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ABSTRACT. We show that the Masur-Veech volumes and area Siegel-Veech
constants can be obtained using intersection theory on strata of Abelian dif-
ferentials with prescribed orders of zeros. As applications, we evaluate their
large genus limits and compute the saddle connection Siegel-Veech constants
for all strata. We also show that the same results hold for the spin and hyper-
elliptic components of the strata.
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1. INTRODUCTION

Computing volumes of moduli spaces has significance in many fields. For in-
stance, the Weil-Petersson volumes of moduli spaces of Riemann surfaces can be
written as intersection numbers of tautological classes due to the work of Wolpert
(|[Wol85]) and of Mirzakhani for hyperbolic bordered surfaces with geodesic bound-
aries ([Mir07]). In this paper we establish similar results for the Mazur-Veech
volumes of moduli spaces of Abelian differentials.
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Denote by QM (1) the moduli spaces (or strata) of Abelian differentials (or
flat surfaces) with labeled zeros of type p = (mq,...,m,), where m; > 0 and
where 7" m; = 2g — 2. Masur (|[Mas82]) and Veech (|Vee82]) showed that the
hypersurface of flat surfaces of area one in QM ,, (1) has finite volume, called the
Masur-Veech volume, and we denote it by vol (M, ,,(r)). The starting point of
this paper is the following expression of Masur-Veech volumes in terms of inter-
section numbers on the incidence variety compactification PQQM, ,, (1) described in
[BCGGM18|. For 1 < i < n we define

51’ = m1—|— 1 525—2 de] S H2(29_3+n)(PWg,n(M)7Q) (1)
’ i

where £ is the universal line bundle class of the projectivized Hodge bundle and 1;
is the vertical cotangent line bundle class associated to the j-th marked point (see
Section [3| for a more precise definition of these tautological classes).

Theorem 1.1. The Masur-Veech volumes can be computed as intersection numbers
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for each 1 < i <n.

The equality of the two expressions on the right-hand side is a non-trivial claim
about intersection numbers on PQM, ,,(u). Note that we follow the volume nor-
malization in [EMZ03| that differs slightly from the one in [EO01| (see [CMZ18,
Section 19] for the conversion).

Theorem is the interpolation and generalization of [Saul8, Proposition 1.3
(for the minimal strata) and [CMZ18, Theorem 4.3] (for the Hurwitz spaces of torus
covers). In order to prove it, we show that both sides of equation satisfy the
same recursion formula. On the volume side, the recursion formula is expressed
via an operator acting on Bloch and Okounkov’s algebra of shifted symmetric func-
tions (see Section . The recursion for intersection numbers is first proved at the
numerical level using the techniques developed in [Saul9] to compute the classes of
POM, (1) (see Sections and . Then we formally lift this relation to the algebra
of shifted symmetric functions and show that it is equivalent to the previous one
(see Section [f]).

In particular, the recursion arising from intersection calculations provides the
following useful formula. We define the rescaled volume

v(p) = (m1+1)- - (my + )vol (QMg (M, ... ,my)). (4)

For a partition p, we denote by n(u) the cardinality of p and by || the sum of its
entries.

Theorem 1.2. The rescaled volumes of the strata satisfy the recursion

F o (29; — 1+ n(u))v P — 1
o(p) = Zth((mhmz)ap)‘ Uiz 92k—1 kj_(zg(li)?z+%!p ) (5)

k>1g,p

where g = (g1, - .-, gk) s a partition of g, = (p1, ..., ux) is a k-tuple of multisets
with (Mg, ..., my) = pU- - -Upg, andp = (p1, ..., pr) is defined by p; = 2g;—1—| ;]
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and required to satisfy p; > 0. Here the Hurwitz number hpi ((m1, ms), p) is defined
for any p by

s (ma, ma), p) = (k — DIt (Httz tpz‘“”) NG

ta — 11

The relevant Hurwitz spaces of P! covers will be introduced in Section |2, Note
that hpi((mi,ms),p) # 0 only if Zle(pi + 1) = my1 + mg + 2. This implies that
kE < min(my + 1,m2 + 1) in the summation of the theorem.

For special 1, the strata QM (1) can be disconnected. There are up to three
connected components altogether, at most one of which is hyperelliptic, classified
by Kontsevich and Zorich ([KZ03]). We show the refinements of Theorem and
Theorem for the spin and hyperelliptic components respectively, given as Theo-
rem and Theorem [6.12] (conditional on a technical Assumption [6.1]in Section [6]
which can be deduced from [BCGGM19])[]

Equation has a similar form compared to the recursion formula obtained by
Eskin, Masur and Zorich (JEMZ03]) for computing saddle connection Siegel-Veech
constants (joining two distinct zeros). Consider a generic flat surface with n la-
beled zeros of orders p = (my,...,my,). The growth rate of the number of saddle
connections of length at most L joining, say, the first two zeros is quadratic in L
and the leading term of the asymptotics (up to a factor of 7 to ensure rational-
ity) is called the saddle connection Siegel-Veech constant. Intuitively, the saddle
connection Siegel-Veech constant should be proportional to the cone angles around
the two concerned zeros. For quadratic differentials this is not correct as shown
by Athreya, Eskin and Zorich (JAEZ16|). Nevertheless as an application of our
formulas, we show that for Abelian differentials the intuitive expectation indeed
holds, if we use a minor modification ¢ (u) of the Siegel-Veech constant count-
ing homologous saddle connections only once. An overview about the variants of
Siegel-Veech constants is given in Section

Theorem 1.3. The saddle connection Siegel-Veech constant ci% () joining the

first and the second zeros on a generic flat surface of type p is given by
A% () = (m1+1)(me +1). (7)

When the stratum is disconnected, we also show that the theorem holds for each
connected component under Assumption We remark that as an asymptotic
equality as g tends to infinity, the formula for the entire stratum was previously
shown in the appendix by Zorich to [Agg] for saddle connections of multiplicity one
and by Aggarwal [Aggl9| for all multiplicities.

Another important kind of Siegel-Veech constants is the area Siegel-Veech con-
stant, which counts cylinders (weighted by the reciprocal of their areas) on flat
surfaces and is related to the sum of Lyapunov exponents (|[EKZ14]) (see Section
for the definition of area Siegel-Veech constants). We similarly establish an inter-
section formula for area Siegel-Veech constants.

Theorem 1.4. The area Siegel-Veech constants of the strata can be evaluated as

1 Jeawt, wPi 0
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Carea (/1') =

IThis assumption was later verified in [CMZ19)].
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for each 1 < i < n, where dg is the divisor class of the locus of curves with a
non-separating node.

Theorem completes the investigation of area Siegel-Veech constants begun
in [CMZ18, Section 4] (for the principal strata) and [Saul8, Equation (2)] (for the
minimal strata). It also justifies a speculation of Kontsevich ([Kon97, Section 7])
about the existence of such a -class for computing area Siegel-Veech constants and
sums of Lyapunov exponents of the strata.

Another application of the volume recursion is a geometric proof of the large
genus limit conjecture by Eskin and Zorich ([EZ15]) for the volumes of the strata
and area Siegel-Veech constants. A proof using direct combinatorial arguments
was given by Aggarwal (JAggl9; |Agg]). Our proof, in addition, gives a uniform
expression for the second order term as conjectured in [Saul§| (see Section .

Theorem 1.5 ([EZ15, Main Conjectures]). Consider the strata QMg (@) such
that all the entries of pu are positive. Then

272 9
W) = 4= gy gy O/,
1 1
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where the implied constants are independent of u and g.

Finally we settle another conjecture of Eskin and Zorich on the asymptotic com-
parison of spin components.

Theorem 1.6 (|[EZ15, Conjecture 2]). The volumes and area Siegel-Veech con-
stants of odd and even spin components are comparable for large values of g. More
precisely,

v(p)°4

B — 14 0(1/y),

o(p)me (1/9)
Carea(M)Odd
Sweal__ — 1+ 0(1/g),
Caren (i) (1/9)

where the implied constants are independent of u and g.

Further directions. Our work opens an avenue to study a series of related ques-
tions. First, we point out an interesting comparison with the proofs by Mirzakhani
([Mir07]), by Kontsevich ([Kon92|), and by Okounkov-Pandharipande (JOP09]) of
Witten’s conjecture: the generating function of -class intersections on moduli
spaces of curves is a solution of the KdV hierarchy of partial differential equations.
Mirzakhani considered the Weil-Petersson volumes of moduli spaces of hyperbolic
surfaces and analyzed geodesics that bound pairs of pants, while we consider the
Masur-Veech volumes of moduli spaces of flat surfaces and analyze geodesics that
join two zeros (i.e. saddle connections). Kontsevich interpreted i-classes as as-
sociated to certain polygon bundles, while we have the interpretation of Abelian
differentials as polygons. Okounkov and Pandharipande used Hurwitz spaces of P!
covers, while we rely on Hurwitz numbers of torus covers. Therefore, we speculate
that generating functions of Masur-Veech volumes and area Siegel-Veech constants
should also satisfy a certain interesting hierarchy as in Witten’s conjecture.
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In another direction, one can consider saddle connections joining a zero to itself
(see [EMZ03|, Part 2]) or impose other specific configurations to refine the Siegel-
Veech counting (see e.g. the appendix by Zorich to |Agg|). From the viewpoint of
intersection theory, such a refinement should pick up the corresponding part of the
principal boundary when flat surfaces degenerate along the configuration, hence
we expect that the resulting Siegel-Veech constant can be described similarly by a
recursion formula involving intersection numbers.

One can also investigate volumes and Siegel-Veech constants for affine invariant
manifolds (i.e. SLy(R)-orbit closures in the strata). It is thus natural to seek inter-
section theoretic interpretations of these invariants for affine invariant manifolds,
e.g. the strata of quadratic differentials (see [DGZZ19; [the7; (CMS19] for interesting
related results in the case of the principal strata). We plan to treat these questions
in future work.

Organization of the paper. In Section[2] we introduce relevant intersection num-
bers on Hurwitz spaces of P! covers that will appear as coefficients in the volume
recursion. In Section |3| we prove that the expression of volumes by intersection
numbers satisfies the recursion in , thus showing the equivalence of Theorems
and [I.2] In Section [4 we exhibit another recursion of volumes by using the algebra
of shifted symmetric functions and cumulants. In Section [5] we show that the two
recursions are equivalent by interpreting them as the same summation over certain
oriented graphs, thus completing the proof of Theorems and In Section [f]
we refine the results for the spin and hyperelliptic components of the strata. In
Sections [7] [§] and [9] we respectively review the definitions of various Siegel-Veech
constants, prove Theorem regarding saddle connection Siegel-Veech constants
and interpret the result from the perspective of Hurwitz spaces of torus covers. In
Section [10] we establish similar intersection and recursion formulas for area Siegel-
Veech constants, thus proving Theorem [1.4l Finally in Section we apply our
results to evaluate large genus limits of volumes and area Siegel-Veech constants,
proving Theorems [I.5] and [T.6]
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2. HURWITZ SPACES OF P! COVERS

In this section we recall the definition of the moduli space of admissible covers
of [HMS82| as a compactification of the classical Hurwitz space (see also [HM93]),
and prove formulas to compute recursively intersection numbers of -classes on
these moduli spaces. These intersection numbers will appear as coefficients and
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multiplicities in the volume recursion. Along the way we introduce basic notions
on stable graphs and level functions.

2.1. Hurwitz spaces and admissible covers. Let d, g, and ¢’ be non-negative
integers. Let II = (u™, .-, u(™) be a ramification profile consisting of n parti-
tions. We define the Hurwitz space Hq 4 o (II) to be the moduli space parametrizing
branched covers of smooth connected curves p: X — Y of degree d with profile IT
and such that the genera of X and Y are given by g and ¢’ respectively. That is, p
is ramified over n points and over the i-th branch point the sheets coming together
form the partition u(9 (completed by singletons if |u(?)| < deg(p)).

The Hurwitz space Hy 4 4 (II) has a natural compactification H g 4 4 (II) parame-
trizing admissible covers. An admissible cover p: X — Y is a finite morphism of
connected nodal curves such that

i) the smooth locus of X maps to the smooth locus of Y and the nodes of X
map to the nodes of Y,
ii) at each node of X the two branches have the same ramification order, and
iii) the target curve Y marked with the branch points is stable.

The space Hg 4 o (I1) is equipped with two forgetful maps

ﬁd,gy’ (H)

N
ﬂg,m mg’,n

obtained by mapping an admissible cover to the stabilization of the source or the
target. Here n denotes the number of branch points or equivalently the length of IT
and m denotes the number of ramification points or equivalently the number of
parts (of length > 1) of all the u*). The Hurwitz number Ng 4o (I1) is the degree of
the map fr, or equivalently the number of connected covers p: X — Y of degree d
with profile IT and the location of the branch points fixed in Y. We also denote by
Na,g,¢ (IT) the Hurwitz number of covers without requiring X to be connected. We
remark that each cover is counted with weight given by the reciprocal of the order
of its automorphism group, as is standard for the Hurwitz counting problem.

2.2. Intersection of i-classes on Hurwitz spaces. From now on in this section
we will consider the special case g’ = 0. Let p[0] = (my,...,m,) be a list of non-
negative integers and pfoo] = (p1,...,px) a list of positive integers. We consider
the Hurwitz space with profile II given by p(9) = (m; + 1) for i < n and p(*+t1) =
(p1,...,pr) such that d = Zlepi, i.e. we consider

F]P’l (M[O],M[OO]) = Fd,g,()((ml + 1)a ey (mn + 1)7 (p17 cee ,pk)) .

By the Riemann-Hurwitz formula, the genus g of the covering surfaces satisfies that

n k n
2729:k+d—2mi:k+2p7;72m,;.
i=1 i=1 i=1

The forgetful map fs goes from Hp1 (u[0], u[oo]) to My nik, where we assume that
the first n marked points are the first n ramification points and the preimages of
the last branch point are the k last marked points. Since there are n + 1 branch
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points in the target surface of genus zero, we conclude that dim Hp (p[0], p[oc]) =
dim Mg py1 =n — 2.
For g = 0, define the following intersection numbers on the Hurwitz spaces

hp1 (11[0], ploc]) = /ﬁ 0ol fs <H1/Jz> : (9)
p1 (1[0], [0 i=3

The definition of ¢-classes will be recalled in Section If n = 2, then Hp1 (u[0], pfoo])
is of dimension zero, and hence the intersection number on the right is just the num-
ber of points of the Hurwitz space, i.e.

b1 ((m1,m2), poc]) = Nggo((m1 + 1), (m2 + 1), (p1,. .., pk)) -

Again we emphasize that the Hurwitz number on the right-hand side is counted
with weight 1/|Aut| for each cover. Correspondingly the intersection numbers are
computed on the Hurwitz space treated as a stack. Our goal for the rest of the
section is to show the following result.

Proposition 2.1. For n = 2, hpi((m1,mse), u[oc]) can be computed by the coeffi-
cient extraction

k
hpt ((ma,mo), ploc]) = (k=™ ] ]

i=1

t — ¢pitl
1—t

and for n > 3, hp1 (u[0], p[oo]) can be computed recursively by the sum

hir ([0], pfoc]) = > h(T)

FeRT(p[0],p[o0])1,2

over rooted trees.

The definitions of rooted trees and the local contributions h(T") are given in Sec-
tions [2:3]and 24 respectively. The above formula for the Hurwitz number obviously
agrees with @

Proof of Proposition|2.1], case n = 2. Let S; be the symmetric group acting on
[1,d] = {1,...,d}, where d = py + -+ + pr = m1 + ma2 + 2 — k. Define the
set of Hurwitz tuples

A(thLQ,/J,[OO]) = {(01,0'2,0'00)} C Sg xSz xSy

such that

e the permutation o is in the conjugacy class of (p1,...,px) and we fix a
bijection of its cycles with [1, k] such that the i-th cycle has length p;,

e the partitions oy and oy are cycles of order m1 + 1 and mo + 1 respectively,

e the relation oy o0 09 = 0, holds, and

e the group generated by o1, 02 and o4, acts transitively on [1,d].
Then the (weighted) Hurwitz number hpi ((m1, ma), p[oc]) = |A(m1, ma, pfoc])|/d!.

The second and third conditions above imply that the union of the supports of

the cycles o1 and o9 is [1,d]. Therefore, o1 and o9 contain exactly (m; + 1) +
(ma + 1) — d = k common elements. We can write

01 = (ala sy gy —1,C15 G 41y e ey Qi —15C25 0w oAy 415 - 7aik—1vck) )
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where 1 < iy < iy < - <ir=m1+1and cq,...,c, are the common elements of
o1 and 9. Since 01 0 03 = 04 is of conjugacy type (p1,...,Dpk), it is easy to see
that oo must be of the form

02 = (517--~7bj1—1,Ck;bj1+1,~--,ij—l,Ck—ﬁ---;bjk,1+1’-~-7bjk—1701)7

for certain b;, such that

{1441, Jo—j1)+ (e —ik=1), ., e —Jk=1)+(i2—31)} = {p1+1,p2+1, ..., pp+1}.

If 7 is a permutation on [1, k] such that (jut1—¢ — jr—e) + (ie41 — @) = pre) + 1,
then we have 1 <iyy1 — iy < pr(p). Conversely, such 7 and i-indices determine the
j-indices.

There are mﬂ( ) choices for o7. Fixing o1, to construct oo we first choose

d
mi+1
e a permutation 7 € Si, and then
e a partition (41,42 —41,...,4 —ix—1) of my+1such that 1 <ipy 1 —ip < prp

for all £.

This gives k![t™1+1] Hle(t—H --+1Pi) choices. Choose ¢; out of the elements in oy,
which gives mj + 1 choices. Along with the i-indices this determines the elements
Ca,...,c, as well as the set of b’s as the complement of the union of a’s and ¢’s.
Finally o9 is determined by arranging the b’s, which gives (ms + 1 — k)! choices.
Note that in this process only the cyclic order of (cy, .. ., ¢x) matters and we cannot
actually determine which one is the first ¢, hence we need to divide the final count
by k.
In summary, we conclude that

k
d m )
|A(my, ma, ploo])] = (m1+1)(ma+1—k)! <m1 " 1) (k—1)![t 1+1]H(t+'“+tpl)‘
i=1
Since d = mq + mo + 2 — k, we obtain
MoE(1 — P
(o ), ploc]) = [AGms,ma, et = (5 1y T 2520
=1
using that (mj; + 1)! (mg +1 — k)! (m1d+1) =d. O

We remark that the above Hurwitz counting problem can also be interpreted
by the angular data of the configurations of saddle connections joining two zeros
z1 and 2o of order m; and mg respectively in the setting of [EMZ03|. Suppose
f: P! — P! is a branched cover parameterized in the Hurwitz space Haoo((my +
1), (ma+1),(p1,...,pk)), where we treat f as a meromorphic function with & poles
of order p1,...,pr. Then the meromorphic differential 7 = df has two zeros of order
m1 and mq as well as k poles of order p; +1, ..., pr+ 1 with no residue. Conversely
given such 7, integrating 7 gives rise to a desired branched cover f. Such 7 can
be constructed using flat geometry as in [CC19, Section 2.4]. In particular, it is
determined by the angles 27 (a;+1) between the saddle connections (clockwise) at z;
and the angles 27 (a; +1) (counterclockwise) at zo, such that Zle(ag—l—l) =mi+1,
Zle(a;’ +1) =mg+1and a} +a] +2 = p, + 1. We see again that the choices
involve a partition (a} +1,...,a}, + 1) of my + 1 such that a; +1 < p; for all 4.
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2.3. Level graphs and rooted trees. The boundary of the Deligne-Mumford
compactification ﬂg,n is naturally stratified by the topological types of the stable
marked surfaces. These boundary strata are in one-to-one correspondence with
stable graphs, whose definition we recall below. The boundary strata of Hurwitz
spaces and of moduli spaces of Abelian differentials are encoded by adding level
structures and twists to stable graphs.

Definition 2.2. A stable graph is the datum of
I'=(V,H,g:V—>Na:H—=V,i: H— H E L~[ln])
satisfying the following properties:
o V is a vertex set with a genus function g;
e H is a half-edge set equipped with a vertex assignment a and an involution i
(and we let n(v) = |a=1(v)]);
o E, the edge set, is defined as the set of length-2 orbits of i in H (self-edges
at vertices are permitted);
e (V,E) define a connected graph;
e L is the set of fized points of i, called legs or markings, and is identified
with [1,n];
e for each vertex v, the stability condition 2g(v) — 2+ n(v) > 0 holds.
Let v(T") and e(T") denote the cardinalities of V' and E respectively. The genus of T
is defined by 3, ey ry 9(v) +e(I') —v(') + 1.

We denote by Stab(g,n) the set of stable graphs of genus g and with n legs. A
stable graph is said of compact type if h'(T') = 0, i.e. if the graph has no loops,
which is thus a tree.

We will use two extra structures on stable graphs, called level functions and
twists. As in [BCGGM18|] we define a level graph to be a stable graph T' together
with a level function £: V(I') - R<g. An edge with the same starting and ending
level is called a horizontal edge. A bi-colored graph is a level graph with two levels
(in which case we normalize the level function to take values in {0, —1}) that has
no horizontal edges. We denote the set of bi-colored graphs by Bic(g, n).

Recall the notation p[0] = (my,...,m,) and ploo] = (p1,...,pr) where m; > 0
and p; > 0 for all ¢ and j.

Definition 2.3. Let I' be a stable graph in Stab(g,n—+k). A twist assignment on I'
of type (u[0], p[oc]) is a function p: H(T') — Z satisfying the following conditions:
o If (h, k') is an edge, then p(h) + p(h') = 0.
o For all1 < i < n, the twist of the i-th leg is m; + 1 and for all 1 <i < k
the twist of the (n 4+ i)-th leg is —p;.
e For all vertices v of T’

29(v) —2+n(v) = Y p(h).

heL,a(h)=v

Suppose the graph I' comes with a level structure £. We say that a twist p is
compatible with the level structure if for all edges (h,h’) the condition p(h) > 0
implies that £(a(h)) > f(a(h’)), and respectively for the cases < and =. In this
case we call the triple (I', ¢, p) a twisted level graph. For the reader familiar with
related results of compactifications of strata of Abelian differentials, the above
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definition characterizes twisted differentials (or canonical divisors) in [BCGGM18]
and [FP18] (regarding the m; as the zero orders and p; + 1 as the pole orders of
twisted differentials on irreducible components of the corresponding stable curves).
In particular, every level graph has only finitely many compatible twists. For a
graph of compact type, there exists a unique twist p if the entries of ([0], p[oo])

satisfy the condition that >\, m; — Z?Zl(pj +1)=2g9-2.

Definition 2.4. Let 1 <i < j < n. A stable rooted tree (or simply a rooted tree)
is a twisted level graph (L', ¢, p) of compact type satisfying the following conditions:

i) One vertex vj carries the i-th and j-th legs and no other of the first n legs;
(The vertex vj is called the root, a vertex on the path from v to the root
is called an ancestor of v, and a verter whose ancestors contain v is called
a descendant of v.)

ii) There are no horizontal edges;

iii) A wvertex v is on level 0 if and only if v is a leaf. If v is not a leaf, then
L(v) = min{l(v') |v" is a descendant of v} — 1;
iv) All vertices of positive genus are leaves and hence on level 0;

v) Each vertex of genus zero other than v, carries exactly one of the first n

legs.

Since the root is an ancestor of any other vertex, by definition it is the unique
vertex lying on the bottom level, hence it has genus zero. Moreover, it is easy to
see from the definition that any path towards the root is strictly going down.

(=0 ® B @ O

5/16
=1
(=2
3
t=-3 4

1 2

FIGURE 1. A rooted tree of genus eleven with three vertices of
genus zero (black) and seven legs

We denote by RT(g, u£[0], [00]); ; the set of such rooted trees, and sometimes
simply by RT(1[0], u[oc])s; if g = 0.

2.4. The sum over rooted trees. Now we assume that ¢ = 0. Below we define
the local contributions from rooted trees in Proposition [2.I] and complete its proof.
Consider a graph I' € RT(u[0], u[oo])1,2. Since by assumption every vertex of T’
has genus zero, condition v) implies that T' has exactly n — 1 vertices and n — 2
edges. Denote by vs,...,v, the vertices of I' such that v; carries the i-th leg h;
for 3 < i < n and vy carries the first two legs. This convention is consistent with
our previous notation for the root. We denote by u[oc]; the list of negative twists
at half-edges adjacent to v;. These half-edges are either part of the whole edges
joining v; to its descendants (as adjacent vertices to v; on higher level) or part of
the k last legs (corresponding to the k marked poles).

If ¢ # 2, then there is a unique (non-leg) half-edge h; # h; adjacent to v; such

that m; := p(h;) — 1 > 0. Namely, this half-edge is part of the whole edge joining
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v; to its ancestor (as the adjacent vertex to v; on lower level). With this notation
we define the contribution of the rooted tree I' as

W) = hpi((ma,ma), plocl) = [ [ her ((mi, i), plocl:) - (10)
1=3

Let J C [1,n+ k] be a subset such that the cardinalities of J and J¢ are at least
two. Denote by §; the class of the boundary divisor of Mg 1 parameterizing
curves that consist of a component with the markings in J union a component
with the markings in J¢. We need the following classical result (see e.g. [ACG11]
Lemma 7.4]).

Lemma 2.5. For all 3 <i < n+k, the following relation of divisor classes holds

on Mo,n+k:
i = Y, 0.

1€JC[3,n+k]

If J is a subset of [3,n], then we denote by 5y = ZJ,C[[nJan+k]] S50y . For
3 < i < n, the above lemma implies that

Y=Y b (11)

i€JC[3,n]
We also need the following result about the boundary divisors of Hp1 (u[0], p1[o0]).

Lemma 2.6. There is a bijection between the boundary divisors of Hp: (u[0], j1[oc])
and the corresponding bi-colored graphs (i.e. with two levels only). Moreover, a
boundary divisor drops dimension under the source map fs if its bi-colored graph
has more than two vertices.

Proof. The first part of the claim follows from the same argument as in [Saul9,
Proposition 7.1]. Here the vertices of level 0 in the bi-colored graphs correspond to
the stable components of the admissible covers that contain the marked poles. For
the other part, suppose that a generic point of a boundary divisor has at least two
vertices on level 0 (or on level —1). Then one can scale one of the two functions
that induce the covers on the two vertices such that the domain marked curve is
fixed while the admissible covers vary. It implies that fg restricted to this boundary
divisor has positive dimensional fibers. [

Proof of Proposition[2.1], case n > 3. We will prove the result by induction on n.
The initial case n = 2 follows from the definition of A(T") in and we have also
described it explicitly in Section The strategy of the induction for higher n is
by successively replacing the 1; in @ with the sum over boundary divisors as in the
preceding lemma, starting with i = 3. To simplify notation, we write H (u[0], [oc])
instead of Hp: (u[0], z[oc]). We also simply write 1) and 4 as classes in the Hurwitz
space for their pullbacks via fg.

Consider a boundary divisor §; of Mg 4+« pulled back to H(u[0], [oo]), which
is a union of certain boundary divisors of H (u[0], u[oc]). We would like to compute
the intersection number &, - [/, ¥; on H(u[0], u[oco]). By Lemma and the
projection formula, the only possible non-zero contribution is from the loci in
whose bicolored graphs have a unique edge e = (h, h') connecting two vertices vg
and v_; on level 0 and level —1 respectively, such that the last k& markings (i.e.
the k marked poles) are contained in vg. In this case we can assume that p(h) > 0
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(and hence p(h’') < 0 as p(h) + p(h') = 0 by definition). The admissible covers
restricted to vy and to v_; belong to Hurwitz spaces of similar type, where at
the node (i.e. the edge e) the ramification order of the restricted maps is given by
p(h) —1 = —p(h') — 1. Tt implies that the locus of such admissible covers can
be identified with H (u[0]°, p[oo]®) x H(u[0]71, u[oo]™1), where u[0]° is the part of
©[0] contained in vy union with p(h) — 1, u[oc]® = pfoo], p[0]~1 is the part of 0]
contained in v_1, and p[oo] ™! has a single entry p(h).

By equation we have 3 = Yac sz nyng 0. Fix a subset J C [3,n + k]
such that 3 € J. If the third marking belongs to v_1, we claim that

n

H(p[0], pfoc]) - 65 - [[ v = 0.
i=4

To see this, note that the dimension of H(u[0]71, u[oo]~1) is equal to n(u[0]~1) —2,
as pi[oo] 7! has only one entry. However there are n(u[0]~!) — 1 markings with label
> 4 on v_;. Consequently the intersection with the product of those v; vanishes
on H(u[0] 7, ufoc] 7).

Therefore, we only need to consider the case when vy contains the third marking
(hence all markings labeled by J), and consequently v_; contains the first and
second markings (hence all markings labeled by J¢). In this case we obtain that

n
H(ufo], ploc]) - 85 - [[ s = b (0], iloc]®) - hon (uf0) ™, o] 7).
=4
where hpi is defined in @[), where in the first factor on the right-hand side the
1-product skips the third marking and the marking from the half-edge of vy, and
where in the second factor the i-product skips the first and second markings.
Now we use the induction hypothesis to decompose the factors hp, (1[0]%, p[oo]®)
for a = 0 and a = —1. It leads to a sum over all possible pairs of rooted trees, where
the two rooted trees in each pair generate a new rooted tree. More precisely, one
rooted tree in the pair contains the markings of J¢U {h'} whose root vy carries the
first and second markings, the other rooted tree contains the markings in J U {h}
whose root v3 carries the third marking and h, and they generate a new rooted tree
by gluing the legs h and k' as a whole edge and by using vy as the new root.
Therefore, if J is a subset of [3,n] such that 3 € J, then we obtain that

H(p[0], ploo)) -6, - [[vi = 3 h(T),
i=4 TeRT(u[0],u[o0])1,2,
JEJ&L(v3)<L(vy)

where the sum is over all rooted trees I such that the descendants of v3 are exactly
the vertices v; for j € J\ {3}.

In summary if we write 13 = > 4. JC[3.n] 07, then by the above analysis we thus
conclude that H (u[0], pfoc]) - b3 - [1} 4 % is equal to the sum of the contributions
h(T") over all rooted trees I". O

3. VOLUME RECURSION VIA INTERSECTION THEORY

In this section we show that the two main theorems of the introduction, Theo-
rem [I.1] and Theorem [T.2] are equivalent. This section does not yet provide a direct
proof of either of them.
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We first show that the intersection numbers in Theorem [I.I] are given by a
recursion formula of the same shape as in Theorem Together with an agreement
on the minimal strata this proves the equivalence of the two theorems. Along
the way we introduce special classes of stable graphs that are used for recursions
throughout the paper.

3.1. Intersection numbers on the projectivized Hodge bundle. Fix g and
n such that 2g —2+n > 0. We denote by f: X — M, , the universal curve and by
W My the relative dualizing line bundle. We will use the following cohomology
classes:
o Let 1 <i < n. We denote by o;: ﬂg,n — X the section of f corresponding
to the i-th marked point and by £; = Ufwx/ﬂgm the cotangent line at the -
th marked point. With this notation, we define ¢; = ¢1(£;) € H*(Mg.n, Q).
e For 1 <i < g, wedenote by \; = ¢;(QM,,,) € H* (M, ,,, Q) the i-th Chern
class of the Hodge bundle. (We use the same notation for a vector bundle
and its total space.)
e We denote by dy € H?*(M, ,,Q) the Poincaré-dual class of the divisor
parameterizing marked curves with at least one non-separating node.
e The projectivized Hodge bundle PQAM, ,, comes with the universal line
bundle class ¢ = ¢;(0(1)) € H2(PQM, ,, Q).
Unless otherwise specified, we denote by the same symbol a class in H*(M,,, Q)
and its pull-back via the projection p: ]P’ng — ﬂg,n. Recall that the splitting
principle implies that the structure of the cohomology ring of the projectivized
Hodge bundle is given by

H*(PQMgn, Q) ~ H* (Mg, Q)EN/(€7 +MET +- 1 ).

Let g = (mi,...,my) be a partition of 29 — 2. We denote by PQM, ()
the closure of the projectivized stratum PQAM, (1) inside the total space of the
projectivized Hodge bundle ]P’Wgyn. This space is called the (ordered) incidence
variety compactiﬁcatz’orﬂ

In this section we study the intersection numbers

1 _
) = [ == [ ey, (12)

QMg n (1) QMg n (1) j#i

for all 1 <4 < n. The reader should think of the a;(1) as certain normalization of
volumes. In fact, Theorem [I.1] can be reformulated as
2(2m)%(-1)?
(29 —3+n)!
implying in particular that a;(u) is independent of i.

We prove a collection of properties defining recursively the a;(u) as the coeffi-
cients of some formal series. As the base case for n = 1, i.e. u = (29 — 2), define
the formal series

AW) = T+ g1 ar2g -2 0[] (14

g>1

vol(QM, (1)) = ai(n) (13)

2In [BCGGM18] the notation PQM;Z(M) is used. Here we drop the superscript “inc” for sim-
plicity. In [Saul9)| this space is denoted by PHg n (1)
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and set

o 2/2 i 22 724
B(z) := Sh (/D) sz =1 —+5760+ (15)

For a partition p, recall that n(u) denotes the number of its entries and |u| denotes
the sum of the entries.

Theorem 3.1. The generating function A of the intersection numbers a;(2g — 2)
is determined by the coefficient extraction identity

1 _
[tO]ﬁA(f)J = bj, (16)

while the intersection numbers a(w) = a;(p) with n(p) > 2 are given recursively by
(my + 1)(ma + Da(my, ..., my,) (17)

mirl(m1+1,'rrz2+1)1 k
= Z k' Zhﬂn mlva H 29]71+nuj)) ( j*l,‘LLj),
k=1 g u j=1
with the same summation conventions as in Theorem 1.2

The first identity (16) was proved in [Saul8] and gives
1 1 3 1525 5 GISSSL
) = - — —t4 t B
Alt) t bt 640 580608 + 199065600

By Lagrange inversion, thlS formula can be written equivalently as

% , where Q(u) = uexp (Z(k - 1)!bkuk>
Q1) =
and will in fact be proved in this form in Section [£.4] We observe in passing that
Q(u) is the asymptotic expansion of ¢(u='+1) as u — 0, where ¢(z) = I'"(z)/I'(z)
is the digamma function. The proof of the second identity will be completed
by the end of Section

In the course of proving Theorem we will prove the following complementary
result, justifying the implicitly used fact that a;(u) is independent of 4.

Alt) =

Proposition 3.2. For all 1 <i <n, we have

a) == [ e Hz/zg

QMQ n (H)

3.2. Boundary components of moduli spaces of Abelian differentials. In
Section [2| we introduced several families of stable graphs to describe the boundary
of Hurwitz spaces. Here we show how these graphs encode relevant parts of the
boundary of moduli spaces of Abelian differentials.

The recursions in Theorem and Theorem can be phrased as sums over
a small subset of twisted level graphs, with only two levels and more constraints,
that we call (rational) backbone graphs, inspired by Figure

Recall that a bi-colored graph is a level graph with two levels {0, —1} that has
no horizontal edges.

Definition 3.3. An almost backbone graph is a bi-colored graph with only one
vertez at level —1. For such a graph to be a (rational) backbone graph we require
moreover that it is of compact type and that the vertex at level —1 has genus zero.
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X1 X2 X3 X4 X5
L=0 | —— Xu
[
D
L=—1 %
5 ~_ X

4
FIGURE 2. A backbone graph and the corresponding stable curve

We denote by BB(g,n) C ABB(g,n) C Bic(g,n) the sets of backbone, almost
backbone and bi-colored graphs. We denote by BB(g,n)1,2 C BB(g,n) the set of
backbone graphs such that the first and second legs are adjacent to the vertex of
level —1. Moreover, let BB(g,n)] 5 C BB(g,7)1,2 be the subset where precisely the
first two legs are adjacent to the lower level vertex. Similarly, we define ABB(g,n)1 2
and ABB(g,n)] 5 and drop (g, n) if there is no source of confusion.

We remark that the backbone graphs will play an important role here, while the
graphs in ABB(g, n) appear only in the Hurwitz space interlude in Section@ We fix
some notations for these graphs, used throughout in the sequel. For T' € BB(g,n)
we denote by v_; the vertex of level —1. Given a partition g = (mq,...,my) of
2g —2, let p be the unique twist of type (u,?) for T (see Deﬁnition. We denote
by 1[0]-1 the list of m; for all legs i at level —1 and with a slight abuse of notation
we denote by p = (p1,...,pk) the list of p(h) for half-edges h that are adjacent
to the k vertices of level 0. Said differently, the restriction of the twist to level —1
provides v_; with a twist of type (u[0]-1, u[oc]—1 = p). Finally if v is a vertex of
level 0, we denote by ., the list of p(h) — 1 for all half-edges adjacent to v.

The goal in the remainder of the section is to introduce the classes ar ), in
below that will be used in Proposition to compute intersection numbers on
POM, n(1). A stable graph I' € Stab(g, n) determines the moduli space

Me = ] Mgw)nw

veV(T)

and comes with a natural morphism (r: Mr — M, . Let £ be a level function
on I such that (T',¢) is a bi-colored graph with two levels {0, —1}. We define the
following vector bundle

QMr, = II My | x I Mywymw
veV (T),£(v)=0 veV(T),L(v)=—1

over Mp. This space comes with a natural morphism (}%é : QMrpy — Wg,n,
defined by the composition QMr, — (i (AM,,) — QMy,, where the first ar-
row is the inclusion of a vector sub-bundle and the second is the map on the
Hodge bundles induced from (r by pull-back. The morphism (11% ; determines
a morphism (denoted by the same symbol) on the projectivized Hodge bundles
¢, PQMry — PQM,,, . The image of ¢/, is the closure of the locus of dif-
ferentials supported on curves with dual grapﬁ I" such that the differentials vanish
identically on components of level —1. In the sequel we will need the following
lemma (see [Saul9, Proposition 5.9]).
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Lemma 3.4. The Poincaré-dual class of (#E(IP’QMF@ is divisible by "' @ in
H*(PQM, ,, Q).

Take a bi-colored graph (T',¢) and a partition p of 2g — 2. Now we consider a
twist p of type (u[0] = p, ploc] = @) compatible with £ and construct a subspace

PQM?,Z C PQMr , such that C#APQM?,@) lies in the boundary of PQM, , ().
Let

QMo < II  oMeeynw.
veV(T),L(v)=0
M- C H M) n(v) (18)

veV(T),L(v)=—1
be the loci defined by the following three conditions:

i) A differential in QM has zeros of orders m; at the relevant marked points
and of orders p(h) — 1 at the relevant branches of the nodes.

ii) For each v of level —1 there exists a non-zero (meromorphic) differential w,
on the component X, corresponding to v that has zeros at the relevant
marked points of orders prescribed by p and poles at the relevant branches
of the nodes of orders prescribed by p, i.e. such that the canonical divisor
class of X, is given by >,y o=, (P(R) — 1)zp, where z), € X, is the
marked point or the node corresponding to the half-edge h.

ili) There exist complex numbers k, # 0 for all vertices v of level —1 such that
W =3 y()=—1 kvwy satisfies the global residue condition of [BCGGM18|.

In particular for a backbone graph I', since it is of compact type with a unique
vertex v_1 of level —1, we have the identification QMg = Hwév_l QM g0y n(w) (o)

‘We define PQM?,@ as the Zariski closure of POMg x M _; in PQMr , and define

g — { L POME ] if dim(PQMY. ;) = dim(POM, (1) — 1
P T

19
0 otherwise (19)

as the corresponding class in H*(PQM, ,,, Q). By [Saul9, Proposition 5.9], we can
describe ar ¢ p with the following lemma.

Lemma 3.5. If (I,¢,p) is a bi-colored graph of compact type, then arep # 0
if and only if there is a unique vertex v_, of level —1, and in this case arp s
divisible by

0 4 G )E T b (N )

where

)\U—lyi:()\i717"'71) € H*(ﬂg(v—l)ﬂl(v—l)’(@) ® H*(ﬂg(v)-ﬁ(v)’(@)

veV(T),v#v_1
~ H'(Mr,Q).

3.3. A first reduction of the computation. Recall the (marked and projec-
tivized) Hodge bundle projection p: POM, ,, — M, .. As before we usually denote
by the same symbol a class in ﬂgm and its pullback via p. In this section we show
that many p-push forwards of intersections of ar,, with tautological classes van-
ish or can be computed recursively. The starting point is the following important
lemma proved by Mumford in [Mum83}, Equation (5.4)].
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Lemma 3.6. The Segre class of the Hodge bundle is the Chern class of the dual of
the Hodge bundle, i.e.

C*(QMg n) C*(QMg n) = 1.
In particular, we have /\2 =0€ HY(M 9> Q).

Together with the definition of Segre class, this lemma implies that

P«(€") = skg1(OMyn)y = (D)9 N gy
for all v € H*(M,,,Q) and all k¥ > g — 1. Another important lemma is the
following (see e.g. [ACG11} Section 13, Equation (4.31)]).

Lemma 3.7. Let 1 <k < g and let T' be a stable graph. Then

G = > [

(kv)yev enV, veV
[(kv)|=k

where the sum is over all partitions of k into non-negative integers k, assigned to
each vertexv € V. =V(T).

In particular if h*(T') > g — k, then Y . g(v) = g — h'(T') < k, hence the
above lemma implies that (f A, = 0 as there exists some k, > g(v) for any partition
(kU)UGV of k.

As a consequence of the above discussion, we obtain the following result.
Lemma 3.8. Let a = )5 &'y be a class in H*(PQM, ,, Q) where the classes
a; are pull-backs from H*(M,,,,Q). Then we have

p(E¥7 ) = (=1)%an),,
p*(§2972a) = (=1)farrg + (_1)g71a0)‘971 )
p(E%972600) = (1) rapdorg—1 -

Recall the expressions of the intersection numbers a;(u) in and in Proposi-
tion In order to compute a;(x), by Lemma we only need to consider the
¢-degree zero and one parts of the class [PQM, ,(u)] in H*(PQM, ,, Q).

Combining Lemmas([3.7]and [3.8| together with Lemmas[3.4]and [3.5] of the previous
section, we can already prove the following vanishing result for classes associated
with some bi-colored graphs.

Proposition 3.9. If (T',¢,p) is not a backbone graph, then
(fg 2Ofl“é,p) = OEH*( gna@)
where ar ¢ p 5 deﬁned in (19).

Proof. For simplicity we write & = arp in the proof. We assume first that I' is
not of compact type, i.e. h*(I') > 0. Then by Lemma the class « is divisible
by &. Note that the cohomology ring of a projective bundle is generated by the
universal line bundle class with the classes pulled back from the base. Therefore,

we can write
€2g—2a — Z £2g—1+ia; ;
i>0
where o is a pullback from H*(M, ,, Q) that is supported on (r(Mr) for all i > 0.
Thus by Lemma p«(£2972a) = (—1)%a(A, = 0, because I' is not of compact
type.
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Now we assume that I' is of compact type. By Lemma [3.5] we only need to
consider the case when there is a unique vertex v; of level —1. Since I' is not a
backbone graph, v; has positive genus g;. Still by Lemma [3.5| and simplifying the
notation Cr, (Ay, i) by Ay, 4, the class « is divisible by £9* +§91_1)\Ul,1 +o Ay g -
Consequently we can write

a = (v, g1-1+ Aopg)V0 + EXvy g1 + O(§2)a
where 7y and v, are pullbacks from H*(M, ,, Q) and the O(£?) term stands for a
class divisible by £2. By Lemma we obtain that
p*(§2972a) = (*1)9()‘1)1,91*1)@ - )‘vl,gl)‘gfl)’YO + (*1)9)‘v1,g1)\g')’1 .

Using Lemma we also obtain that

r(Ag) = ®/\gu and  (r(Ag-1) = Z Ag, -1 ®/\9v/

veV veV v #v

From the projection formula we deduce that

>‘v1,g1 ')‘g = CF*()\'Ul7gl 'CF(/\g)) = CF* )‘31 ® Agv/ =0,
v’ #vy

because )\31 =0e H* (Mg(vl)’n(vl), Q) by Lemma Once again the same lemma
implies that

Avgi—1-Ag = G | AgiAgi—1 ® Mgy |5
v/ #v1
Avigr s Ag-1 = (oL | AgAgi—1 ® >‘9v’ + Z Z )‘31 ® Ag,-1 ® )‘gv'
v #vy v#vy v/ Fv,v1 v’ #v
= )‘111,91—1 ’ )\g .
Putting everything together, we thus conclude that p.(£2972a) = 0. O

We define the multiplicity of a twist p to be

m(p) = vV =p(h)p('). (20)

(h,h")eE(T)

Proposition 3.10. If (T',¢,p) is a backbone graph in BB(g,n)1,2, then

/]P’i QT tp * 52971 : H¢z = m(p) < hpr (:u—lap) ) H al(pv - 17,””[})7
1=3

QMg n = veV(T)
2(v)=0

where p, is the entry of p corresponding to the twist on the unique edge of each
vertexr v of level 0 and p_1 is the list of entries in p whose corresponding legs are
adjacent to the vertex of level —1.

As a preparation for the proof we relate the space M _; defined in to the
Hurwitz space for backbone graphs. The idea behind this relation was already
mentioned in the last paragraph of Section If (T, ¢) is a backbone graph, then
we claim that Hpi(u_1,p) = M_1, where the isomorphism is provided by the
source map fs that marks the critical points of the branched covers. To verify the
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claim, let w be the meromorphic differential on the unique vertex of I' of level —1
as in part iii) of the definition for M_;. Since I' is of compact type, the global
residue condition in [BCGGM18§| imposed to w implies that all residues of w vanish.
Therefore, a point in M_; can be identified with such a meromorphic differential
w (up to scale) on P! without residues, such that w has zeros of order m; for
m; € p_ at the corresponding markings and has poles of order p; 41 for p; € p at
the corresponding nodes. In particular, w is an exact differential and integrating it
on P! provides a meromorphic function that can be regarded as a branched cover
f parameterized in Hpi(pu—1,p). Conversely given f in Hpi(u_1,p), we can treat
f as a meromorphic function and taking df gives rise to such w. We thus conclude
that Hp (p—1,p) = M_q. Consequently for I' € BB(g,n); 2, we have

hei (j1-1,p) = /H( )fé( 11 w) = II & @

3<i<n Mo1 3<i<n
U1 v _1

where 7 — v_; means that the i-th marking belongs to the vertex of level —1.
Now we can proceed with the proof of Proposition [3.10]

Proof. Wewrite ar rp = Y50 0f 4 ,&" Where af. , | is a pull-back from H* (M, Q).
By Lemma [3.8] we deduce that

P(E arep) = (-1)9Ag00 (22)

Therefore we only need to consider the {-degree zero part of ar ¢ p, which is given
by

(M) @ [PUMy, 0, (b — L)),

veV(T),L(v)=0

where [PQM,, . (py — 1, 11,)]° is the degree zero part of the Poincaré-dual class of
PQMg, n, (Po — 1, fty) in PQMy, .. Therefore, we have

)‘9 : O‘?‘,Z,p = (r« [ﬂfl] ® ()‘gv : []P)ngnv (pv -1, Nv)]o)

veV(T'),£(v)=0
Multiplying this expression by H?:B 1;, we obtain that

Ag - a%,z,p : Hd’i = CF*(([M—l]‘ H %‘)
i=3

iv_1,i>3

® <)\9v ’ [ngu,nu (pv -1, ,Uv)]o : H ’l/JZ) > .
)=0

veV(T),L(v v

For the first factor on the right-hand side, equality implies that

Mal- ] ¢ = her(u-1,p).

iv_1,i>3
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Moreover for all v of level 0, we have

poar(py — L) = /p* g1 [ s

QMg ny (pv—1,p0) =

(05 [ g TL o (B0 (= L)

EDRCY )
where the second identity follows from Lemma Since p, is the (positive) twist
value assigned to the edge of v, the product of p, over all vertices of level 0 equals
m(p) defined in . In addition, the sum of g, over all vertices of level 0 equals
the total genus g, because I' is of compact type and v_; has genus zero. Putting
everything together we thus obtain that

/M Ag - a(f)‘,&p ) H%‘ =m(p) - hpi (p-1,p) - H ar(po — 1, ) 5
g i=3

veV(T'),4(v)=0

which is the desired statement. O

3.4. The induction formula for cohomology classes. The main tool of the
section is the induction formula in [Saul9, Theorem 6 (1)] which we recall now.

Proposition 3.11. For all 1 < i < n, the relation that
Vi m(p)
(€4 (mi + D)) [PAM ()] = Z mar,e,p (23)
(T',¢,p) T

v, l(v)=—1

holds in H*(PQM, ,,Q), where the sum is over all twisted bi-colored graphs such
that the i-th leg is carried by a vertex of level —1.

There are two ways of using equation . First one can compute the Poincaré-
dual class of POM, (1) in H*(PQM, ,,Q) in terms of the ¥, A, ¢ classes and
boundary classes associated to stable graphs. This strategy is used in [Saulg] to
deduce the first formula in Theorem [3.11

Alternatively, one can compute relations in the Picard group of PQM, ,(x)
to deduce relations between intersection numbers on PQM,, (1) and intersection
numbers on boundary strata associated to twisted graphs. This is the strategy that
we will use here. We will use this proposition with ¢ € {1,2} and multiply the
formula by €297 []""_; ¢; to obtain a;(u) on the left-hand side. Then we will use
Propositions [3.9] and [3:10] to compute the right-hand side. A first application of
this strategy gives a proof of the complementary proposition.

Proof of Proposition[3.4 We use Proposition with ¢ = 1. Multiplying for-
mula by £2972 - T]"_, ¢;, we obtain that

(m1+1) (al(ﬂ)Jr/P 5292'1_[11)1') =

My (1)
m(p) -
2g—2
Z arp - § H%
(Crw) |Aut(I, €, p)|  Jeam, ., e

1—=v,l(v)=—1

It suffices to check that each summand in the right-hand side vanishes. Proposi-
tion implies that if (I, ¢, p) is not a backbone graph, then the corresponding
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summand vanishes. If (T',¢,p) is a backbone graph, then we have seen (in the
paragraph below Proposition that M_; is birational to a Hurwitz space of
admissible covers of dimension n_; — 2, where n_; is the number of legs adjacent to
the vertex of level —1. Since the y-product restricted to level —1 contains n_; — 1
terms (i.e. it misses 1 only), which is bigger than dim M _1, it implies that the
intersection of ar g p with []\, 1; vanishes. O

Now we know that a;(u) is independent of the choice of 1 <4 < n and hence we
can drop the subscript i. The second use of the strategy presented above leads to
the following induction formula.

Lemma 3.12. The intersection numbers a(p) satisfy the recursion

k

1

(my +1)(ma + Da(u) = 3> e ((m1,ma, o), p) - 75 - [ [ falpi = 1, i)
k>1 g,p =1

where g = (g1,-..,9k) s a partition of g, p = (po, 1, .-, k) is a (k + 1)-tuple
of multisets with (ms,...,my) = po U -+ U g and p = (p1,...,pr) has entries

pi =2gi — 1 — || > 0.

We remark that this induction formula is not quite the same as the induction
formula of Theorem [3.1] e.g. the sums in the two formulas do not run over the
same set. Theorem [3.1] will follow further from a combination of Lemma [3.12] and
Proposition of the previous section.

Proof. We apply the induction formula of Proposition with ¢ = 2:

M _ __mp)
(€ + (m2 + L)1) [PQMg (1)) = Z [Aut(T, £, p)| Qrp -
2oyt

We multiply this expression by £29~! 15 ¢ and apply p.. Since Lemma gives
P« (§29[PQM, ,,(11)]) = 0, the above equality implies that

(my 4+ 1)(mg + La(p) = Z m‘:?lgpl?pﬂp* (5291 . Hﬂ}i . ap,é,p> .

(T,¢,p) =3
2—v,0(v)=—1

By Propositiona term in the sum of the right-hand side vanishes if (T, £, p) is not
a backbone graph. Suppose (I', ¢, p) is a backbone graph such that the first leg does
not belong to the vertex of level —1 (which contains n_; legs). Then on level —1
the product of t-classes contains n_; — 1 terms (i.e. this product misses 15 only),
which exceeds the dimension of M_; (being n_; — 2), hence the corresponding
term in the sum also vanishes.

Now we only need to consider the case when (T',¢,p) is a backbone graph in
BB(g,n)1,2, i.e. the vertex of level —1 carries both the first and second legs. Then
the intersection number £2971 - ", 4); - ar ¢ p is given by Proposition We
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thus conclude that

hpt (p-1,p) m(p)*
(m1 +1)(ma + Da(p) =
1 2 (F,m))ze:BBu [Aut(I', £, p)|

H a(pw - laﬂv)

veV(T),L(v)=0

k

= 303 )k ((ma,ma, o). ) -y [T ator — 1)

k>1 g,p Toi=1

The last equality comes from the fact that the datum of g1 +---4+gx = ¢, g; > 1 and
(m3,...,mp) = polpgU- - -Upy determines uniquely a graph (T, £, p) in BB(g, 7)1 2
and an automorphism of the backbone graph is determined by a permutation in Sy
that preserves both the partition of g and the sets p1, ..., . O

3.5. Sums over rooted trees. The purpose of this section is to combine the
preceding Lemma [3.12) with Proposition [2.1] that describes the computation of in-
tersection numbers on Hurwitz spaces. We will show that the numbers a(p) can
be expressed as sums over rooted trees in a similar way as we did for intersection
numbers on Hurwitz spaces in Section

Let 2 <i<mnand (T, ¢, p) be a rooted tree in RT(g, 1)1, (here pfoc] is empty).
Since there is no marked pole, it implies that any vertex of genus zero has at least
one edge with a negative twist, hence it is an internal vertex of I' and lies on a
negative level. Denote by p[oo]o the list obtained by taking the (positive) entries
p(h) for all half-edges h adjacent to a vertex of level 0. Denote by ©[0]o the list of
entries of u from those legs carried by the internal vertices (of genus zero). With
this notation we define the rooted tree (I'g, £y, po) in RT(0, 1[0]o, pt[o0]0)1,; obtained
by removing the leaves of T (i.e. vertices of positive genus and hence on level 0).
We also define the multiplicity mqo(p) of (I'o, £, po) to be the product of entries of
p[oo]o. Now we define the a-contribution of the rooted tree (T, ¢, p) as

G(F7€,p) = mO(p)2h(F07€0»P0) H a(p’u - 17;“’1)) ’ (24)
veV (T"),4(v)=0

where h(Tg, ¢y, po) is the contribution of the rooted tree defined in .

Lemma 3.13. The following equality holds:

J— a( 78, p)

my +1)(mg + 1 - 3 _al.tp)

( 1 )( 2 )a(:u) |5 t(l—‘7€, )|
(I,¢,p)ERT(g,1)1,2 I

Proof. Removing the leaves of a rooted tree induces a bijection between RT (g, 1)1 2
and the set
U RT(0,u[0lo, p[ooo)r,
(T',¢,p)€BB1 2

which is a partition of RT (g, 4)1,2 over all possible decorations of the leaves of the
rooted trees (i.e. each decoration is induced by a graph in BBj2). Moreover, an
automorphism of a rooted tree in RT(g, f1)1,2 is determined by an automorphism
of the backbone graph in BB(g,n)1,2, because all internal vertices of the rooted
tree (i.e. those of genus zero and hence on negative levels) have marked legs by
Definition Then we can first use Lemma to write a(p) as a sum over
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backbone graphs in BB(g,n); 2 and then use Proposition [2.1] to express it as the
desired sum over the set

U RTOul0)o, ploolo)re = RT(g, )12
(I',£,p)€BB1 2

as claimed in the lemma. O
We define
RT(ga p’)l = {trivial graph} U U RT(ga :u)l,z

1=2

and the a-contribution of the trivial graph e as a(e, £, p) = (my + 1)2a(p).

End of the proof of Theorem[3.1. We will prove for n > 2 the equality that
k

Zthl mi,mz), p) %H2gg*1+” (15))pjalp; — 1, 1)

k>l g
a(T',¢,p)
-y dhbp) (25)
(T',¢,p)ERT (g, 1)1 \Aut(l" tp)l

This formula together with Lemma [3.13] thus 1mphes Theorem [3.1] Since by defi-
nition Y ;" (m; + 1) = 2g — 2+ n, Lemma implies that
(2g—2+m)mi + Dale) = (ma+1%a(e) + > (ms + D(my + Dalp)
i=2
- a(l', ¢, p)
— 1 2 e
(mac+ 1%l + 2 Aut(T.L.p)
=2 (I¢,p)€
RT(g,1)1,i

ey IAut(F 6p)l
RT(g, u)

Therefore, the left-hand side of @ can be rewritten as

Z Z hps ((ma, m ﬁ Z a(T',¢,p)
F 1,12) |[Aut(T, ¢, p)|
k>1 g,p j=1 (T4, p)e

RT(g;,(pj—1.15))1

1 LTy, 4, p))
VRV ER ]
>3 he((mma)p) Y Hm-
E>1 g,p (Tj,45,p;)€ =1 bGPy
(91 (pjfl’l‘]))

We claim that there is a bijection

RT(ga /1’)1,2 =~ U H RT(gv7 (pv - 1»/141)))1 .

(I 0/,p")EBB] , vEV (I),£(v)=0

Indeed given a rooted tree (I',¢,p) in RT(g,u)1,2 we can construct (IV,¢,p’) €
BB(g,n)i 5 by contracting all edges except those adjacent to the root, and the
rooted trees (I'y, 4y, Pv) € RT(gu, (v — 1, 1ty))1 are the connected components of
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the graph obtained from (T, ¢, p) by deleting the root. Moreover for a rooted tree
(T', £, p), by equation we have

k
h’(FOaEOva) = hlpl((mlam2)7p/) ) H h(F]07£J07pJ0) )
i=1

where as before I'y is obtained from I' by removing the leaves and the I'jo are the
connected components after removing the root of I'g. Together with the definition
of the a-contribution in , it implies that

a(]_—‘,ﬁ,p) = hlP’l((mlam2)7p/) : H a(rvagvvpv) :
veV (I),£(v)=0

Note also that

Aut(T, 4, p) = Aut(I", ¢, p’) x IT  Awt@. 4, p0).
veV(I),L(v)=0

Combining the above we thus conclude that equality holds. O

Proof of the equivalence of Theorems and [1.3. We first assume that Theorem|[I.2]
holds. By Theorem the quantities

2(2mi)2

vol(QMy n(my,...,m,)) and 2g—3+n)!

a(my,...,my)
satisfy the same induction relation that determines both collections of these num-
bers starting from the case n = 1. The base case (i.e. the minimal strata) that

2(2mi)%

vol(QMy 1(29 — 2)) = (29 - 2)!

a(2g — 2) (26)
was proved in [Saul8] under a mild assumption of regularity of a natural Hermitian
metric on O(—1), and we will give an alternative (unconditional) proof in Sec-
tion [£4] Consequently we conclude that Theorem [I.2] implies Theorem [I.I] The
converse implication follows similarly. O

4. VOLUME RECURSION VIA ¢-BRACKETS

In this section we define recursively polynomials in the ring R = Q[hy, hs, .. ]
and show that they compute volumes of the strata after a suitable specialization.
The method of proof relies on lifting the Fs-derivative via the Bloch-Okounkov
g-bracket and expressing cumulants in terms of this lift. This recursion looks quite
different from the recursion given in Theorem since it is only defined on the
level of polynomials in the variables h; and requires h;-derivatives.

To define the substitution, first recall the numbers b; introduced in . We let

Pg(u) = exp(—Zj!ijujH) and o« = [uq< !

= wpp 20

where the denominator denotes the inverse function of u/Pg(u). For the recursion
we define for a finite set I = {i1,...,4,} of positive integers the formal series
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. 1
Hr € R[ziy, .-, 2, ] if [I| > 2 and Hyy € ;R[[Zz]] by

Hyy = z% + Zhezfa
>1
2z M (2i) — 2 H' (%)
H(zj) — H(z)
= 2hi1z2; + h2(3zizzj + 3212]2) + 4h32§’zj + (212 + 4h3)z$z]2 + 4h32iz§’ + e

Heigy =

1
Hi=—F Dy(Hp s Hir), (28)
2(?7, o 1) I:;I”
17,17 #0
where we abbreviate H,, = H[1,n), H = Hi and hy, 4, = [zfl .2, and
where the symmetric bi-differential operator Dy is defined by
of 0y
D2(f7 g) = Z h€1,€2 . (29)
Pt Ohy, Ohy,
Theorem 4.1. The rescaled volume of the stratum with signature p = (mq, ..., my)
can be computed as
(27i)29

7 i

using the recursion and the values of the ay in .

4.1. Three sets of generators for the algebra of shifted symmetric func-
tions. We let A* be the algebra of shifted symmetric functions (see e.g. [EO01],
[Zagl6] or [CMZ18|) and recall the standard generators

peN) = D (=it 3) = (=i+3)) + (1-279¢(-0). (30)

i=1
Note that (1 —27¢)((—¢) = £byy1. The algebra A* is provided with a grading
where each py has weight ¢ 4+ 1. For Hurwitz numbers the geometrically interesting
generators are
feQ) = zex(0)/ dimx*, (31)

where z; is the size of the conjugacy class of the cycle of length ¢, completed by
singletons. The first few of these functions are

1 1 1 1, 3
ho= Pit 5 f2 = 5P2) I3 = 3Ps— it gnt oo
The third set of generators, defined implicitly by Eskin and Okounkov, will serve
as top term approximations of f;. We define hy € A* by

_ —1 41 4 _ s+1
he = 7 [u"T ] P(u)" where P(u) = exp( ;u ps) . (32)
Observe that by definition h, has pure weight £+ 1. The first few of these functions
are

9

3
hi = p1, ha = po, h3:p3—§p?.

Proposition 4.2 (J[EO01, Theorem 5.5]). The difference fo — he/l has weight
strictly less than £ + 1.
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We abuse the notation h, for generators of R and for elements in A*. This is
intentional and should not lead to confusion, since the map hy — hy induces an
isomorphism of algebras R =2 A*, by the preceding proposition.

4.2. The lift of the evaluation map to the Bloch-Okounkov ring. Let
f: P — Q be an arbitrary function on the set P of all partitions. Bloch and
Okounkov ([BO00]) associated to f the formal power series

_ ngp fN) q‘/\|
<f>q - Z)\EP q‘)\|

which we call the g-bracket, and proved that this ¢-bracket is a quasimodular form
of weight k& whenever f belongs to the subspace of A* of weight k (see [BO00], and
[Zagl6] or [GM20| for alternative proofs).

In |[CMZ18, Section 8] we studied in detail an evaluation map Ev (implicitly

defined in [EOO01]) on the ring of quasimodular forms that measures the growth
rate of the coefficients of quasimodular forms, or equivalently, their asymptotics as
7 — 0 along the imaginary axis ([CMZ18, Proposition 9.3]). The purpose of this
section is to lift this evaluation map to the Bloch-Okounkov ring and to express it
in terms of the generators h; introduced in the previous section.
NThe map Ev is the algebra homomorphism from the ring of quasimodular forms
M, = Q|Es, E4, Eg] to Q[X], sending the Eisenstein series Fy (normalized to have
constant coefficient one) to X +12, E, to X2, and Eg to X3. In this way, the larger
the degree of Ev(f), the larger the (polynomial) growth of the coefficients of f, see
[CMZ18| Proposition 9.4] for the precise statement. It is also convenient to work
with the evaluation madE]]

€ Qllg]], (33)

1

ev[F|(h) = P Ev

[F]' € Q/h) for Fe . (34)

Xz

We also use the brackets (f)x = Ev[(f)q](X) and (f)n := ev[(f)4] (h) for f € A*
as abbreviation. Note that A* admits a natural ring homomorphism to Q, the
evaluation at the emptyset, explicitly given by the map py — £1bg4 1.

Proposition 4.3. There is a second order differential operator A: A* — A* of
degree —2 and a derivation 0: A* — A* of degree —1 such that
1 52
(F)p = (MO T=0/mR ) (@) (35)
for f € A}, homogeneous of weight k.

The differential operators are given in terms of the generators p, by
0 0?
0 = iDi—1— d A = kE+¢ _
(f) ;ZP 15 M (f) k;I( +€) Prte—1

Proof. From the definition and [CMZ18| Proposition 9.2] we deduce that the eval-
uation map can be computed for any F' € M), as

_— 36
Opy Ope (36)

ov[F|(h) = %ao (" F) (37)

where ? = 120/9F5 and where ag: F +— F(00) is the constant term map from ]Tf*
to Q. From [CMZI18| Proposition 8.3] we deduce (note that differentiation with

3This would be (27i)*Fev[F](—4n2#) in the notation of [CMZ18, Equation (85)].
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respect to @; in loc. cit. gives the extra pj-derivative here) that the differential
operators defined above have the property that

0(f)g = <%(A — 02 —0/0p1) f>q (feA). (38)
Since the constant term of the g-bracket of f is in A*, the claim follows from these
two equations. ([l

To motivate the next section, we recall the notion of cumulants. Let R and R’ be
two commutative Q-algebras with unit and ( ): R — R’ a linear map sending 1 to 1.
(Of course the cases of interest to us will be when R is the Bloch-Okounkov ring A*
and ( ) is the ¢-, X-, or A-bracket to R’ = M,, Q[X], or Q[n?][h], respectively.)
Then we extend {( ) to a multi-linear map R®" — R’ for every n > 1, called
connected brackets, the image of g1 ® --- ® g,, being denoted by (g1]---|gn), that
we define by

il lga) = >0 (=D 7 ea) = 1) TT(TT 90)- (39)
a€P(n) Aca a€cA

The most important property of connected brackets is their appearance in the
logarithm of the original bracket applied to an exponential:

1 1
log ((eg1toz+st)y — log<1 + D o) + 57 D 9i9) + 57 D _{oigign) + )
i i.j .5,k
1 1
= Z(m) + az<gi|9j> + §Z<9i|gj|gk> +
i i, i,j,k
We specialize to the Bloch-Okounkov ring A* and we want to compute the leading

terms of the connected brackets associated with the (-) x- or (-)s-brackets. Recall
from |[CMZ18, Proposition 11.1]:

Proposition 4.4. Let g; € AEm (i=1,...,n) be elements of weight less than or
equal to k; and let g, € Ay, be their top weight components. Let k =ky + -+ ky,
be the total weight. Then deg({g1] - |gn)x) <1—n+k/2 and

X2 g - lga) x o= (XU G g ) x (40)

The leading terms of the brackets are consequently

(1] lgn)r = [X17n+k/2] (g1] - lgn)x = XlgnOo EV[<9)1(‘1.;;1|4?:/>2q](X) (41)

= [ (g | lgndn = %g% RFH ey [(gy| - - - lgn)q) (7).

We call them rational cumulants.

4.3. The cumulant recursion. In this section we prove a formula for computing
the connected brackets associated with the (-),- or rather the (-)s-brackets. The core
mechanism for their computation is summarized in the following purely algebraic
property.

Let R be an N-graded commutative Q-algebra with Ry = Q, complete with
respect to the maximal ideal m = Rso. The following statement gives a general
recursion for expressions that appear in cumulants. We will specialize R to the
Bloch-Okounkov ring subsequently.
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Key Lemma 4.5. Suppose that D: R — R is a linear map. Then the following
statements are equivalent:

(1) We have D(z®) — 3z D(x?) + 322D(z) = 0 for all z € R.
(2) For allxz € R and allm > 2

D(z™) = (2> D(z*)z" "2 —n(n — 2)D(x)z" .
(3) Forallx,y,z € R
D(zyz) = aD(yz)+yD(xz) + zD(zy) — xyD(z) — 2zD(y) — yzD(x).
(4) If we denote by Dy: R? — R the symmetric bilinear form
Dy(x,y) = D(xy) — 2D(y) — yD(z)

then

n

i=1 1<i<j<n
forall x1,...,x, € R.

(5) For any fized x € R, the bilinear form Ds(x,y) is a derivation in y.

(6) The map D € Sym?(Der(R)), i.e. D is a second order differential operator
without constant term.

(7) For all X € m there exists L(X) € R such that

1

log(e"P (eX/")) = LX) +0(1) (h—0). (42)
If any of these statements holds, the leading term of is given by L(X) = L(1),

where )
L0) = X, D) = ;Da(L(t),L(1). (43)
Proof. The implication (1) = (3) follows by passing to the polarization. The impli-
cation (3) = (4) can be proved by induction (replace x; by xox1). The implications
(2) = (1) and (4) = (1), (2), (3) follow by specialization. The equivalence (5) < (3)
follows by direct computation. To show (6) < (5) think deeply. To prove (7) = (1)
it suffices to consider the cubic term: the coefficient of 1/4? is the expression in (1).

To prove (6) = (7) and the final formula for £(X) we write

e"P(e?) = ev() (44)
Then y(0) = . Note that (2) implies that

D(e®) = %D(mQ)ex + D(z)(1 — xz)e”.

Differentiation of with respect to 7 implies that y' = D(y) + 3 D2(y,y). Equiv-
alently, writing y = >, -, fu(2)R", then the initial condition is that fo(z) = z,
and -

(n+ Dfusa (@) = D)+ 5 3 Dolfn(a), fam ().
L

Recursively this implies that f,,(X/h) = L,(X)A "1 + O(h~") with Lo(X) = X

and
n

1

(n+ DL (X) = 5 3 DalLn(X), Lnm(X)).

m=0
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We now let L(t) = 3, 5o Ln(X)t" and the claims follow. O

4.4. Application to volume computations. We now return to the proof of the
main theorem of this section. Recall the main idea from [EO01] that the volume of a
stratum is given by the growth rate of the number of connected torus covers and thus
to the leading terms of cumulants of the f,. More precisely for 2g —2 =" m;,
the same argument as in [CMZ18, Proposition 19.1] gives that

2g <fm1+1| T |fmn+1>L
(29 —2+mn)!

Proof of Theorem[[.1], one variable case. First, Pg(u) = P(u)|p,—on, = P(u)(0).

Next, recall that Lagrange inversion for a power series F' € uCl[u]] with non-zero

linear term and inverse G(z) states that k[zK]G™ = n[u="]F~F for k,n # 0. We
apply this to F' = u/Pg(u) and to k = 2g — 1 and n = —1 to obtain that

vol (QM n(ma,...,my)) = (2m0)

(45)

(29 — 1)!
W’U(QQ -2) = (29— 1)(fog-1), = (hag-1),
1 1 (46)
— — j2) 29-1 _ 2g—1
3 [0l Pa(u)/w) v
using Proposition [4.2] u . and Lagrange inversion. O

We pause for a moment to check the initial condition of the theorem in the
previous section independently of the Hermitian metric extension problem along
the boundary of the strata.

Proof of using ([46). We want to show that (29 — 1)?a(2g — 2) = (hgg-1), .
Recall that a version of Lagrange inversion (see e.g. |Gesl6, Formula (2.2.8)]), in
fact the case k = 0 excluded in the version of the previous proof, states that if
F € z + 2%C][2]] with composition inverse G(u), then for any Laurent series ¢(z)

[°16(F) = [u’]é(u) + [u™"]¢' (u) log(G/u) . (47)
If we let A(z) = /24750 (hag-1), 22971, then we need to show that A(z) = A(z).
We apply Lagrange inversion to ¢(z) = 229 and F = 1/.A(2) to obtain that

1 o 1 _ -1 2
5o 1 = 29,[ J6(1/A(2) = —(29 50 1o8(1/P5)
— 1
= 2g | — [q29 _ 201429
using and . This implies the claim. (I

For the general case of the theorem, we apply Section [£.3] to the differential
operator
=LA-0°-0/op1). (48)
Proposition 4.6. The bilinear differential operator Do defined in 1s the polari-
zation of D, namely, Do(f,g9) = D(fg) — fD(g) — gD(f) for all f and g.

Proof. In terms of the ps-generators the polarization is given by

Ds(f,9) = Z ((k+€)pk+z 1 — klpr—1pe— 1) 9F O

. (49)
P dpy, Ipe
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The definition of hy in terms of p, implies that

) :_;Zf)gjl and > np,aH () = ~H()/ZH ()~ 1. (50)

n>2

‘We compute that

21 H (2 29H/ (2
Z ((k + O)prto—1 — kfpk71pzf1) ,Hl(zl)(k—l&-)l ' 7_12(22524231

k,e>1
. ZlH ZQH, - — 'H(Zg)lin
ETTE (Z o ZQ) —H(z1)
H(z1) H(z2)
S b R o VAR N I A sV
(1+ zl’H’(zl))( + z2H/(22)>)

= Ha(z1,22),

and this implies the claim by the chain rule. O

We now define the partition function of h-brackets

o (u), = <eXp(QZIh£W) >q — I§<h1...hlh2...h2...>q?ﬂ

ni n2

S LS b, (1)

in the hy-variables. Then the partition function of the rational cumulants for the
h¢-generators
H u”
W)y = > (l--|ha|hol -+ |ha - )g —
—_———— ———

n>0

= log @ (u), (52)
ny na

is simply the logarithm of ®%.

Proof of Theorem general case. We first show that the pieces of ® sorted by

total degree in u can be recursively computed using the Ds-operator. For this

purpose we let h; = A *h;. From the definition of cumulants, equation and

ao({g)q) = g(0), we obtain that

n

~ ~ o~ ~ u
Z:<hl|...|h1|h2|...|h2|...>ﬁW zlog(exp > hous) )
non’_'A/_’ n: i>1

n ns (53)
tog (e exp (1 Z%iui)) ).

By applying the Key Lemma with X =", Eiui and undoing the rescaling of the
h; using we obtain that

> (hal---|ha | hal -+ |ha |- <Z£ > ) 54
n>0 n 77,'2 n=0 ( )

with )
= Zhiui and £, = o Z Dy(Ly, L) (55)

n>1 r+s=n—1
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for n > 0. Now define a linear map U,,: Q[u] — QJz] by

Bn(ug, ---ug,) = Symm(z{' ---2)
and zero for monomials of length different from n, where Symm denotes sym-
metrization with respect to the S,, action on the variables z;. In this notation

Hi =0pL,—1 and

un
H, = On<z<h1‘"'|h1|h2|"'|h2|~~~>L—'),
sy N ——— n!
- ni no
Consequently, (55) and (28) together with (45]) and Proposition [£.2)imply the claim.
[l

5. EQUIVALENCE OF VOLUME RECURSIONS

In this section we introduce another “averaged volume” recursion that interpo-
lates between the Da-recursion introduced in Section [4] and the volume recursion
in Theorem [1.2} We will show that the averaged volume recursion and the Ds-
recursion give the same generating functions, and then Theorem will follow
from it.

Recall from the definition of Hy; ;3 € R[[2,24]] for @ # j, where R =

Q[h1, ha,...]. For any list of positive integers p = (p1,...,pr) we define
ak
P _ o
Mgy = Ohy, - Ohy, Higy -
For a finite set I = {i1,...,i,} of positive integers we define the formal series
Ar € Rl[zi,, Zi,, - - -]] inductively by
1
Ar = Hr € —R[[zi]] if n =1, and otherwise (56)

(2

k

1 1 [p;]

Ar=— > > > R | VA

1<r<s<n k>0  p=(p1,...,px) ' j=1
IT={ipis JUI LUy

where A[Ip] = [2])Arugiy for any i & I. We set A,, = Apy,,). Note that A; = H;
by definition if [I| = 2. We have chosen to sum in definition of Aj over all p
rather than partitions g = Zle g; as e.g. in Theorem The two summations
are equivalent, since g; and p; determine each other once I has been partitioned.
Our goal here is to show the following result.

Theorem 5.1. For all non-empty sets of positive integers I, we have A = H.

For the proof of this theorem we will show that both A; and H; can be written as
a sum which ranges over certain oriented trees (see Section. The two recursions
can then be viewed as stemming from cutting the trees at a local maximum (a “top”)
or a local minimum (a “bottom”) respectively.
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5.1. Proof of Theorem [I.2] and Theorem [I.1l We assume in this section that
Theorem [5.1 holds and finish the proof of Theorems [I.2] and [I.1] under this assump-
tion. We abbreviate A = (¢1,...,¢,) and recall from Sectlon M that we denoted the
coefficients of A,, for n > 2 by

¢ ¢
A, = H, = E bzl

byl 21

Proposition 5.2. The coefficients hy are uniquely determined by the recursion

k
hy = Z btbs Z ZhIPl -1, sflap)'HhM,m (57)
1=1

1<r<s<n k>1

for n > 2, where the summation is as in Theorem except that Ay U--- U X =
[1,n] ~ {r,s}.

Proof. We begin by showing the formula for A with two entries, which in view of @
is equivalent to show that

k
hey oy 0y 0y 2
Z TR R = Z Zh le2
0nel 61 + 62 i>1 o1 — Z2
21%
= —log (12 (H1(z2) — 7'[1(21))> .
Z1 — 22

Since applying (z1 5+ 25,2 8 ) to the left-hand side above gives As, and since
neither side has a constant term this in turn follows from

z1H (21) — 20H1(22)
Hl(ZQ) — 7‘[1(21)

_ 8 3 zZ122
= — (Zlazl =+ 2282;2) 10g (2;1 — (Hl(ZQ) Hl(Zl))) .

For )\ with more entries, we deduce (for all £,., s > 1 and all p) from the preceding
calculation that

14

k/
b+ Ly
e sy = D e D (b= 1,4 = 1,9 [T
k>0 Toop i=1
k/
b+ Ly
and [2E ]H{TS} = Z 1 Zh]pl - —1,pup’) th/,
k'>0 ’ i=1

Besides, the recursion formula defining AI can be translated for A\ with n parts
into

k
1 1
ha= > — > H[Zszﬁs]/HF{)T,S}HhA’pi (58)
1<r<s<n k210 i=1
[A:|>0
k K
b+ 4
= 2 72—15 > k'k,'hﬂn(e =16 =1,pup) [ [y [T Ay
1<r<s<n k>1,9;,0%;1>0 i=1 j=1
k’>0,p’

where Ay U --- U A, partitions A\ {¢,,¢;}. Next we remark that the interior sum
of is over all backbone graphs with the two markings labelled with r and
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s at the lower level. In the preceding formula the contribution of vertices
with at least one marking is separated from the vertices with no markings. This
choice results in a binomial coefficient (k';k/) and transforms ﬁ into m, thus
showing that the two recursive formulas and are equivalent. (]

Proof of Theorem[1.3 and Theorem[I.1 For p = (my,...,m;,) consider the inter-
section numbers a(u) that satisfy the recursion in Theorem and recall that
a(p) = a;(p) is independent of the index ¢ by Proposition n particular the
a(w) satisfy the recursion for any distinguished pair of indices, and hence sat-
isfy every weighted average of these recursions. We use the weighted average where
the recursion with (4, j) distinguished is taken with weight [], o (; ;1 (my +1). Con-
versely, the a(u) are uniquely determined by this weighted average and the initial
values for p of length one given in .

On the other hand, the collection of (29 — 2 4+ n) [[\;(m; + 1)a() and the
collection of Ry, 41,...,m,+1 both satisfy the recursion , by observing that

n n

(29 —2+n)a(p) H(mz +1) = Z (my &1+ m, + 1)a(u) H(mz +1). (59)

n—1
i=1 1<r<s<n =1

Note that A;|p, 50, = A by Theorem and since we already checked (see (46)
and the subsequent proof) that the one-variable rescaled volumes v(2¢g — 2) and
a(2g — 2) agree (see (26])) up to the factor (27i)29/(2g — 1)!. This implies that

hml-i-l,.“,mnzl‘hz'—)az ] (60)
29 —2+n)[[;i=(mi +1)
The claim now follows from Theorem Theorem and the conversion of
volumes to the a(u). O

a(p) = (

5.2. Oriented trees. We now start preparing for the proof of Theorem An
oriented tree is the datum of a graph G = (V, E C V x V') whose underlying graph
of (V,E) is a tree. In particular it is required to be connected. If (v,v") € E, we
will denote v > v’. Moreover, a vertex v € V is called a bottom (respectively a top)
if there exists no v’ € V such that v > v’ (respectively v < v'). We will denote by
B(G) and T(G) the sets of bottoms and tops of G.

For any oriented tree G with n vertices, we define the rational number

Card {0: V 5 [1,n], st.¥(v,v') € E,o(v) > a(v’)}

n!
whose numerator is the number of total orderings on the set of vertices compatible
with the orientation of G.

F7(G) = ;o (61)

Lemma 5.3. The function f# can be expressed as
1 1
G =~ > (Hf#(G’)> =~ > (Hf#(G’>>,
vEB(G) \ G veT(G) \ &

where in both cases the product is over all connected components G’ of the oriented
graph obtained by deleting the vertex v.

Proof. In order to define a total ordering on V' compatible with the orientation
of G, we begin by choosing a minimal element v € V. This element is necessarily
a bottom. Let us fix such a choice and denote by (Gy,...,Gj) the connected
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components of G\ {v}. Let n; be the number of vertices of G; for 1 <i < k. A
total ordering on V' with minimal element v is equivalent to choosing a total ordering
on the vertices of G; for all 1 < ¢ < k and a partition of [1,n — 1] into k sets of
size (ni,...,nk). Such an ordering on V is compatible with the orientation of G if
and only if each ordering on the vertices of G; is compatible with the orientation
of G; for all 1 < ¢ < k. This implies that the number of total orderings on V' with
minimal element v is equal to

k k
n—1
. JFF(G)) = (n— 1)! - #((,
(") TG = -t T ().
i=1 i=1

Summing over all possible choices of a minimal element, the number of total order-
ings on vertices of G compatible with the orientation of G is equal to

o Y (Hf#(G’)>,

vEB(G) \ &

which completes the proof. ([l

5.3. Decorations of oriented trees. Let I be a non-empty finite set of positive
integers. An I-decoration of an oriented tree I' = (V, E) is the datum of a function
dec: I — V such that for each vertex v the number of outgoing edges plus the
number of decorations is equal to two, i.e.

#(dec™ (v) + #(EN ({v} x V)) = 2

for all v € V. If I has cardinality greater than one, we denote by OT(I) the set of
I-decorated oriented trees. One can easily check that the following two properties
hold:

e if [ has cardinality n > 2, then I" has n — 1 vertices;
e a vertex of a decorated tree is a bottom if and only if it has exactly two
markings.

We denote by OT(I)?,OT(I)® and OT(I)! the sets of decorated trees with a
choice of an arbitrary vertex, a choice of a bottom and a choice of a top, respectively.
If I = {i} has only one element, we define OT({i})” = {i} as a trivial graph
decorated by 3.

Lemma 5.4. If I has cardinality greater than one, then there is a bijection

o' OT(I)t — ( J oT()® x OT(1\ I’)”) / (I' ~I\ 1) (62)
rci
given by cutting at a top vertex, were the union is over all non-empty proper subsets.
Similarly, there is a bijection

k
e’ OT(1)" — U U [Tor; uie}) /Sk (63)

{i1,42}CI,k>0 \I={i1,io}Ul LU} j=1

given by cutting at a bottom vertex, were the union is over all partitions of I into
k+1 non-empty sets such that the first distinguished set has precisely two elements
and where the element e; = max(I) + j for all 1 < j < k.

We denote by ¥ and ¢° the inverses of @' and ¢°, respectively.
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Proof. Given a decorated tree with a chosen top vertex v, we define its image under
! as follows:

e If there are two markings on v, then v has no outgoing edges, hence the
graph has v as a unique vertex and I has only two elements. It follows that
OT(I)" has only one element (and so does the right-hand side of (62)).

e If there is only one marking ¢ € I on v and one outgoing edge to a vertex
v’ < w, then I’ = {i} and the corresponding element in OT(I \ I')" is the
graph obtained by deleting v and choosing v’ as the distinguished vertex.

e If there are two outgoing edges to vertices v’ < v and v < v, then v has
no I-markings and the graph obtained by deleting v has two connected
components. We define I’ to be the set of markings on the component
containing v" and define the corresponding elements of OT(I")” and OT(I'\
I'")? to be the connected components containing v’ and v’ as chosen vertices,
respectively.

The inverse of ¢! in the first two cases is clear, and in the last case is given by
adding a top vertex adjacent to the two chosen vertices.

Given a decorated tree with a chosen bottom vertex v, in the same spirit we
define the function ¢ as follows. Since v is a bottom, it has no outgoing edges,
hence it has exactly two I-markings ¢; and i5, and the corresponding k graphs on
the right-hand side of are the k connected components of the graph obtained
by removing v. The inverse of (¢’ is given by gluing these k graphs back to v along
the vertices marked by ey, ..., eg. O

Now we fix a ring R’ and a function g: OT(I) — R’. By slight abuse of notation,
we write f#: OT(I) — Q for the composition of f# defined in with the
forgetful map of the decorations. As a consequence of the two preceding lemmas
we see that the sum

Sg)= > D))

reoT(I)

can be rewritten in two different ways, namely

1
S(g) = 2n—1) Z Z AT AT g(" (T, 0, T ")) (64)
I'cl (I )eOT(I)"
(I 0" )EOT(I\I')"

k k

so=—= > = 3 (IIrm)-o(e(II0)).  ©9)

{iniz}CLE>0 7 (ry)k_, =1 j=1
I={iq1, i }UI ULy ’

where n is the cardinality of I (i.e. ' € OT(I) has n — 1 vertices as remarked
before).

5.4. Explicit expansions over decorated trees. In order to finish the proof of
Theorem we will show that both A; and H; are equal to a generating series
Sy that is directly defined as a sum over OT(I).

Let ' = (V,E,I — V) be an oriented tree with decoration by I. A twist assign-
ment on I is a function p: £ — Z~o. We work over the ring R[[(z)icI, (2¢)ecE]]
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of formal series in variables indexed by I U E. Given a twisted decorated oriented
tree, we define the contribution of a vertex as

H, = Hg" (Z’U,lv ZU,Z) € R[[(Zi)ief7 (Ze>e€E]] ,

where p, is the list of twists associated to all vertices v with v/ > v and where
(20,1, 2v,2) are the variables attached to either the markings of v or the outgoing
edges from v to vertices v/ with v’ < v. Then we define the contribution of the

oriented tree I' as
cont(T) = Z [H 2P()] H Ho

p:E—Z>o e€E veV

if T is non-trivial, and define cont(I') = H, for the trivial graph T' with a unique
vertex v and no edges. Finally, we set Sg;y = H;} = Ay;y and for |I| > 2

Sy = Z f#(I) cont(I") .

Te0T(I)

End of the proof of Theorem[5.1] We will show that S; = H and S; = A; for all
sets of positive integers I with n = Card(I) > 2. The equalities in the case n = 2 are
obvious from the definition. We assume now that n > 3 and that Sy = Hp = Ap
for all I’ such that Card(I') < n

We first prove that S; = H;. We begin by rewriting the defining equation
with two auxiliary “edge” variables z. and z. for distinct indices e’,e” € N\ T as

', pn OHyp OHp\
Hr = Z Z ([22¢ 22 1 H(er o)) 8hpll ahp\” .

I’CI PeryPerr >0

To evaluate the derivative of Hj/, there are two cases to consider, depending on the
cardinality of I'. If I’ = {i}, then QH“ = 2! for all p > 0. Otherwise, we use the
induction hypothesis to compute that

OHp oSy 6 Cont(F)
= = ‘f#
Oh,, Oh,, reoZT:I' hp
D INAEDY [st@] T | ] #e
reOT(I’) pE—>Z>0 ecE veV P \o#v
OH,
SRR SBEU IS ol b1 S 0 £
(T,v)eOT(I")" pP:E—Z>o Le€E D#v

Now we assume that both I’ and I\ I’ have at least two elements. Take two
oriented trees (I = (E', V', I' — V'),v') € OT(I")? and IV = (E", V", I\ I' —
V"), v") € OT(I")". Let (T = (V,E,I — V),v) = (I, T") be the combined
graph in OT(I)? as described in Lemma[5.4]

The datum of two twist assignments p’ and p”’ on I'” and I'” respectively together
with a pair of positive integers (pe,pe) is equivalent to the datum of a twist
assignment p: V' — Z~ on the graph I'. Moreover, the contributions of the vertices
of I with the twist assignment p are given by

° 7—[{6/ ey for the top vertex v,

d 87—[ 77

® Dh,y,

for the two distinguished vertices of IV and I'”, and

ahpe
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e H; for all other vertices 0.

One checks that this is still true if one of the graphs I'V or I has only one marking.
In summary we obtain that

e DO VRIS S S 01 £
I/CI (I'",v")eOT")" p: E=7>0 eV
T v YeOT(I\I')"

§ > FHI) (T )cont (v (I, 0, T, 0"))
I’CI (I v")eoT )"
(F” //)GOT(I\I )U

= SI )
where we use to pass from the above second line to the third.

Finally, we prove that S; = A by a similar argument. It suffices to prove for
the case I = [[1,n]]. Using the induction hypothesis that A7,un1j1 = Sr,u{n+j}
we can rewrite the inductive definition of A as

ke,
A, = 1 Z HJ:1f )

(n—1) — k!
E>0,[1,n]={i1,i2 UL U--- LI}
I';€0T(1;U{n+j})
(7)) (e)
pio . p
S (e ) T2 I %
P=(P1:--,Pk) j=lecE; veEVIU--- UV

(i) Bj=7250

The datum of p together with the twist assignments p/) for the split graphs Iy
for 1 < j < k is equivalent to a twist assignment for the combined graph I' =
(T, ..., Ty) defined in Lemman Moreover, given such a twist assignment the

contrlbutlon of the vertex carrying i, and is is H“ in Thus we obtain that
k #(T.
1 . r
N D s N B LB R
(n—1) k>0, : p: E(D)>Zsy ecE(T) veV(T
ﬂl,nﬂ:{il,ig}uflu---ulk
r;e0OT(I;U{n+j5})
k
1 Hj:l f#(rj) b
= —————~" . cont(¢’(I'1,...,Tk))
(n—1) g’ k!
[1,n]={i1,i2 }UT1 LU}
I;€0T(I;U{n+j5})
= S(I) ’
where we use to pass from the above second line to the third. (Il

6. SPIN AND HYPERELLIPTIC COMPONENTS

In this section we prove a refinement of Theorem and Theorem with
spin structures taken into account. We also prove the corresponding refinement
for hyperelliptic components in Section Along the way we revisit the counting
problem for torus covers with sign given by the spin parity and complete the proof
of Eskin, Okounkov and Pandharipande ([EOPO8|) that the generating function is
a quasimodular form of the expected weight. We then show that the Dy-recursion
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has a perfect analog when counting with spin parity and use the techniques of
Section [l to convert this into the recursion for intersection numbers.

In this section we assume that all entries of u = (mq,...,m,,) are even. The
spin parity of a flat surface (X, z1,...,2p,w) € QM (1) is defined as

n
(X, w) = hO(X,; %xl) mod 2.
The parity is constant in a connected family of flat surfaces by [Mum71]. We
will denote by QM ,(1)® with e € {odd, even} the moduli spaces of flat surfaces
with a fixed odd or even spin parity and simply call them spin (sub)spaces of
the corresponding strata. Moreover, we will denote by QM. ,,(1)® their incidence
variety compactification and will similarly use this symbol, e.g. in the form v(u)®,
c152(1,C)®, and Capea(pt)® for volumes and Siegel-Veech constants.

We remark that with our choice of notation the spin spaces QM. ,(1)® are not
necessarily connected. Indeed, for p = (2g —2) with g >4 and pu=(g— 1,9 — 1)
with g > 5 odd, one of the two spin spaces is disconnected, since it contains an extra
hyperelliptic component (see [KZ03| Theorem 2]). Nevertheless, the hyperelliptic
components will be treated separately in Section Taking the difference of the
volumes thus gives a formula for the volume of each connected component.

To state the refined version of the volume recursion we need a generalization of
the spin parity. Let (I', ¢, p) be a backbone graph. A spin assignment is a function

¢: {veV(),l(v) =0} — {0,1}.
The parity of the spin assignment is defined as
o) == > ¢(v) mod?2. (66)
veV(T),L(v)=0

Our goal is the following refinement of Theorems [I.2] and [I.1] under a mild assump-
tion. Recall that the tautological line bundle O(—1) over PQM, ,, (1) has a natural
hermitian metric given by the area form h(X,w) = %fx w A W.

Assumption 6.1. There exists a desingularization f:Y — PQM,1(2g —2) such
that f*h extends to a good hermitian metric on f*O(—1).

This assumption was already present in [Saul8| and can be deduced from the
smooth strata compactification constructed in |BCGGM19]E| Note that we do not
need this assumption for Theorem [1.2] as it is stated for the entire stratum whose
cohomology class was computed recursively in [Saul9]. However, currently we do
not know the cohomology class of each individual spin subspace.

Theorem 6.2. Ifn > 2, then the rescaled volumes satisfy the recursion

k - ) P RY-IC))
dd Hi=1(292 1+ n(pi))v(pi, pi — 1)
v(p)°¢ = hp ((m1,m2),p) - — ,
. ggw%)dd nl P 2R 29 = 3+ m)!

where the summation conventions for g, pu and p are as in Theorem and the
superscript ¢(i) indicates the corresponding spin subspace.

4Assumption was recently verified in [CMZ19|, to which we refer the reader for more details
about the area form being a good metric. See also [CMS19] for a similar application to the volumes
of strata of quadratic differentials with odd zeros.
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We remark that the same formula holds when replacing “odd” by “even” in the
theorem, which follows simply by subtracting the formula in Theorem [6.2]from that
in Theorem [[.2]

Theorem 6.3. Let PQM, ,(1)® with e € {odd, even} be the subspaces of PQMg (1)
with a fized spin parity. Then the volume can be computed as an intersection number

o\ 2(2i77)2g 292 .
vol(QMy o (1)®) = g -3+ ) /P e 3 ];[1 Vi .

We first show in Section that the intersection numbers on the right-hand side
of Theorem satisfy a recursion as in Theorem This is parallel to Section
We then complete in Section [6.2] properties of the strict brackets introduced by
[EOPO08]. The volume recursion in Section is parallel to Section |4 and allows
efficient computations of volume differences of the spin subspaces. We do not need
to prove an analog of Section 5| but can rather apply the results, since the structures
of the two recursions are exactly the same as before. Only in Section we need
Assumption [6.1] to prove the initial case of Theorem|[6.2] i.e. the case of the minimal
strata.

6.1. Intersection theory on spin subspaces and hyperelliptic components.
With a view toward Section for the hyperelliptic components, we allow here
also the profile p = (¢ — 1,9 — 1) (with g — 1 not necessarily even) and e €
{odd, even, hyp}, and study the corresponding union of connected components
POMgn(p)*-

Let (T, ¢,p) be a twisted bi-colored graph and D be an irreducible component
of the boundary IP’W?,@. We recall from Section [3[ that Cﬁf (D) is a divisor of
POM, ,(p) if and only if dim(]P’W?l) = dim(PQM,,, (1)) — 1. Hence in this
case we define a(D) = C#é* (D) € H*(PQM, ), and define a(D) = 0 otherwise.

We will denote by }P’W?:Z the union of the irreducible components of ]P’WIF), ¢
that are mapped to PQM, ,,(11)®.

Proposition 6.4. For 1 < i < n and each irreducible component D of PQM?:Z,
there exist constants m? (D) € Q such that

(€ + (mi + D) POMy (1)) = Y Y miD)a(D),
(T.ep)  DCPOME;
=, l(v)=—1
where the sum is over all twisted bi-colored graphs (I', ¢, p) with the i-th marking in
the lower level. Moreover, if D C IP’QM?@ and (T, ¢,p) is a backbone graph, then
m$ (D) = m(p) is the multiplicity defined in (20).

7

Proof. We follow the same strategy as in [Saul9, Theorem 5]. We consider the
line bundle O(1) ® E?(miﬂ) on POM, ,(n)®. It has a global section s defined by
mapping a differential to its (¢ + 1)-st order at the marked point 2;. The vanishing
locus of this section is exactly the union of the boundary components (1# e(]P)WIP‘),e),
thus proving the first part of the proposition. 7

If (T, ¢,p) is a backbone graph, then each irreducible component D of PW?’Z
is contained in the boundary of exactly one connected component of the stratum
(see e.g. [CC19, Corollary 4.4]). Thus the neighborhood of a generic point of D
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in PQM, ,(11)® is given by [Saul9, Lemma 5.6 and the subsequent formulal. In
particular the multiplicity of D in the vanishing locus of s is the same as that of
the entire boundary stratum, which implies that m? (D) = m(p). O

By the same arguments as in Section (see Proposition one can show that
D-£2972 = 0 unless D is an irreducible component of IPQMIF)J with (T, ¢, p) a back-
bone graph. If (I',£, p) is a backbone graph, then we let ap , = C#l*[PQM?:Z].
Besides, we let a;(u)® = fpmgm(#). Bi-§ for 1 <i < n.

Proposition 6.5. Ifn > 2, then the values of a;(1)® are the same for all1 < i <mn,
denoted by a(p)®, and can be computed as

(m1+1)(ma + Da(p)® = > __mlp) a2

(6.0 CBB |Aut(L, ¢, p)| Jeam, ., s
Proof. This follows from the same argument as in the proof of Lemma [3.12 O

Proposition 6.6. For u of length bigger than one and with even entries, we have

h 1((m1 mZ) p)

odd _ ARV SAle Yik 24

(m1+1)(mg + Da(u)* = > |Aut(T, ¢, p, ¢)|
(T,2,p,9),

$odd

H pv(29v -1+ n(ﬂv))a(ﬂvapv - 1>¢(U) )
veV(T), £(v)=0
where the sum is over all choices of backbone graphs with only the first two marked
points in the lower level component.

This proposition is a refined combination of Lemma and equation .
Again we remark that the same formula holds when replacing “odd” by “even” in
the proposition, which simply follows from subtracting the above from the corre-
sponding formula for the entire stratum.

Proof. We apply Proposition to ]P’Wg,n(u)"dd. The proposition then fol-
lows from the description of the boundary divisors of connected components of
POM, (1)

Let (L — X — A) be a one-parameter family of theta characteristics, i.e. L
is a line bundle such that L|§3}2 ~ wx for every fiber curve X parametrized by a
complex disk (centered at the origin) such that

e the restriction of X to A\ 0 is a family of smooth curves;
e the central fiber X is of compact type.

The second condition above is due to the fact that the graphs in BB(g,n)1,2 are of
compact type. We assume that L is odd, i.e. L restricted to every smooth fiber is
an odd theta characteristic. The restriction of L to each irreducible component of
Xo (minus the nodes) is a theta characteristic of that component. Since X is of
compact type, the parity of L|x, equals the sum of the parities over all irreducible
components of Xy (see e.g. |CC19, Proposition 4.1]), which implies that the number
of components of X, with an odd theta characteristic is odd.

Let (T, ¢,p) € BB(g,n)1,2. From the above description we deduce that Pmlgidd
can be written as

U M_; x H ngu,nv (po — 1a,uv)¢(v)

¢ odd veV (T')
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where M_1 and PQM,, .. (py — 1, f1,) are defined as in Section The arguments
in the proof of Lemma imply that

Z hpr ((my1, m2), P)

odd __
(my1 +1)(ma + 1)a(p) = |Aut(T', ¢, p, ¢)|

(I'¢,p)EBB; 2
$odd
IT  »atue,p, — )%™
veV(T), £(v)=0

Then by the same line of arguments as in Section (expansions over rooted trees),
we get the desired expression. ([

6.2. Strict brackets and Hurwitz numbers with spin parity. Let f: SP - Q
be any function on the set of strict partitions (i.e. partitions with strictly decreasing
part lengths). The replacement of the g-bracket in the context of spin-weighted
counting is the strict bracket defined by

(e = — STEDI N, (@ = [ = D0 (1) Mgy

(@)oo AESP n>1 AESP

The analog of the algebra A* is the algebra A* = Q[p1, pP3, Ps, - - -] of supersymmet-
ric functions, where for odd ¢ the functions py are defined by

pi() — ;Af—“;@.

Note the modification of the constant term and the absence of the shift in com-
parison to . We provide A* with the weight grading by declaring p, to have
weight £+ 1. On the other hand, [EOPO08|] used characters of the modified Sergeev
group C(d) = S(d) x Cliff (d) to produce elements in A*. Here Cliff(d) is generated
by involutions &;,...,&q and a central involution € with the relation &¢&; = €§;&;.
Irreducible representations of C(d) are V* indexed by A € SP. We denote by f.(\)
the central character of the action of a permutation g, € S(d) C C(d) of cycle
type p on V* by conjugation. The analog of the Burnside formula is [EOPOS,
Theorem 2] stating that for a fixed profile IT = (u1, ..., fin)

(—1)%(p) gdes(®) n .
ZW — 9>ia (f(pi) D208, £ £ ) (67)
p

where the sum is over all covers p: X — E of a fixed base curve and profile II.

Theorem 6.7. If we define

h, = i[qu]P(u)@ where P(u) = exp(— Z us+1ps)a (68)
l s>1,so0dd

then the difference f,—¢h, has weight strictly less than £+1. In particular £, belongs
to the subspace AZZH of weight less than or equal to £+ 1. More precisely,

-1 j ‘
fioy = ;71[#““} (H(l —jtyexp( Y 2pT?’t(l —(1- Et)—ﬂ))) . (69)

Jj=1 7 odd

This statement was missing in the proof of the following corollary, one of the
main theorems of [EOPO0S|.
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Corollary 6.8. The strict bracket <fg1f52 e fgn>
weight less than or equal to Y, (¢; + 1).

< 15 @ quasimodular form of mized

We now prepare for the proof of Theorem and prove the corollary along with
more precise statements on strict brackets in the next subsection. From [Iva0l]
Definition 6.3 and Proposition 6.4] we know that the central characters are given
by

f, = Y X/P! (70)
neSP
where the objects on the right-hand side are defined as follows. We define for any
partition A the Hall-Littlewood symmetric polynomials

Py(2z1,...,2m;t) = Zg(ﬁle H %)
i~ T

o€ESy =1 1<j, 1<l(X)

These polynomials have cousins where the powers are replaced by falling factorials.
That is, writing n** =n(n —1)(n —2)---(n — k + 1), we define

n
, T; — tx;
1 J

oES), i=1 1<, 1<l(N)

Next, we define XJ(t) to be the base change matrix from the basis of p, to the
basis Py(x1,...,Zm;t), that is, we define them by

pr = Y XNOPA(5t). (71)

A pl

The existence and the fact that the X (¢) are polynomials in ¢ is shown in [Mac95,
Section IIL.7]. We abbreviate X{ = X{(—1) and similarly Py = Py(-;—1) and
F{ = P{(;-1).

Proof of Theorem[6.7. We need to prove . From there one can then derive
by expanding the exponential function (just as in [IO02] Proposition 3.5 is derived
from Proposition 3.3). We use that for p = (£) a cycle, the coefficients X;\ in are
supported on A with at most two parts. More precisely, by [Mac95, Example II1.7.2]
we know that

| e
Piy+2 3 (=)'
i=1

fio)
(72)

4
i —ivdida T A Ao+ A A+
—1)¢ e—iyli .
1<§M ;0( SN ap da = i A= A
= ab - )

Using

ST EURO s ([T L et 0y
: J 1+ (A — Ot

JEN i=1




MASUR-VEECH VOLUMES AND INTERSECTION THEORY 43

and the specialization of this formula for ¢ = 0, our goal is to show that

I e N Y
o) = 5l ]<H(t _j)HtlJ—r/\itlnLEA:e;)

j=0 i=1
-1 o)
_ -1 —1 . Z+>\7Z*(>\7+f)
B 2€[z ]<j1:[0(z J)Z_l;[lz—)\iz—&-()\i—ﬁ)
- e(/\)(elo\ ) Aa + X )\a_()\i+‘€)>
el e Ao —Xidg+ (N —0)
Using that for ¢ odd
¢ ¢
, .y L Mg =X = 0) = M — Ao = 0)
1) Myl Za \fa b a ’
;( ) ( a b b a ) )\a T )\b —/
we see that our goal and the known agree. O

6.3. Volume computations via cumulants for strict brackets. We denote by
an upper index A the difference of the even and odd spin related quantities, e.g.
v(p)® = v(p)*ve" — v(p)°dd. Cumulants for strict brackets are defined by the same
formula as for g-brackets. We are interested in cumulants for the same reason
as we were for the case of the strata as in (45]).

Proposition 6.9. The difference of the volumes of the even and odd spin subspaces
of QMg (1) can be computed in terms of cumulants by

(27i)29
VOI(QM!L"(I’(‘))A = (29 -9 + n)[ <f(m1+1)| e |f(mn+1)>str,L ’
and thus, in combination with Theorem [6.7 we have
A (27i)29
v = Ty Bl Mm )

Here the subscript L refers to the leading term

m B ev[(gn] - gl ()

<gl| e |gn>str,L = [ﬁ7k71+n] <gl| e |gn>str,h = li
h—0

for g; homogeneous of weight k; and k=Y k;.

This proposition was certainly the motivation of [EOPO§|, which stops short of
this step. To derive the proposition from , we need one more tool, the analog of
the degree drop in Proposition We use the fact that for strict brackets we have
a closed formula (rather than only a recursion as for ¢-brackets), proved in [EOP0S,
Section 3.2.2] and in more detail in [BO00, Section 13]. First,

(1)~ <p£>str = Guy1 = 5 + ;Uz(”)q (73)
and for the more general statement we define the “oddification” of the Eisenstein
series to be

0o 2s1—1 2s8,—1
... Zn n

odd _ (n—1) 41
g (Zla"'vzn) ZD‘I GQT Z (251_1)'(25n_1)'7

r=1 s1tt+sp=r+n—1
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where D, = ¢0/dq. Then by Proposition 13.3 in loc. cit. the n-point function is
given by

0
Z <P41Pz2"'Pn>str2 = Z HQOdd({za}aeA) (74)

£;>1, £; odd a€P(n) Aca

Consequently, the cumulants are simply given by
£y Ly,
Z ... Z dd
(Peulpeal 1P, )y = [W}g (1, 2m). (75)
n-

Proof of Proposition[6.9 Recall the evaluation map Ev used in [CMZ18, Section §]
and in Section We have deg (Ev<pg1pg2 < Pe, Str) = %Z?zl £;, the highest
term being contributed by the partition into singletons. From we deduce that
deg (Ev(pe, [pey| -+ P2, )yy,) = 5 2oiey &i — (n — 1), and thus obtain the expected
degree drop. The claim now follows from the usual approximation of Masur-Veech
volumes by counting torus covers ([EO01] and [CMZ18, Proposition 19.1]). O

While provides an easy and efficient way to compute cumulants of strict
brackets, we show that the more complicated way via lifting of differential operators
to A* and the Key Lemma also works here. The analog of Proposition is
the following result.

oy . 2
Proposition 6.10. With A(f) = >, 4,511+ 62) Peyve,—1 8%678% we have

(Pown = (=201 1) @), (76)

=0

where the evaluation at the empty set is explicitly given by py — 5

Note that we can regard the differential operator (A —09/9p1)/2 appearing in the
exponent the same as the operator D defined in when viewing A* as a quotient
algebra of A* with all the even py set to zero, since the differential operator 0 sending
pe to a multiple of py_; is zero on this quotient.

Proof. Using the description of the fi-evaluation we need to show that 9(f)sr s =
((A —0/0p1) f)str,n- Contrary to the case of g-brackets we will actually show the
stronger statement that d(f)sty = (A —9/0p1)f)ste- It suffices to check this for all
the n-point functions. For n = 1 this can be checked directly from . For general
n, we write W(z) = Y o, 2%%71/(2s — 1)!. Using and that the commutator
[0, D,] is multiplication by the weight, we compute that

W [T = 3 X (00 (tzadoen) - [T 0" ({zaduen))

a€P(n) f1¢2, Aca\{A1}
1 n
52w (Y 19 (zadeen)) (77)
Tl aeP({1mh\{i}) Aca

where for the factor in the summand with |A;| > 2

. 25a
06" ({za)aeas) = =52 2D G- D ] gy ™

r>1 sa>1, a€c A1
Y sa=r+|Ay|-1
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and where the summation is over all tuples (sq)aca, . Since 29/9p1(ITi, W (z:)) =
%2?21 zi 11 ki W (z;), the strict bracket of this expression is precisely the second
line on the right-hand side of . Since

1 n
§A< H W(zz)> = Z (zi + 2;)W (2 + 25) H W(zx) ,
i=1 1<i#j<n ke{1,...n}\{i.5}
its strict bracket matches the first line on the right-hand side of , and the part
containing the variable for W (z; +z;) produces of course the special factor . ]

This proposition provides an efficient algorithm to compute the differences of
volumes of the spin subspaces. The definitions below are completely analogous to
the beginning of Section [] except that objects with even indices have disappeared
and they are written in boldface letters for distinction. For the substitution, we
define

L % -\, J+1 ¢ 1
Pz(u) = eXp(Z(i) C(—=g)w ) and oy = [u ]W
j=>1 4
We let R = Q[hy,hs,...] and define for a finite set I = {é1,...,4,} of positive
integers the formal series H; € R[[zi,,. .., 2i,]] by
: M () — 2 M ()
%i = -+ h[Zf, %z = J J —17
R ; et H(z) — H(z)
1
HI = — D2 HI/7HI” s 79)
2(n—1) I:IZ;I// ( ) (
with o o
g
Dy(f,9) = Z [zflz?]’ﬂ{m} i .
l1,62>1, odd 8h@1 6h€2

We still set ‘H,, = 7'1[[1,71]] and hy, . o = [zfl sz"]’Hn

Corollary 6.11. The even-odd volume differences of the stratum with signature
w=(mi,...,my) can be computed as

N —

m m1+1,...,mn+1|hz,_>aé
using the recursion .

Proof. Thanks to Proposition [6.10] and the subsequent remark, the proof of Theo-
rem can be copied verbatim here. The extra factor 27¢/2 in the definition of Pz
in comparison to the constant term —((—/¢)/2 of the evaluation of p; compensates
for the fact that the strict bracket of the f; gives the counting function in up
to a power of two. O

6.4. Conclusion of the proofs for spin subspaces.

Proof of Theorem[6.3 and Theorem[6.4 Theorem [6.2) is a consequence of Corro-
lary Indeed the arguments of Section [5| adapted to the series H,, show that
the recursion in Theorem [6.2]is a consequence of the recursion in (79).

To prove Theorem we consider first the case n =1, i.e. p= (29 —2). Let 7,
be the push-forward of the Masur-Veech volume v, form to PQM, ,(1). Assump-

2(2i7)?9 29—
(2g—1)! 529 !

tion implies by the same argument as in [Saul8| Lemma 2.1] that
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can be represented by a meromorphic differential form (of Poincaré growth at the
boundary), whose restriction to PQM, 1(2g — 2) is equal to 7,,. This implies that

2(2im)29
vol(2g — 2)* = 7( im) ' / g1
(29 - 1) PQM, 1 (29—2)°
Now for the case n > 2 Theorem [6.2]and Proposition [6.6determine a(u)® and v(y)®
by the equivalent recursive formulas, and hence they coincide up to the obvious
normalizing factors. O

6.5. Volume recursion for hyperelliptic components. In this subsection we
prove the volume recursion for hyperelliptic components, which is analogous to but
not quite the same as the recursion in Theorem [[.2] It is a consequence of the
work of Athreya, Eskin and Zorich (JAEZ16]) on volumes of the strata of quadratic
differentials in genus zero.

Recall that only the strata QM (g—1,g—1) and QM (29 —2) have hyperelliptic
components. For the hyperelliptic components we still have an interpretation of
their volumes as intersection numbers as well as a volume recursion as follows.

Theorem 6.12. For the hyperelliptic components we have

2(2im)29 2g—1
vol(QM, 1 (29 — 2)MP) = 7/ &
9 (29 — 1)! POM, 1 (29— 2)hvp
and
2(2im)29 2g—1
vol(QM 72(9—1,971)11”’) = 7/ &9 o,
g 929 = D! Joaat, 2(g—1,9—1)w»

provided that Assumption [6.1] holds.

As before we set
U(Qg _ 2)hyp — (29 _ 1)V01 (QMg,1(29 _ 2)hyp) ,
v(ig—1,9— 1P = ¢%vol (QMya(g—1,9 - 1)y

Proposition 6.13. The volumes of the hyperelliptic components QM 2(g—1,9—1)
satisfy the recursion

971 (20-1)10(20-2)9P (2(g—0)—1)1w(2g—20-2) 1P
§ DR (20 Dlw(2g-20-2)

v(g-1,g-1)"" = v(2g-2)"P + 4(2g - 1)!

=1

Note in comparison to Theorem that only the terms k = 1 and k = 2 appear

and that the Hurwitz number hp is identically one here. As a preparation for the
proof recall that the canonical double cover construction provides isomorphisms

Qq(29 = 3,(=1)*7%) = QM,1(29 — 2)™P,
Q29— 2,(~1)*7%) = QM (g — 1,9 — )PP
that preserve the Masur-Veech volume and the SLy(R)-action. Taking into ac-

count the factorials for labeling zeros and poles the main result of [AEZ16] can be
translated as

2 2g — 3N
vol (AM,1(29 —2)™7) = (29 +1)! E2g - 2;!!7T29 ’
8 (29 - 2)” 2g

(2g+2)! (29— 1)11"

vol (Mg 2(g—1,9 — 1)hyp) =
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where the double factorial notation means (2k)!! = 28k! and (2k—1)!! = (2k)!/2K!.

Proof. Expanding the definition of the double factorials and including the summand
v(2g — 2)"P as the two boundary terms of the sum (i.e. £ =0 and ¢ = g), we need
to show that

zg: 1 (2 1 2A9-0\ _ , 167 (29+2\7 (80)
LU+ I\L) 292041\ g—¢ )~ T(g+12\g+1)

For this purpose it suffices to prove the following two identities of generating series

Z# 260 20 _ iarctaun _ (81)
Zaal 1\ T Ny

and

_1 2
169 (2g 9 1 2z
2 — ¥ = —arctan| ——— | , 82
;0 9 <g> Az? (\/141’2) (82)
so that we can take the square of the first series and compare the z29-terms.
To prove we multiply it by z, differentiate, and are then left with showing
that > ,o, (Q;)x% = 1/v/1 — 422, which follows from the binomial theorem. To

prove we differentiate and are then left with the identity which is already
proved in [Leh85| p. 452, Equation (9)]. O

The last ingredient is the following straightforward consequence of Proposi-
tion (analogous to the case of spin subspaces in Proposition .

Proposition 6.14. For p= (g —1,9 — 1), we have
gPalg —1,9 = )M = (29 —1)%a(2g — 2)"P

1
+5 0. (h]Pl ((g9—-1,9-1),(201 — 1,29 — 291 — 1))
g1=1

(201 — 1)%a(2g1 — 2P (29 — 29, — 1)%a(2g — 291 — 2)*%) |
(s3)

Proof of Theorem[6.13 Since the proof of Theorem for the case p = (29 — 2)
was already given along with the proof of Theorem [6.3] it remains to show that
v(g—1Lg—1)"P and a(g—1,9— 1) = [(5 2(g—1,g—1)nvo Bi - € satisfy the same
recursion. It is elementary to check that hp: ((g— 1,9—1),(2g1—1,2g—2¢g1 — 1)) =1.
Then the desired conclusion thus follows from Propositions and O

7. AN OVERVIEW OF SIEGEL-VEECH CONSTANTS

Let (X,w) be a flat surface, consisting of a Riemann surface X and an Abelian
differential w on X. Siegel-Veech constants measure the asymptotic growth rate
of the number of saddle connections (abbreviated s.c.) or cylinders with bounded
length (of the waist curve) in (X, w). There are many variants that we now introduce
and compare.
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7.1. Saddle connection and area Siegel-Veech constants. For each pair of
zeros (21, z2) of w we let

APY (T) = |{y C X a saddle connection joining z, and z,

/A <TY (34)

be the counting function. The upper index emphasizes that we count all physically
distinct saddle connections. It should be distinguished from the version

JEET

(85)
where a collection of homologous saddle connections just counts for one. Qua-
dratic upper and lower bounds for such counting functions were established by Ma-
sur ([Mas90]). Fundamental works of Veech ([Vee98]) and Eskin-Masur (J[EMO01])
showed that for almost every flat surface (X,w) in the sense of the Masur-Veech
measure (see [Mas82| and [Vee82|) there is a quadratic asymptotic, i.e. that

Abom(T) = |{y C X a homology class of s.c. joining z; and 2y,

AVBL(T) ~ (X, w)nT?,  AWS(T) ~ o (X,w) 7%, (86)

The constants &Y, (X,w) and ¢2o% (X, w) are the first type of Siegel-Veech con-
stants we study here, called the saddle connection Siegel-Veech constants. The dif-
ference between these two Siegel-Veech constants becomes negligible as the genus
of X tends to infinity, which follows from the results of Aggarwal and Zorich
(see |Aggl9, Remark 1.1]).

The second type of Siegel-Veech constants counts homotopy classes of closed
geodesics, or equivalently flat cylinders. Again, there are two variants, the naive
count and the count where each cylinder is weighted by its relative area. As above,
the most important counting function with good properties (see e.g. [CMZ18]) and
connection to Lyapunov exponents ([EKZ14]) is the second variant. For the precise
definition we consider

AT = Y 1, AwalD) = Y area(Z) (87)

b
/ - area(X)
Z C Xcylinder Z C Xcylinder
w(Z)<T w(Z)<T

where w(Z) denotes the width of Z, i.e. the length of its core curve. We then
define the cylinder Siegel-Veech constant and the area Siegel- Veech constant by the
asymptotic equalities

A l(T) ~ cep(X,w)mT?, Anrea(T) ~ Carea(X,w)nT?. (88)

There is a natural action of GL2(R) on the moduli space of flat surfaces QM and
the orbit closures are nice submanifolds, in fact linear in period coordinates by the
fundamental work of Eskin, Mirzakhani and Mohammadi (JEM18] and [EMM15]).
We refer to them as affine invariant manifolds, using typically the letter M. The
intersection with the hypersurface of area one flat surfaces (denoted by the same
symbol M) comes with a finite SLo(R)-invariant ergodic measure vy with sup-
port M. This measure is unique up to scale and for affine invariant manifolds
defined over Q there are natural choices of the scaling.

It follows from the Siegel-Veech axioms (see [EMO1]) that Siegel-Veech constants
for almost all flat surfaces (X,w) in an SLy(R)-orbit closure M agree. We call these
surfaces generic (for M) and write e.g. ¢f (M) = ¢} ,5(X,w) for (X,w) generic.
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The relevant orbit closures in this paper are the connected components of the
strata of Abelian differentials and certain Hurwitz spaces inside the strata. We
usually abbreviate by ¢j (1) = ¢} 50(Q2Mg (1)) the Siegel-Veech constants for
the strata with signature u.

7.2. Configurations and the principal boundary. One of the main insights of
[EMZ03| is that Siegel-Veech constants can be computed separately according to
topological types, called configurations. We formalize their notion of configurations
briefly so that it also applies to Hurwitz spaces, and in fact to all SLy(R)-orbit clo-
sures M provided with the generalization of the Masur-Veech measure va(. The
concept of configurations will be used for showing the equivalence between Theo-
rem [L.3] and Theorem [[.2] in Section

Let (X, z1,...,2,) be a pointed topological surface. A configuration C of saddle
connections joining z1 and zo for M is a set of simple non-intersecting arcs from z;
to zo up to homotopy preserving the cyclic ordering of the arcs both at z; and z,.
The last condition implies that the tubular neighborhood of the configuration is
a well-defined subsurface of X, in fact a ribbon graph R(C) associated with the
configuration. (Here the subsurfaces of X after removing a ribbon graph are allowed
to have positive genus.) The number of arcs in the configuration is called the
multiplicity of the configuration.

We say that a subset of the saddle connections joining z; and z3 on a flat surface
(X, w) belongs to the configuration C, if this subset is homotopic to C. Each config-
uration gives rise to a counting function Aj_,,(7,C) for sets of saddle connections
belonging to the configuration and having individual length < T'. From the count-
ing function we deduce the corresponding Siegel-Veech constant ¢}, 5(M,C), where
* € {phy, hom} respectively. A configuration C is relevant if ¢} _o(M,C) > 0.

A full set of saddle connection configurations for an affine invariant manifold
M is a finite set of saddle connection configurations C;, with ¢ € I such that the
contributions of the configurations C; sum up to the full Siegel-Veech constant, i.e.
such that

S a(M,C) = chan(M) (9)
iel
for x € {phy,hom} respectively.

Note that [EMZ03| Section 3.2] in their definition of configurations made a fur-
ther subdivision of the notion by adding metric data, i.e. specifying angles between
saddle connections. In that context, Eskin, Masur and Zorich determined a full set
of saddle connection configurations for the strata and used the Siegel-Veech trans-
form to connect the computation to volume computations. The following statement
summarizes Proposition 3.3, Corollary 7.2 and Lemma 8.1 of [EMZ03].

Proposition 7.1. For any stratum QMg (1) a full set of saddle connection con-
figurations is the set of collections of pairwise homologous simple disjoint arcs join-
ing z1 and zy (up to homotopy).

In this proposition, several configurations are irrelevant, for example those with
a connected component of genus zero after removing the saddle connections in the
configuration.

The general strategy to compute Siegel-Veech constants is the following relation
to volumes, where the submanifold M is in a stratum with labeled zeros.
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Proposition 7.2. The saddle connection Siegel-Veech constants of an affine in-
variant manifold M can be computed as

Claz(M) = 6113(1) 7752 Z lw/i/(l))) ’ (90)

where the sum runs over the full set of saddle connection configurations and where
mhom(C) =1 for all C while mP™ (C) is equal to the number of arcs in C.

Proof. This is a direct consequence of the Siegel-Veech transform applied to the
characteristic function of a disc of radius ¢, see [EMZ03|, Lemma 7.3] together with
the Eskin-Masur bound on the number of short saddle connections (Theorem on
p. 84 of [EMZ03]). O

We conclude with remarks on Siegel-Veech constants for general affine invariant
manifolds to put the digression on Hurwitz spaces (Section E[) in context. There is
another variant, besides and , of counting saddle connections. Given an
affine invariant manifold M we say that two saddle connections on (X,w) € M are
M-parallel if they are parallel and stay parallel in a neighborhood of (X, w) in M.
(The terminology is completely analogous to the notion of M-parallel cylinders
introduced in [Wril5].) We thus define the counting function Afi};p(T) and the
Siegel-Veech constant cfi;p(M) in analogy to and , counting once every
M-parallel class of cylinders. [EMZ03| Proposition 3.1] can now be restated as
AP(M) = chom (M) if M is a connected component of a stratum. For Hurwitz
spaces the two values can be different, but we will see (Proposition that their
difference becomes negligible as the degree of the covers tends to infinity.

In the first part of [EMZ03] on recursive computations of Siegel-Veech constants,
Eskin, Masur and Zorich called the locus of degenerate surfaces that contribute to
the Siegel-Veech counting the principal boundary. At that time the notion of princi-
pal boundary was used only as a partial topological compactification. Presently, we
dispose of a complete and geometric compactification for the strata ([ BCGGM18])
and for Hurwitz spaces (by admissible covers), and we can then identify the princi-
pal boundary as part of the compactification (see [CC19| for the case of the strata
and Section |§|f0r the case of Hurwitz spaces). The reader should keep in mind that
the locus “principal boundary” depends on the type of saddle connections under
consideration.

Finally we remark that there is a zoo of possibilities of associating weights with
saddle connections and cylinders and to define Siegel-Veech constants accordingly.
This started with [Vor97], and see also |[BG15] for computations and conversions of
Siegel-Veech constants.

8. SADDLE CONNECTION SIEGEL-VEECH CONSTANTS

In this section we deduce from the volume recursion and its refinement for spin
and hyperelliptic components a proof of Theorem [I.3] Almost all we need here has
been proven already in [EMZ03|. We start with two more auxiliary statements.

Proposition 8.1. The full set of saddle connection configurations for the strata
given in Proposition is in bijection with (possibly unstable) backbone graphs and
a cyclic ordering of its vertices at level zero. The subset of relevant configurations
is in bijection with stable backbone graphs.
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Although not needed in the sequel, we relate for the convenience of the reader
our notion of twists and the angle information that [EMZ03| recorded. Let {v;}*_;
be the arcs of a configuration realized by (X,w) labeled cyclically and let a and
a; be the angles between ~; and 7,41 at z; and zo respectively. If an edge e is
separated by the loop formed by v; and 7,41, then the twist is

p(e) = 5-(aj +af) 1. (91)

The above proposition can be seen as follows. Given a collection of & homologous
short saddle connections there is a sphere (with z; as its south pole and z; as its
north pole, see [EMZ03, Figure 5]) supporting the k saddle connections. This
sphere is the source of the backbone of the graph. The components at level zero are
bounded by the arcs 7; and 7;41. The converse is obvious, given that all the edges
of a (stable) backbone graph are separating by definition. Finally formula is
just a restatement of the Gauss-Bonnet theorem.

Recall that a backbone graph (being of compact type) is compatible with a
unique twist p(-). If the vertices at level zero are labeled as 1, ...,k as usual and if
(hj,i(h;)) is the edge connecting the j-th vertex to level —1, we write p; = |p(h;)|
as we did in Section Bl

Proposition 8.2. For each configuration C corresponding to a backbone graph T,
the volume of the subspace QM , (11,C) satisfies

k

hpi ((m1, m2),p)
2 IUp 1,7162),
k§>1 gEM T 20 —3+n) l_|:|1 (29: = 1+ ni)! pi vol(QMg, 41 (pis pi — 1))

= ol-k vol(QMG . (1, C)) + o(g?)
as e — 0, where the summation conventions and p are as in Theorem[1.9 and where
n; = n(p).

Proof. This is mainly contained in [EMZ03, Corollary 7.2, Formulas 8.1 and 8.2],
stating that the volume of the locus with an e-short configuration is me? times the
volume of the corresponding boundary. We now explain the combinatorial factors
that appear. First, the factor of two and the factorials result from the passage of
the boundary volume element in the ambient stratum to the product of the volume
elements of the components at the boundary, as explained in detail in [EMZ03|
Section 6]. The 1/k! stems from labelling the level zero vertices. Second, we need
to count the ways to obtain a surface in QMg , (1, C) by gluing a collection of
surfaces (X;,w;) in QMg 11 (s, pi — 1).

Suppose we are given a branched cover b: P! — P! that has ramification profile
IT=((my+1),(m2+1),(p1,...,pr)) over the points 0,1 and co. We provide the
domain with the differential w_; = b*dz. Since this differential has no residues we
can glue ¢ - w_; with the surfaces (X;,w;) by cutting the pole of order p; + 1 and
gluing it to an annular neighborhood of the zero of order p; — 1 of w;. For ¢t < ¢
this provides a surface in QMg , (11,C), see e.g. [BCGGM18, Section 4] for details of
the construction. The plumbing construction also depends on the choice of a p;-th
root of unity at each pole (from the choice of a horizontal slit at a zero of order
p; — 1). In total there are hpi((mq, ms2),p) - Hle p; possibilities involved in the
construction, thus justifying the remaining combinatorial factors in the formula.

We claim that this construction provides a collection of maps to QMg ,(u,C)
that are almost everywhere injections if none of the surfaces (X;,w;) has a period
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of length smaller than €. In fact, if two such plumbed surfaces are isomorphic, this
isomorphism restricts to an automorphism of (P',w_1) (see [EMZ03, Lemma 8.1]
for more details) and this happens only on a measure zero set. The locus where one
of the (X;,w;) has a short period is subsumed in the o(¢?) (JEMZ03, Lemma 7.1]).
Conversely, for each surface (X,w) in QMg ,(1,C) we can cut a ribbon graph
around the configuration C. The restriction of w has no periods since the boundary
curves are homologous by definition of C. It can thus be integrated and completed
to a map b: P! — P! with ramification profile as above. |

Proof of Theorem[I.3 We first focus on the case that QM, ,,(u) is connected. A
decomposition g = Zle gi and (mg,...,my) = p U--- U pg (as in equation
we proved) determines uniquely a configuration and the converse is true up to the
labeling of the k vertices at level zero by Proposition [8.1 The configuration is
relevant if and only if the volumes on the right-hand side of are non-zero. Since
the saddle connection Siegel-Veech constant is the sum of ratios of the boundary
volumes over the total volume (by Proposition ), comparing the formula in
Proposition with equation thus implies Theorem More precisely, note
that the rescaled volume v(u) defined in (4] involves a product of all (m;+1), while
on the right-hand side (m1 + 1)(mg + 1) is missing and this factor gives the right
hand side of the desired formula in Theorem[I.3] The factor of 7 in Proposition [8:2
cancels with the one in Proposition 8.1

For disconnected strata with components parameterized by S C {odd, even, hyp}
the same proof gives the averaged version that

U(lu) Do v B ()* = (ma+ 1) (ma+1)
ecS

by rewriting equation as a sum over the connected components. It remains to
prove the statement for the odd spin subspaces (that may be disconnected for some
strata in our notation, in which case there is an extra hyperelliptic component with
the same spin parity) as well as for the hyperelliptic components. Then one obtains
the desired result for each connected component by taking suitable differences.

For the odd spin subspaces we now focus on Theorem instead of and
note that each decomposition of g and p still determines uniquely a configuration.
Moreover, since the Arf-invariant on stable curves of compact type is additive (see
[CC19, Proposition 4.6] and [EMZ03| Lemma 10.1]) and since by definition the spin
assignment is additive on the vertices, the configurations appearing on the right-
hand side in Theorem are precisely the configurations that contribute (in the
sense of Proposition to the Siegel-Veech constant of the odd spin subspaces.
We thus obtain the analogous statement of Theorem for the odd spin subspaces
by comparing Proposition to Theorem

For the hyperelliptic components we use Proposition [6.13] and note that the
summands on the right-hand side there correspond exactly to the configurations
on hyperelliptic components, as explained in [CC19, Proposition 4.3] and [EMZ03,
Lemma 10.3]. O

9. THE VIEWPOINT OF HURWITZ SPACES

This section is a digression on how to interpret the volume recursion and the
saddle connection Siegel-Veech constant from the viewpoint of Hurwitz spaces. The
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results in this section are not needed for proving any of the theorems stated in the
introduction. We will rather explain and motivate

e why the homologous count of saddle connections is more natural than the
physical count from the viewpoint of intersection theory,

e how to heuristically deduce the value of the saddle connection Siegel-Veech
constant in Theorem from an equidistribution of cycles in Hurwitz tu-
ples, and

e why backbone graphs correspond to configurations.

Asusual g = (my,...,my) is a partition of 2g — 2 and the ramification profile IT
consists of n cycles u(® of length m; + 1 unless stated otherwise. Let r(u) =
2g +n(u) — 1 be the dimension of the (unprojectivized) stratum QM (u).

Theorem 9.1. There exists a constant M (u) such that the Hurwitz numbers N3 (II)
for connected torus covers of profile II can be approximated as

M () Ng(I0) (92)

k
= Z % hp1 ((m1, m2), p) Z HpiNgi (115, (ps)) + O(dr(u)—l) 7

IeBB:, di+-+dp=di=1

where I\ {p™M), u®} = T U--- LTIy is the decomposition of the profile according
to the leg assignment in T' and where p = (p1,...px) is the unique twist compatible
with T.

At the end of the section we will show by combining Theorem [T.2] together with
Theorem the following result.

Proposition 9.2. The constant M (u) in Theorem is (my + 1)(ma + 1). In
particular, M () depends only on the first two zero orders of .

Indeed an independent proof of Proposition [9.2] would provide an alternative
proof of Theorem (and hence Theorem that would bypass the complicated
combinatorics in Sections d and [l

The strategy to prove Theorem consists of comparing the Hurwitz num-
ber NJ(II), that is the fiber cardinality of the forgetful map fr: Hg(Il) — My,
to the target curve with the fiber cardinality of the extension of fr to the space of
admissible covers Hy(I1) = H 4,41 (I1) over degenerate targets of the following type.

9.1. Admissible torus covers. Let Ej (; 5} be the stable curve of genus one con-
sisting of a P!-component carrying precisely the first two marked points and of
an elliptic curve E carrying the remaining marked points, joint at a node gg. If
p: X — Ej 1,2} is an admissible cover, we denote by Xy and X_; the (possi-
bly reducible) curves mapping to E and to P! respectively, both deprived of their
unramified P*-components. See Figure |3 for examples of such admissible covers.
The admissible covers of Ej (12} come in two types. One possibility is that the
first two branch points are in the same (hence the unique) component of X_;. The
stable dual graph of the cover is thus a graph I'" € ABB’L2 (recall the definition
of ABB graphs in Section and we denote by Ng(II, Ey 1 23,1") the number
of such covers. The secczr'l)d possibility is that each of the two branch points is
1
—1

on its own component X'j for i = 1,2. Consequently, the map p|X(i> is a cyclic
-1

cover of degree (m; + 1). By contracting the components over P! we see that
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such covers are in bijective correspondence (up to the automorphism group of size
|Aut(X_1/PY)| = (mq + 1)(mg2 + 1)) with covers of E with the profile II(1) =
(@, 1@, 1B )] where the first two ramification points are piled over
the same branch point.

Proposition 9.3. For I' € ABB}, the bound N§(II, Eg (12,T) = O(d"W~2)
holds as d — oo. The upper bound is attained, i.e. there exists C' > 0 such that
NG(IL, Ey 1,2, 1) > Cd"W=2_ if and only if T € BB7 5. Moreover in this case

k
o 1 o
NG(IL Eo 12y 1) = he((mma).p) - >0 [[ NG (), (93)
d=dy+-+dj i=1

where I1; and p are associated with T as in Theorem [9.1]

Proof. Recall from [EO01]| or the proof of [CMZ18|, Proposition 9.4] that if IT is the
profile for a cover m with 7*w € QM ,, (1), then there exist Cq,Cy # 0 such that
C-drm-1 < N3(II) < Cq ~d"W=1 as d — co. Suppose that I' has k components
on level 0, each of genus g; and with n; marked points or nodes. Let gy be the
genus of the component on level —1, and let b = h*(T'). Then

k k

b—i—Zgi:g and Zni:n—2+k—|—b.
i=0 i=1

The cover of the P'-component has finitely many choices independent of d. Over
the elliptic component of Ejy (1 2y, the number of choices of covers has asymptotic
growth given by By, ., _4 d?gi*ﬂni
This quantity is a polynomial of degree

for some constant B independent of d.

k
(Z(2gi—2+m)) Y (k—1) = 29—2go—b+n—3.

i=1
We thus conclude that the total number of admissible covers N9(II, Eo {1,2),1) has
asymptotic growth given by a polynomial of degree r(u) —2 — b — 299 < r(u) — 2,

with equality attained if and only if b = gg = 0, i.e. if and only if " € BBI’Q.

To justify equation we refer to the computation of the Hurwitz numbers
in Proposition 2.1] and divide by k! to account for our auxiliary labeling of the k
components of Xj. O

We remark that Proposition [9.3] is not used in any other proofs in the paper,
but it reveals the geometric reason for the homologous count of saddle connections
behind the recursions in Sections[3|to[5] The factor hp: ((m1,m2), p) (possibly with
1/E! if all branches are labeled) appears in the direct count of admissible covers and
in the count of configurations. There is no extra factor k in , which corresponds
to our setting of the coefficient m"™(C) = 1 (instead of k) in for homologous
count of saddle connections (instead of physical count).

Proof of Theorem[9.1. We first show that
NS(H) - Ns(H(lz))
k
5 9 () — 94
= Z EhPl ((mh m2)7 p) Z leNdl (Hz7 (pl)) + O(d (N) 2) ) ( )

IeBB;, dy+-tdp=di=1
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Pt E
FIGURE 3. Configurations for Hurwitz spaces in QMs(1,1)

To see this, note that the ramification order of fr over Ep (12 at the branch
through a cover m: X — FE is equal to the product of ramification orders at the
nodes of X. This results in the factors p; inside the product of the right-hand side
and cancels the factor 1/]Aut(X_;/P')| when counting Ej 1 23-covers instead of
counting Ng(II(12)).

On the other hand, since the volume of the stratum can be approximated by
counting covers of profile II(;5y and since the generating function of counting these
covers is a quasimodular form, arguments as in [CMZ18| Proposition 9.4] imply the
existence of a constant M (u) such that

Ng(Iaz) _d—M(p)

= 1/d). 95

e 0 4 o1/a) (95)

The combination of equations and thus implies the desired formula .
O

We now address the equidistribution heuristics for saddle connection Siegel-Veech
constants. Recall that N°(II) is the number (weighted by |Aut(p)|) of transitive
Hurwitz tuples (o, B, (v;)7_;) € S5+2 with [a, 8] = [[, 7 and 7; of type pu(®).

Proposition 9.4. If the pairs (v1,72) appearing in the Hurwitz tuples of profile
I equidistribute among pairs of (m; + 1)-cycles in S3 as d — oo, then M(u) =
(mq + 1)(m2 + 1).

Proof. If the non-trivial cycles in 7; and v, have no letter in common, then taking
(o, B,71°92,73 - - -»7n) is a Hurwitz tuple of profile IT(;9). Assuming equidistribu-
tion and comparing to the total number of Hurwitz tuples, the number of Hurwitz
tuples with v and ~» having two letters in common is negligible, while the ratio of
those having one letter in common is (my + 1)(mg + 1)/d + o(1/d). O

Ezample 9.5. For the reader’s convenience we illustrate the contributions to the
right-hand side of for the stratum QMs(1,1) explicitly in Figure The
picture on the left gives stable graphs in BB] 5, while the pictures in the middle
and on the right give graphs in ABB‘L2 \BB’LZ. The preimages of E in the middle
and on the right are unramified and thus again are elliptic curves, while on the left
the preimage of F is a curve of genus two.

The saddle connection Siegel-Veech counting in this case was carried out in
[EMS03] in a similar way as summarized in Theorem despite that only primitive
torus covers were considered.
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9.2. The principal boundary of Hurwitz spaces. We focus on saddle connec-
tions joining the first two marked zeros and determine a full set of configurations
and the corresponding principal boundary of the Hurwitz spaces. We say that
I' € ABB] , is realizable in Hg(II) if there is an admissible cover p: X — Eq (1,9}
whose stable graph is I' and such that the vertices with £(v) = 0 correspond bi-
jectively to the components of Xy. Recall also the definition of ribbon graphs
associated to configurations in Section

Proposition 9.6. Associating with a configuration C the boundary curves of the
ribbon graph R(C) induces a map ¢: C — I'(C) from a full set of saddle connection
configurations onto the subset of ABB] , that is realizable in Hy(II). The image
of v is independent of d for d large enough. The fibers of p are finite with cardinality
bounded independently of d.

Moreover if a graph I' € BB{Q is realizable, then the configurations in ¢~ (T
are in bijection with cyclic orderings of the components at level 0.

Proof. To define ¢, we pinch the boundary curves of R(C) to obtain a pointed nodal
curve. The configuration C of saddle connections remains in one component of the
curve that contains z; and zo. We provide the dual graph of the curve with the
level structure such that the component containing z; and 29 is the unique one at
level —1 and all the other components are on level 0. This way we thus obtain
a graph ¢(C) € ABB],. We leave the straightforward verification of the other
statements to the reader. O

An application of the Riemann-Hurwitz formula shows that any configuration
in ¢~ !(T) has multiplicity |E(I)| + 2g(X_1). In the special case I' € BBT , (i.e.
if g(X_1) =0 and T is of compact type), the configuration consists of k = |E(T')|
pairwise homologous arcs. However, the cover on the right-hand side of Figure
shows that graphs in T' € ABB7 , \ BBJ , also contribute. It is not hard to give an
example that the fiber cardinality of ¢ over a target graph with g(X_1) > 0 can
indeed be larger than one, and we leave it to the reader since it is irrelevant to our
applications.

Finally we address that Theorem and an a priori knowledge that M (u) =
(mq + 1)(mg + 1) would give an alternative proof of Theorem In terms of our
volume normalization, [CMZ18| Proposition 9.4] says that

D
o U(ILL) -1
N;yII) = ——————D"4+0O(D" " logD 96

dzl d( ) 27‘1_[?:1(77%4‘1) + ( og ) ( )
as D — oo, where 7 = 29 +n — 1. To sum the right-hand side of we let
Sp(Il;) = 25 No(IL;). The Euler integral fol ot (1 —t)bldt = % used
recursively implies the following result.

Lemma 9.7. Suppose that Sp(Il;) = v;D"i + O(D" " !log D) as D — oo and that
there ezists a constant C depending on I1; only such that NJ(II;) < Cd"i=! for
i=1,...,k. Then

. (di+ - +di) Ng (L) - Ng () [T5 (rito) S s

D—oc0 i <D Drittretl (7«1 4+ 1)! ’
(97)
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Alternative proof of Theorem[9.1] (assuming M (p) = (my + 1)(m2 + 1) ). With the
abbreviation r; = 2g; + n(u;) we obtain from that

D
o v(:uhpi - 1) ; i—1
E N7 (I, (p;)) = D" D" “log D).
— di( (p )) 27'ip'i Hmiel” (mi + 1) + O( 0og )

Since rq + -+ 74 = 2g + n — 2, Lemma [0.7] implies that

k
> (di++d) [ NG (s (02)
i=1

dy+Adn <D

_ D2g+n—1 HZLC:I (291 + n(.ul) - 1)'7)(,[141,])1 - 1)
2629 +n—1)(29+n -3 s(m;i+1) "

(98)

Summing over all backbone graphs and taking the limit after dividing by D29+n~1
thus implies the desired formula . (I

Proof of Proposition[9.4 Conversely, the above argument shows that the mere
knowledge of Theorem gives the recursion in Theorem [1.2] with M (u) on the
left-hand side that replaces (m; + 1)(mg + 1), and hence the two theorems taken
together thus determine the value M (u) = (mq1 + 1)(ma + 1) as claimed in Propo-
sition O

10. AREA SIEGEL-VEECH CONSTANTS

The goal of this section is to show that area Siegel-Veech constants are ratios of
intersection numbers, i.e. to prove Theorem [I.4] For this purpose we introduce

1
= [ g = [ @[, o9

QMg n (1) POMg,n (1) j#i

and then Theorem [[.4] can be reformulated as

=1 di(p)
Ar? ai(p)

Carea(tt) = (100)
The proof proceeds similarly to the proof of Theorem by showing a recursive
formula for both the intersection numbers and the area Siegel-Veech constants. The
difference in the formulas is that one vertex at level zero of the backbone graphs is
distinguished by carrying the Siegel-Veech weight. We remark that in this section
area Siegel-Veech constants for disconnected strata are volume-weighted averages
of the constants for the individual components.
The intersection number recursion leads to the remarkable formula

(ma +1)(m2 + 1)carea(pt) = Z Cllloﬁné (C)carea(C)

C saddle connection
configuration

(101)

where Carea(C) is defined to be the sum of the area Siegel-Veech constants of the
splitting pieces induced by the saddle connection configuration. The other recursion
(via g-brackets as in Section leads to a very eflicient way to compute area Siegel-
Veech constants, given in Theorem [10.6
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10.1. A recursion for the d;(u) via intersection theory. We have seen that

the values of a;(p) do not depend on the index i. Similarly for d;(u) it suffices to

focus on the case i = 1. To state the recursion, we introduce the generating series
1

1 91 4173
At) = 29 —1)%dy(2g — 2)t% = —t* — —t* 6 4.
(t) ;“’ )7di(29 - 2) 2" 716" T304" ~ 320040 ’

whose coefficients are determined using the following proposition. Recall the gen-
erating function A in and the numbers b; defined in (15)).

Proposition 10.1. The generating function of the intersection numbers di(2g — 2)
is determined by the coefficient extraction identity

SETAMAR) = b (102)

while the intersection numbers d(p) = d;(p) with n(w) > 2 are given recursively by

(mq + 1)(mg + 1)d1(p) (105)
k
h 1 m ,m 5 d -1
_ Yoy helm 2 p) E - 2 #1) 11 Cgi =1+ n(uapiar (bi = 1. 1)
k>1 g,p n Iul =t

for n = n(u) > 2, with the usual summation conventions as in Theorem and
Theorem [31.

The first identity was proved in [Saul§|. The proof of the second iden-
tity will be completed by the end of this subsection. This identity together
with the conversions in Section 8] implies immediately. We start the proof
with the following analog of Proposition [3.10

Proposition 10.2. If (T',¢,p) is a backbone graph in BB(g,n)1,2, then

[ arap-en? 6 L= m®)-hes (s, (o) o)
POM,, bt
Z dl(pvflmuv) H al(pv/*laﬂv’)

veV (T'),£(v)=0 v’ eV(I)\{v},£(v')=0
with the conventions for p, as in Proposition[3.10,
Proof. We have the equality that

GG = > &,

veV(T),L(v)=0

where 0§ = 0y ® 1 € H*(My, n,,Q) ® (®v’7€7j H* (Mg, n ,,Q)) H*(Mr,Q).
Combining with the fact that doA; = 0, it implies that

r(Borg—1) = Z 05 Av,g, 1 ® A’ g,

veV(T),L(v)=0 v'#v,0(v')=0



MASUR-VEECH VOLUMES AND INTERSECTION THEORY 59

Therefore, we obtain that

)‘g—l '60 'O‘(ll,e,p = Z §F* ([M—l] ® ()\7)791)_1 ' 50 ' [PQM%,% (pv - 17#?))}0)
veV(I),6(V)=0

® e [y~ L)

v’ #v,0(v)=0

Using the last formula in Lemma [3:8] the rest of the proof then follows from the
same argument as in Proposition [3.10] O

We also need the following analog of Lemma [3.12]
Lemma 10.3. The values of di () satisfy the recursion

(ma +1)(m2 + 1)di(n)

k
_ Z thl((ml,mz,uo)yp) ) W : (Hp?a(pz‘ - 1,!%)) (104)

k>1g,pn =2
with summation conventions as in Lemma[312.

Proof. We use the formula in Proposition for i = 2, multiply by 29726 [ [\ ¢i
and apply p.. The left-hand side then evaluates (by Lemma and the fact that
dpAg = 0) to the left-hand side of . The right-hand side evaluates (by Propo-
sition to the weighted sum over all (T',¢,p) € BB(g,n)1,2 of the expression in
Proposition To prove the lemma we interpret as usual a backbone graph as
a decomposition of g and the marked points. The factor (k — 1)! (instead of k! in
Lemma comes from the fact that one of the top level vertices of the backbone
graph is distinguished. O

With the same notation as in Section [3.5] we now define the d-contribution of a
rooted tree to be

dT,0,p) = mo(p)*h(To,lo,p0) > di(py— L) [] alpe — 1, 1)
UZE(V)(FCZ’ v’E‘;(F)\{U}v
v)= £(v")=0

Then we can rewrite Lemma [10.3] as

d(T',¢,p)

(m1 +1)(ma + 1)di(p) = [Aut(, £, p)]’

(T,¢,p)ERT(g,1)1,2

which is the analog of Lemma [3.13]

End of the proof of Proposition [I0.1. Now the proof of the proposition can be com-
pleted similarly to the end of the proof of Theorem [3.1] at the end of Section O

As a consequence, d;(u) does not depend on ¢ and we simply write d(u) from
now on.
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10.2. A recursion for area Siegel-Veech numerators via weighted counting
of covers. We recall the main steps of [CMZ18| that reduce the computation of
area Siegel-Veech constants to a statement about cumulants. An application of the
Siegel-Veech formula ([CMZ18| Proposition 17.1]) gives the quantity we want to
compute by

3 ZdD:I 24(d, 1)

Carea (QMg(my,...,my)) = lim 5 5
Dooom® % 70— Ng(ID)

; (105)

where NS (II) is the number of connected torus covers of degree d with ramification
profile IT = (my + 1,...,m, + 1) and where ¢ ,(d,II) is the sum over those covers
with —1st Siegel-Veech weight (see [CMZ18|, Section 3]). The relation of the sum
of Fourier coefficients to the growth polynomial (|[CMZ18, Proposition 9.4]) and a
rewriting of the Siegel-Veech weighted counting ([CMZ18, Corollary 13.2]) translate
this into

3 (Toalfmasal - fmas1)
T frggrl | fmat1)
3 (Toalbmysal N, 11)
7 (bl g g1)

Carea (QMg(ml, . 7’/nn)) =
(106)

)

where T is a hook-length moment function on partitions (but not an element
of the ring A*, see [CMZ18| Section 13]). Here we use Proposition and
in the second equality for the denominator. Before passing to the leading term,
the numerator (T_1|fm,+1| **|fm,+1) is a linear combination of differences of
the form <T_1f>q — <T_1>q<f>q. By [CMZ18, Theorem 6.1] these differences
can be written as explicit linear combinations of derivatives of Eisenstein series
and homogeneous differential operators. We can perform the same rewriting with
(T-1|hmy+1] -+ |Pm,, +1)- Again thanks to the difference is a cumulant with
each entry being of strictly smaller weight. Consequently, it does not contribute to
the leading order term.

We have seen in Section [4] how to compute the denominator and related it in
Section |5| to a(p). Now we take care of the numerator. Recall that we defined
o (u), in in Section [4f Define now

n

CLy(w), = S (T[] he), % :

n>0 0>1

By definition of cumulants (or by |[CMZ18, Proposition 6.2]) we are interested in
the leading term of the quotient

o C/—l(u)q "
C2i(u)g = BH (u), = HZ>O<T71VL1\ o fha[hel - |ha | )g Tl
= ni n2

To evaluate the numerator of this fraction, recall from |[CMZ18, Section 16] the
definition of the modified ¢-bracket

1

<f>; = (T4 f>q - <T—1>q <f>q 24

(02(f))q » (107)
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where 0 is the differential operator

0 0
Oy: — + Ll —D)pp_g—o-:.
2 O g;( )Pz 28p£

This bracket is useful, since its effect can be computed by differential operators
acting (contrary to 7_1) within the Bloch-Okounkov algebra. In fact, [CMZ18,
Theorem 16.1] states that

=36V Voo (Da + Y. G (pii(H)g

j>1 i>2,7>0

where p; ; are differential operators of degree j that shift the weight by —i — 27,
whose definition we recall in (110]) below. Motivated by the action of these operators

we define
ciw) = Y3 gteos (TT00) 5 (108)
>1 :

n>035>1
and we let @ (u) = exp( s heue) such that ®H (n), = (@ (n)),.

Lemma 10.4. The leading terms of

—1{CLi(w))g

Cil(u)q and Cil(u)q = ﬁ <I>H(u)
q

agree.

Proof. First note that EV(ng_l))(X) = 51 (j!'X +(j —1)!) by the defining formulas
in [CMZ18| Section 9]. This is the reason for the factor j! in (108). From the
non-vanishing of the area Siegel-Veech constant, we know that the leading degree
contribution is as in . Lower weight terms before passing to the cumulant
quotient will contribute to lower order in the growth polynomial. Since d; is of
degree —2, its contribution in is negligible and we can work with the star-
brackets. For the same reason, the terms with ¢ > 0 in the definition (f)} are

q
dominated by the corresponding term with + = 0 and can be neglected.

Our goal is to compute the h-evalutaion of C°;(u) and its leading term using
Proposition [.3]

Lemma 10.5. The commutation relation
Bz ocP(f) = e (33t pos(h) (109)
j=>1

holds for every f € A*.

Proof. We will check the relation on the n-point function for every n. Since we will
recall formulas from [CMZ18] we use the rescalings Qr = px—1/(k—1)! of the genera-
tors of A*, where Qg = 1 and Q; = 0. The following identities even hold on the poly-
nomial ring R = Q[Qo, Q1,Q2, . ..] mapping to A*. We set W(z) =Y, 5, Qrz" 1.
We recall from [CMZ18, Theorem 14.2] the action of the operators p ;, namely

po i (W(z1)-W(z)) = ZW(ZJ)ZJ(HZJ‘) I we) (110)

JCN jeJ vENNJ
| J]=j
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where z; = ZjeJ zj and N = {1,...,n}. On the other hand, in terms of the @,

the operator D defined in Sectionis just D = 1(A—0?), where 0 is the differential
operator sending Q; to Q;_1. From [CMZ18, Proposition 10.5] we know that

eP (W(z1) e W(zn)) — e *N/2 Z (H zlfl_lVV(zA)) .
a€P(n) Aca
Using these identities we can evaluate both sides of to be of the form
%2 37 (T] WEaR(z)eea)
a€P(n) Aca

where R({z,}) are polynomials that are visibly different on the two sides, but in
fact agree by using the identity

2 = Z || zs (H z,,) zf{“” .
0#£JCA veJ
To verify this expression, let e; = (—1)"[#" “][],c4(z — z4) be the elementary
symmetric functions in the z,. Then the contribution with [J| = j to the right-

hand side is e} 7(e1e; — (j + 1)ej+1). This means that the right-hand side is a
telescoping sum where only the first term remains after summation. (I

The preceding Lemma Proposition[d.3]for the computation of the h-brackets,
Lemma and ([106)) now imply immediately our goal:

Theorem 10.6. The area Siegel-Veech constants can be computed as

L[ (M)
{72 [2117%1-‘:-1 . ZTT"+1] H,

Carea<m17 ce. amn) =

hz»—)az ’
where Hy(z1,. .., 2n) 18 recursively defined as in Section .

10.3. Proof of Theorem We start with an explicit formula for the Os-
derivative used in Theorem [10.6] in the case of the minimal strata.

Proposition 10.7. The area Siegel-Veech constants for the minimal strata are
—1 [u?9~1D(u)

CanenOMo(29 = 2)) = G 3] 4wy i

where
D(u) = (A'(u) +ud”(v))/ud'(u)?* = t— it3 + it‘r’ -
18 2304
Proof. Differentiating gives
2 Tngy . M) 1 Hz)  HE)H(2)
;n oot H(2) = H'(2) (2 22N/ (2) ZH'(2)? ) '

Combining these two equalities gives da(H1(u)) = (H'(u) + uH" (uw))/uH'(u)? and
the claim by substituting hy — ay. O

Proof of Theorem[I.]] We start with the case of a single zero. Comparing (111])
and ([102)) we need to show that D(u) = 2A(u)/u, i.e. in view of we need to
show that

WD) Aw)* ™) = (29 = D[ 7?]B(u) = (29— 1[u"}A(u)* 2.
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This equality can be implied by showing that
291 A'(w) +ud"(u) = A(u)?9—2
(29 — 1)u A’ (u)? u ’
which in turn follows since the derivative
(A(u)2971 +u.A’(u))’ _ 4291 A'(u) + uA” (u) B A(u)?9—2
(29 — DuA'(u) (29 — Du2 A’ (u)? u
has no (—1)-term. Finally, to deal with the case of multiple zeros, we recall from (60))

that a;(p) = [T 21 /(29 — 2 + n) [[j=,(m; + 1) H, and hence we need
to show that

[ A(u)

d) = a0y (H)

(29 = 2+ n) [1iz; (mi + 1) lhesa
after knowing that this is true for the case of n(u) = 1. This follows immediately
from differentiating , since after substituting h, +— «y this is exactly the sum of

the recursions (103) (known to hold for the d(u)), averaging over all pairs (m,., ms)
of the entries of u, as in . O

Given Theorem for the area Siegel-Veech computation of the strata on one
hand, and the refined Theorem [6.3 for the volume computation of the spin compo-
nents on the other hand, it is natural to suspect that area Siegel-Veech constants
for the spin components can also be computed as ratios of intersection numbers

ifpmgm(u)’ Bi - %
471'2 fIPWg,n(u)’ Bz : 5

for all 1 < i < n, where e € {even,odd}. Using Assumption to deal with the
case of the minimal strata, the validity of (112)) is equivalent to the validity of

mn-&-l} ((27”)2‘[](82(%71) — aQA(%n))>
" (29 — 2+ n)lo(p)odd

Carea(pt)® = (112)

—1 ma
)odd _ 167‘-2[21 +1-~-Z

Carea (14

her—ayp
hy— oy

where H,, and H,, are recursively defined as in Sections [4] and [6] and where

a o0
08 = — 4+ 2020+ 1)par—
2 apl ézzl ( )p2£ 1

Opac+1

is the analog of the differential operator 0, on the algebra of super-symmetric
functions. There is a clear strategy towards this goal:

e Show that there are operators like the T}, for p > —1 odd as in [CMZ18|
Section 12], whose strict brackets compute Siegel-Veech weighted and spin-
weighted Hurwitz numbers.

e Show that the action of T}, inside strict brackets can be encoded by differ-
ential operators like the p;; in [CMZ18, Section 14].

e Show that these operators satisfy a commutation relation as in Lemmal[T0.5]
with O replaced by 95*.

e Conclude by comparing the recursions as in the preceding proofs.

Given the length of this paper, we do not attempt to provide details here.
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11. LARGE GENUS ASYMPTOTICS

In this section we study the large genus asymptotics of Masur-Veech volumes
and area Siegel-Veech constants and prove the conjectures of Eskin and Zorich in
[EZ15] by using our previous results.

11.1. Volume asymptotics. We recall from [CMZ18, Theorems 12.1 and 19.1]
and [Saul8 Theorem 1.9] that the asymptotic expansions of v(2g—2) and v(1,...,1)
can be computed using the mechanisms of very rapidly divergent series (JCMZ18|
Appendix] as

2 2 4
U(l2g—2) ~ 4(1_L_M_...)’
249 115242
2 2472 — 7t
2—2) ~ 4(1———7—.-.).
v(29-2) 129 28842
Let = (mq,...,my) be a partition of 2g — 2 into n positive integers with n > 2.
We write p/ = (mq + ma,mg,...,my,) and p” = (my +mg — 2,m3,...,m,). We

use Theorem and the two obvious backbone graphs, the one with a single top
level component of genus g (i.e. K = 1) and the one with two top level components
(i.e. k = 2) of genus 1 and g — 1 respectively, to deduce the inequality

7%(29 — 5+ n)!

6203 7 ) (113)

v(p) = v(p') +

where we use hpi ((m1,m2), (m1 + ma + 2)) = hpr((m1, ma), (M1 + ma, 1)) =1 for
my,mg > 0 and v(0) = 72/6. In particular this inequality implies that v(u) > v(u')
and thus

v(29 —2) < o(p) < o(l,...,1)

for all p. Consequently, there exists a constant C' > 0 such that for all p we have
the inequality |v(u) — 4] < C/g. Now we introduce the notation

~ 272
v(p) =v(p) —4+ 320 —3+n)
Then the inequality (113]) implies that
272 72(29 — 5+ n)!
~ o / > _ 11
0 =) 2 s T a T m@g—at ) T 6y~ t W)

Cn?

> - .
- 69(29 —3+n)(29 —4+n)

In particular for all 4 we have

2(0 _ 2 —_9_
6(29—2)—6% (n—1 <) < Cn*(2g — 2 n)

6g(29 — 1)? 6g(2g — 1)?

Since n is bounded by 2g — 2, there exists a constant C’ such that [0(u)| < C’/g?
for all . Thus the first part of Theorem [L.5] holds.

<)

(..., 1)+
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11.2. Asymptotics of Siegel-Veech constants. We apply the same strategy to
control the asymptotic behavior of area Siegel-Veech constants. We denote by

T) = cealil) = 1 209 (f[(m n 1>) (o)
’ 472 (29 — 3+ n)! pale ’
where d(u) is defined in and where the second equality stems from .
For p = (mq,...,my) with n > 2, we write ¢/ = (m; + mg, ms,...,my) and
w’ = (my +mo —2,mg3,...,my,) as before. Then from Proposition we have
d(0) = 1 and we obtain the inequality

~ ~ 7229 —5+n)! ~ (29 —5+mn)!
dp) > dp) + I 2Ty 4 T2 .
(1) = d(p') + 629 —3+n)! (") + 2(29_3+n)1”(“ )
In particular this inequality implies that c?(u) > J(// ). Moreover, we know the
asymptotic expansions
~ 2 - 2
d2g-2) ~2-2TT L and d(1,...1) ~2- 20"
6g 12¢

from|CMZ18|, Theorem 19.4] and [Saul8, Theorem 1.9]. Consequently, there exists

a constant C such that |d(u) — 2| < C/g for all p. Then by the same argument as
above we can show that there exists a constant C’ such that

3472

e O/ 2.
3(2g —3+n) <Gy

d(p) — 2+

Therefore, using the fact that carea(it) = d(u)/v(u) we thus deduce the second part
of Theorem [L.5l

11.3. Spin asymptotics. The goal here is to prove that the volumes of the odd
and even spin components are asymptotically equal. This is the content of Theo-
rem in the introduction that refines the conjecture of Eskin and Zorich (|EZ15|
Conjecture 2]). Recall that we defined in Section

1NI/2¢(—5)

Py(u) = exp(Z(i) %uﬁrl). (114)
J=1

Proposition 11.1. The difference v(2g — 2)* = v(2g — 2)°V°" — v(2g — 2)°% can

be computed as the coefficient extraction

2(2mi)%9 1

v(2g —2)2 = w9 115
Go =27 = G s (15)
Moreover, it has the asymptotics
—1\9-2 272 1272 4+ 74
29— 2)2 ~ (—) (1 L L ) 116
w29 -2/ ~ (5 b e (116)

as g — 0o.

For the reader’s convenience we give a table for low genus values:

g 1 [2] 3 1 5

oA | =1 | 1| —143 15697 —2561
v(2g — 2) 3 10 | 108864 | 279936000 | 1103872000
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Proof of Proposition[I1.1} The first statement is a reformulation of a special case
of Corollary

The power series Pz (u) is a very rapidly divergent series, just as Pg(u) is, since
the coefficients £lb, and ((—£)/2 = £'b; - v/2(2¢ — 27¢) differ by a factor that grows
only geometrically. The asymptotic statement thus follows from the method of very
rapidly divergent series. [

Proof of Theorem[I.6. Proposition together with Theorem implies that
there exists a constant C’ such that for all g > 1

[0(2g — 2)°™ — v(2g — 2" < C'/g.

Repeated application of Theorem implies that v(u)® > v(2g — 2)* for all p with
|¢| = 29 — 2. Theorem moreover implies that there exists a constant C” such
that for all g with |u] = 2g — 2 the inequality

lv(p) —4] < C"/g
holds. Thus for all p with |u| = 29 — 2 we have
(29 = 2)°% <w()°! = w(p) — o) < () - v(2g — 2"
< 24 (C"+3C")/g.

It follows that |v(p)°dd — 2| < (C’ 4 3C")/g and the same holds for v(u)ee". This
implies the claim for the volume comparison.

For the comparison of area Siegel-Veech constants, since we have shown that the
two spin components have the same volume asymptotic, combining with [Aggl9l
Propositions 4.3 and 4.4] it suffices to compare the odd and even one-cylinder
contributions in the part of the principal boundary where the corresponding con-
figurations have either a figure-eight boundary or a pair of holes boundary. Using
again the same volume asymptotics of the spin components in genus g — 1 and
combining with [EMZ03, Lemmas 14.2 and 14.4], we see that the odd and even
contributions are comparable for those two parts of the principal boundary, thus
implying the claim. 0
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