prime Air expected to receive permission in 2019 [Lee, 2019]

Introduction	
000	


Energy consumption of UAVs 0000000 Simulation experimen 0000000 Conclusion 00

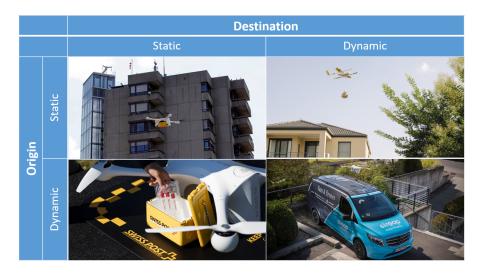
Introduction	
000	

Energy consumption of UAVs 0000000 Simulation experiment

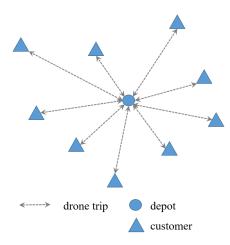

Conclusion 00

Introduction	
000	

Energy consumption of UAVs 0000000 Simulation experiment


Conclusion 00

Introduction 000 Energy consumption of DVs and EVs

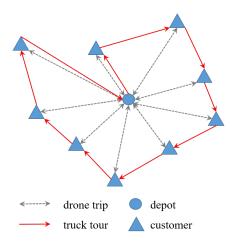

Energy consumption of UAVs 0000000 Simulation experiment

Conclusion

Introduction			
5 6	<i>c</i> .		

Performance of stationary drone delivery systems

Assumptions:


- fixed depot & customer locations
- technological specifications
- drone capacity: 1 parcel

KPIs:

- service time
- investment cost
- operating cost
 - operator
 - wear-&-tear
 - energy
- emissions

Performance of stationary drone delivery systems

Assumptions:

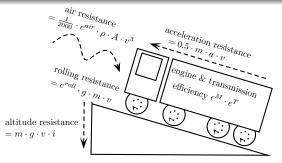
- fixed depot & customer locations
- technological specifications
- drone capacity: 1 parcel

KPIs:

- service time
- investment cost
- operating cost
 - operator
 - wear-&-tear
 - energy
- emissions

 \Longrightarrow comparison of energy demand and associated emissions between trucks and drones

Energy consumption of DVs and EVs		
00000		



Introduction Energy consumption of DVs and EVs Energy consumption of UAVs Simulation (000 0€000 0000000 0000000

Simulation experiments 0000000

Power demand & energy consumption Demir et al. [2014], Kirschstein and Meisel [2015]

$$P^{EDV} = P^{roll} + P^{air} + P^{climb} + P^{acc} + P^{aux}$$
$$E^{DV} = \left(t \cdot \left(f^{idle} + \frac{f^{full} - f^{idle}}{\epsilon_{DV}^T(v) \cdot P} \cdot P^{EDV}\right) \cdot N_{Diesel}\right) \cdot \frac{1}{\epsilon_{Diesel}^{wtt}}$$
$$E^{EV} = t \cdot \frac{P^{EDV}}{\epsilon_{EV} \cdot \epsilon^{charg} \cdot \epsilon_{elec}^{wtt}}$$

Introduction 000 Energy consumption of DVs and EVs $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Energy consumption of UAVs 0000000 Simulation experiments

Conclusion

Technical specifications of DV & EV Saenz et al. [2016], Goeke and Schneider [2015], Murakami [2017]

DVs

EVs

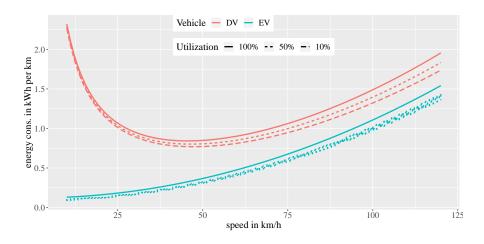
©ramtrucks.com

- engine power: 180 kW
- tare weight: 1.5 t
- max. payload: 0.8 t
- fuel cons.: 2-25 l/h

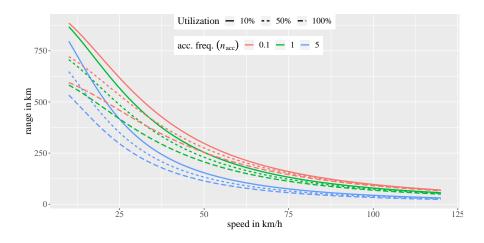
©ups.com

- engine power: 190 kW
- tare weight: 2.0 t
- max. payload: 0.75 t
- battery: 80 kWh

Introduction


Energy consumption of DVs and EVs

Energy consumption of UAVs

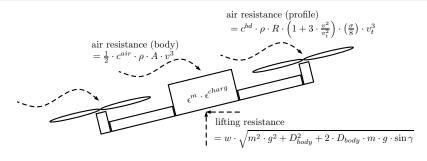

Simulation experimen

Conclusion

DV & EV energy consumption

	Energy consumption of DVs and EVs 0000●		
EV rai	nge		

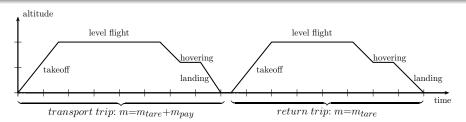
	Energy consumption of UAVs	
	000000	

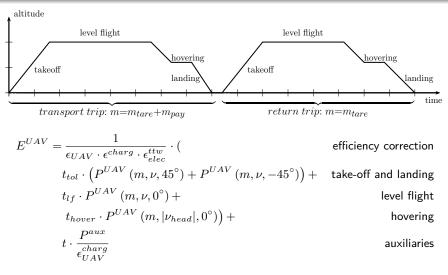


roduction Energy consumption of DVs and

Energy consumption of UAVs

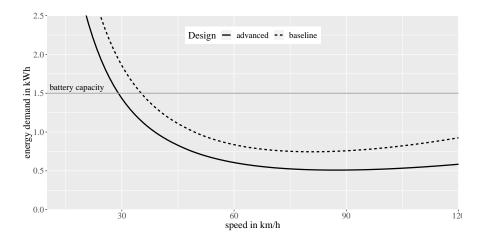
Simulation experiments 0000000 Conclusion


Power demand UAVs Langelaan et al. [2017], D'Andrea [2014], Figliozzi [2017]


$$\begin{split} P^{UAV}(m,v,\gamma) &= P^{air} + \kappa \cdot P^{lift} + P^{profile} + P^{climb} + P^{aux} \\ E^{UAV}(m,v,\gamma) &= \frac{t}{\epsilon^{charg} \cdot \epsilon^{wtt}_{elec}} \cdot \left(\frac{P^{air} + \kappa \cdot P^{lift} + P^{profile} + P^{climb}}{\epsilon_{UAV}} + P^{aux}\right) \end{split}$$

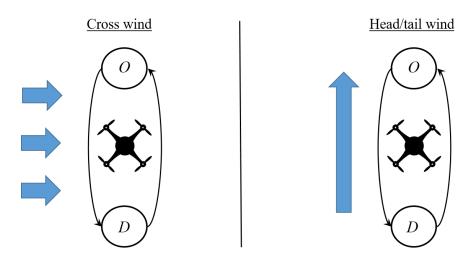
 \implies time depends on speed v, distance d, and wind $v_{head} \rightarrow t = \frac{d}{v - v_{head}} = \frac{d}{v_{net}}$

UAV flight pattern & energy cosumption model



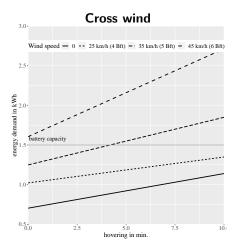
UAV flight pattern & energy cosumption model

$$\implies t = t_{lf} + t_{hover} + 2 \cdot t_{tol}$$
 with $t_{lf} = \frac{d}{v_{net}} - 2 \cdot t_{tol}$ and $t_{tol} = \frac{a}{v_{net}}$

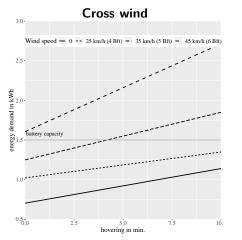


Energy consumption of UAVs

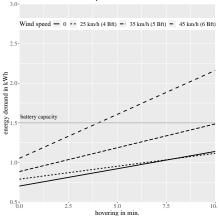
Simulation experiments

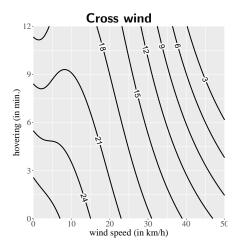

Conclusion

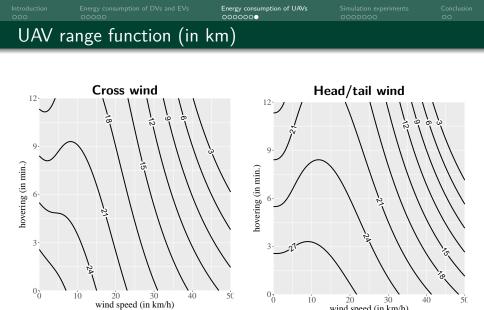
Wind effects



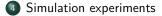
idealized trip with 16 km range




idealized trip with 16 km range



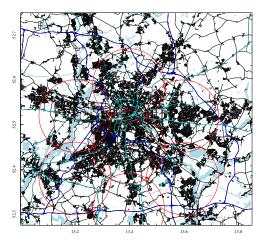
Head/tail wind


wind speed (in km/h)

	Simulation experiments	
	●000000	

3 Energy consumption of UAVs

5 Conclusion


Introduction 000 Energy consumption of DVs and EVs

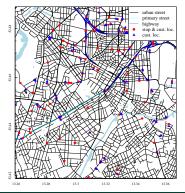
Energy consumption of UAVs 0000000 Simulation experiments

Conclusion

Simulation setting - general assumptions

Network data

- road network of city of Berlin; 3 road types (highways, primary, residential) differing w.r.t. speed and acceleration frequency
- each customer receives 1 parcel
- each parcel weighs 2.5 kg
- vehicles start from depot
- DVs and EVs use roads; UAVs fly directly
- UAVs hover for 5 minutes
- each UAV can carry 1 parcel
- delivery area with radius 9 km

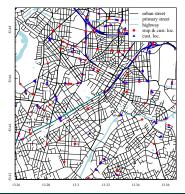

Energy consumption of UAVs 0000000 Simulation experiments

Conclusion

Simulation setting - experimental design

Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \,$ radius customer area: $[2,4,6,8] \ {\rm km}$


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion 00

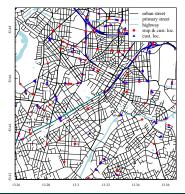
Simulation setting - experimental design

Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
- $\bullet \ \mbox{radius customer area:} \ [2,4,6,8] \ \mbox{km}$

Traffic & wind conditions

	tra	wind	
level	mean speed	acc. freq.	head wind
	$ar{v}$	n_{acc}	v_{wind}
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion 00

Simulation setting - experimental design

Customer data

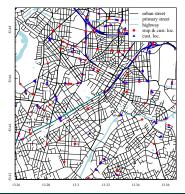
- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \ \mbox{radius customer area:} \ [2,4,6,8] \ \mbox{km}$

Traffic & wind conditions

	tra	wind		
level	mean speed acc. freq.		head wind	
	\bar{v}	n_{acc}	v_{wind}	
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)	
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)	
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)	

Design:

• full factorial design: 4 factors with 4 levels (cust. data) and 3 levels (env. cond.)


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion 00

Simulation setting - experimental design

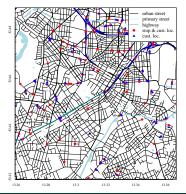
Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \ \mbox{radius customer area:} \ [2,4,6,8] \ \mbox{km}$

Traffic & wind conditions

	tra	wind head wind	
level	mean speed acc. freq.		
	\bar{v}	n_{acc}	v_{wind}
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)

- full factorial design: 4 factors with 4 levels (cust. data) and 3 levels (env. cond.)
- $\rightarrow 4^2 \cdot 3^2 = 144 \text{ settings}$


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion 00

Simulation setting - experimental design

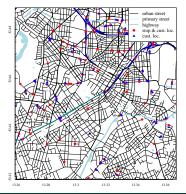
Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \ \mbox{radius customer area:} \ [2,4,6,8] \ \mbox{km}$

Traffic & wind conditions

	tra	wind		
level	mean speed acc. freq.		head wind	
	\bar{v}	n_{acc}	v_{wind}	
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)	
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)	
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)	

- full factorial design: 4 factors with 4 levels (cust. data) and 3 levels (env. cond.)
- $\rightarrow 4^2 \cdot 3^2 = 144 \text{ settings}$
 - for each setting: 200 replications


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion

Simulation setting - experimental design

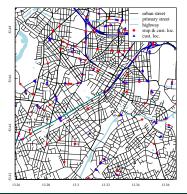
Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \ \mbox{radius customer area:} \ [2,4,6,8] \ \mbox{km}$

Traffic & wind conditions

-	tra	wind		
level	mean speed acc. freq		head wind	
	\bar{v}	n_{acc}	v_{wind}	
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)	
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)	
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)	

- full factorial design: 4 factors with 4 levels (cust. data) and 3 levels (env. cond.)
- $\rightarrow 4^2 \cdot 3^2 = 144 \text{ settings}$
 - for each setting: 200 replications
- \rightarrow 28,800 instances


Energy consumption of UAVs 0000000 Simulation experiments

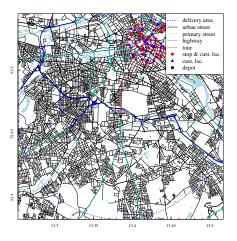
Conclusion

Simulation setting - experimental design

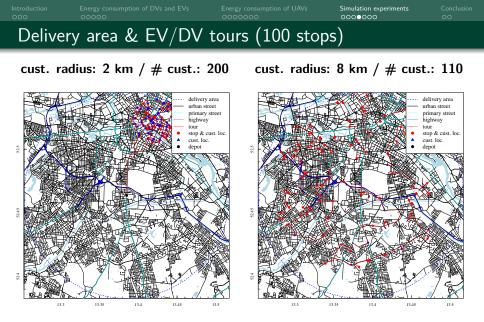
Customer data

- # customers/tour: [110, 140, 170, 200]
- # stops/tour: 100
- ightarrow 1.1 2.0 cust./stop
 - $\bullet \;$ radius customer area: $[2,4,6,8]\;{\rm km}$

Traffic & wind conditions


-	tra	wind		
level	mean speed acc. freq		head wind	
	\bar{v}	n_{acc}	v_{wind}	
low	$1\cdot \hat{v}$	$0.5 \cdot \hat{n}_{acc}$	N(0, 5)	
medium	$0.95 \cdot \hat{v}$	$1 \cdot \hat{n}_{acc}$	N(25, 5)	
high	$0.67 \cdot \hat{v}$	$2 \cdot \hat{n}_{acc}$	N(45, 5)	

- full factorial design: 4 factors with 4 levels (cust. data) and 3 levels (env. cond.)
- $\rightarrow 4^2 \cdot 3^2 = 144 \text{ settings}$
 - for each setting: 200 replications
- $\rightarrow~$ 28,800 instances
- per instance: solve TSP & calculate WTW energy demands

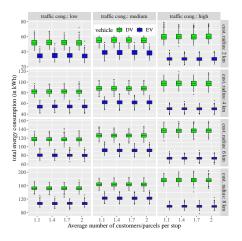


Delivery area & EV/DV tours (100 stops)

cust. radius: 2 km / # cust.: 200

average tour length: \approx 45-55 km

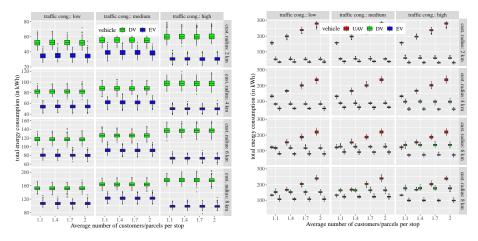
average tour length: \approx 45-55 km


average tour length: \approx 145-155 km

Energy consumption of UAVs 0000000 Simulation experiments

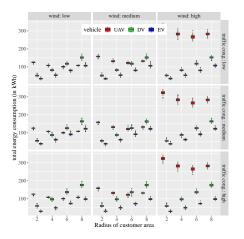
Conclusion 00

Total energy consumption


Ground-based vehicles only

Ground-based vehicles only

All vehicles

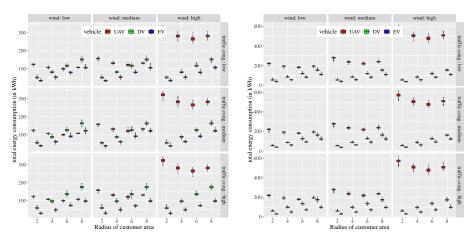


Energy consumption of UAVs 0000000 Simulation experiments

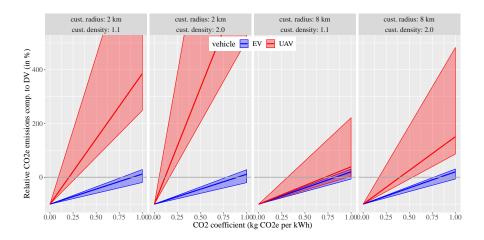
Conclusion 00

Total energy consumption

1.1 customers/stop


Energy consumption of UAVs 0000000 Simulation experiments

Conclusion 00


Total energy consumption

1.1 customers/stop

2.0 customers/stop

			Conclusion ●0
Summ	ary		

- energy demand of drones heavily depends on environmental conditions
- hovering can be an important aspect for drone delivery systems
- delivery by drone typically requires more energy than EVs
- drones require less energy when parcel and customer density
- ightarrow most probably not useful in cities
- $\rightarrow\,$ but potentially useful in rural areas
 - less energy demand than trucks
 - less dense road infrastructure
 - more predictable weather conditions
 - potentially easier drop-down conditions
 - less regulatory concerns (e.g. due to accident risk etc.)

Thanks for your attention.

Kirschstein, T. (2020): Comparison of energy demands of drone-based and ground-based parcel delivery services, *Transportation Research Part* D, 78.

Thomas Kirschstein Department of Business Administration Martin Luther University Halle-Wittenberg thomas.kirschstein@wiwi.uni-halle.de

Literature

Amazon. Amazon prime air, 2019. URL https://www.amazon.com/Amazon-Prime-Air.

- S. Crowe. Drone delivery taking off from Alphabet's Wing Aviation, 2019. URL https://www.therobotreport.com/drone-delivery-taking-off-from-alphabets-wing-aviation/. The Robot Report.
- R. D'Andrea. Guest editorial can drones deliver? IEEE Transactions on Automation Science and Engineering, 11(3):647–648, jul 2014. doi: 10.1109/tase.2014.2326952.
- E. Demir, T. Bektaş, and G. Laporte. A review of recent research on green road freight transportation. European Journal of Operational Research, 237 (3):775–793, 2014.
- M. A. Figliozzi. Lifecycle modeling and assessment of unmanned aerial vehicles (drones) co₂e emissions. Transportation Research Part D: Transport and Environment, 57:251–261, 2017. doi: 10.1016/j.trd.2017.09.011.
- D. Goeke and M. Schneider. Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1):81–99, 2015.
- A. Goodchild and J. Toy. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transportation Research Part D: Transport and Environment, 61:58–67, 2018.
- T. Kirschstein and F. Meisel. Ghg-emission models for assessing the eco-friendliness of road and rail freight transports. Transportation Research Part B: Methodological, 73:13–33, 2015.
- J. W. Langelaan, S. Schmitz, J. Palacios, and R. D. Lorenz. Energetics of rotary-wing exploration of titan. In Aerospace Conference, 2017 IEEE, pages 1–11. IEEE, 2017.
- D. Lee. Amazon to deliver by drone 'within months', 2019. URL https://www.bbc.com/news/technology-48536319. BBC News.
- K. Murakami. A new model and approach to electric and diesel-powered vehicle routing. Transportation Research Part E: Logistics and Transportation Review, 107:23–37, 2017.
- F. . Peers, 2018. URL https://www.fehrandpeers.com/drone-delivery/.
- J. Saenz, M. Figliozzi, and J. Faulin. Assessment of the carbon footprint reductions of tricycle logistics services. Transportation Research Record: Journal of the Transportation Research Board, (2570):48–56, 2016.
- J. E. Scott, C. H. Scott, U. of Colorado Denver, U. U. of California Irvine, and USA. Drone delivery models for healthcare. In Proceedings of the 50th Hawaii International Conference on System Sciences / 2017, 2017.
- D. Wang. The economics of drone delivery. IEEE Spectrum, 2016. URL https://spectrum.ieee.org/automaton/robotics/drones/the-economics-of-drone-delivery.

Simulation parameters

WTT energy efficiency: Diesel: 90%; Electricity: 50%

Technical vehicle parameters:

					ι	JAV
parameter	description	unit	DV	EV	curr.	imp.
Α	frontal surface area	m^2		6	0.15	0.15
m_{tare}	tare weight	ton		2.5	0.012	0.012
P	engine power	kW	150	190	_	_
P_{int}	power internal auxiliaries	kW	0.1	0.1	0.1	0.1
f_{idle}	fuel consumption (idle)	l/h	1	_	_	_
f_{full}	fuel consumption (full)	l/h	25	—	_	_
$_{NHV_{diesel}}$	net heating value	kWh/I	10	_	_	_
capbatt	battery capacity	kWh	_	80	1.5	1.5
	energy density	kg/kWh	-		0.15	0.2
$\epsilon^{zbatt}_{\epsilon}$	engine efficiency	_	_		0.9	0.93
ϵ^{trans}	transmission efficiency	_	_		0.9	0.93
ϵ^{char}	charging efficiency	_	_		0.9	0.93
n_{rotor}	number rotors	_	_	_	8	8
n_{blades}	number blades	_	_	_	3	3
r	rotor radius	m	_	_	0.4	0.4
c_{air}	air drag	_		0.65	0.5	0.3
c_{roll}	rolling resistence	_		0.008	_	_
	blade drag	_	_	_	0.075	0.075
$\frac{c}{c}bd$	rotor mean chord	_	_	—	0.1	0.1
\bar{c}_l	blade lift	_	_	—	0.4	0.4
ĸ	lifting power markup	-	—	-	1.15	1.15