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Abstract. Consider a flat bundle over a complex curve. We prove a con-

jecture of Fei Yu that the sum of the top k Lyapunov exponents of the flat
bundle is always greater or equal to the degree of any rank k holomorphic

subbundle. We generalize the original context from Teichmüller curves to any

local system over a curve with non-expanding cusp monodromies. As an ap-
plication we obtain the large genus limits of individual Lyapunov exponents

in hyperelliptic strata of Abelian differentials, proved by Fei Yu conditionally

to his conjecture.
Understanding the case of equality with the degrees of subbundle coming

from the Hodge filtration seems challenging, e.g. for Calabi–Yau type families.

We conjecture that equality of the sum of Lyapunov exponents and the degree
is related to the monodromy group being a thin subgroup of its Zariski closure.

1. Introduction

Lyapunov exponents are dynamical analogs of characteristic numbers of vector
bundles. The Lyapunov exponents for the Teichmüller geodesic flow relate the dy-
namics on moduli space with the dynamics on flat surfaces. Efficiently computing
them is currently still a challenge, both for strata of the moduli space of flat sur-
faces and for Teichmüller curves, including all the Teichmüller curves generated by
square-tiled surfaces. Starting with [Kon97] it was realized that the sum of (i.e. the
sum of the positive) Lyapunov exponents equals the normalized degree of the Hodge
bundle on Teichmüller curves, see [For02], [Kri05], [BM10], [EKZ14] for versions of
this formula, including the case of strata. This observation generalizes from the
variation of Hodge structures over Teichmüller curves to any weight one variation
of Hodge structures (VHS). Presently, irreducible summands of weight one VHS are
the only instances where such degree formulas are known. Even the computation
of Filip ([Fil14]) of the top Lyapunov exponent for families of K3 surfaces can be
subsumed under this observation, if one refers to his proof using the Kuga–Satake
construction.

The main result of this paper is that an inequality for the sum of the top k
Lyapunov exponents holds in great generality. This was first conjectured by [Yu14],
but the scope given here is more general.
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Let C = H/Γ be hyperbolic Riemann surface of finite area (or equivalently, a
complex quasi-projective curve) with a representation ρ : π1(C) → GL(V ) such
that, if C is non-compact, the mondromies around the cusps ∆ = C \ C are non-
expanding, i.e. all the eigenvalues lie on the unit circle. This assumption is necessary
and also sufficient for Oseledets theorem, see Sections 2.4 and 2.5. To be more
precise, we need to specify a norm on the flat bundle V determined by ρ. There
are two natural choices: the practical choice (for simulations) is a “constant” norm
obtained by parallel transport along a Dirichlet fundamental domain for Γ and the
sophisticated choice of an admissible norm (see Section 2.3 for the precise definition)
that has the right growth at the cusps and compatibility with exterior powers.
Oseledets theorem is very insensitive to such choices: we show (Theorem 2.1 and
Proposition 2.2, see also the appendix for the background on measurable cocycles)
that both norms satisfy the integrability condition and compute the same Lyapunov
exponents.

For VHS of arbitrary weight we show that the Hodge norm is admissible. Along
with the proof (Proposition 3.1) we give an upper bound for the Lyapunov expo-
nents that is uniform for all VHS of given weight and rank. However, our estimate
is very crude. It is an interesting problem to prove tight upper bounds for Lyapunov
exponents for VHS.

In the setting of a local system V defined by ρ and a norm as above, we can now
state our main Theorem 4.1:

Theorem. For any holomorphic rank k subbundle E of the Deligne extension of V
the sum of the top k Lyapunov exponents is bounded below by

k∑
i=1

λi ≥
2 degpar(E)

2g(C)− 2 + |∆|
, (1)

where g(C) is the genus of the curve C and |∆| is the number of cusps.

Here the parabolic degree degpar of a vector bundle is equal to the degree in the
case of unipotent monodromies and is defined in Section 2.1 in general.

A theorem in a similar spirit in rank two was proven previously by Deroin and
Dujardin in [DD13]. The main theorem of the subsequent paper [DD17] by Daniel
and Deroin proves a formula simliar to (1) using Brownian motion techniques,
applicable also to a higher-dimensional base provided that the base is compact.

This theorem has two types of applications. The first is the large genus limit of
Lyapunov exponents for hyperelliptic strata of Abelian differentials (Corollary 5.3,
proven by F. Yu conditionally to our main theorem).

As preparation for our second application we show in the last section that the
parabolic degrees of the Hodge bundles of hypergeometric local systems can be
easily expressed in terms of the local exponents, see Section 6.4 for the notions and
Theorem 6.1 for the precise statement.

This second application concerns families of Calabi–Yau threefolds and conjec-
turally gives new cases where equality in (1) holds. There is a well-known list of
14 rank 4 hypergeometric local systems (see Table 1, including the mirror quintic)
that could be the middle cohomology of a family of Calabi–Yau threefolds with
h2,1 = 1. In 7 out of these 14 examples the monodromy group is thin in the
symplectic group (see [BT14], [SV14] and Section 6).
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Conjecture. The inequality (1) becomes an equality precisely in the 7 out of these
14 cases where the monodromy group is thin.1

Initially, we stated a more optimistic conjecture on a region in the parameter
space for the local exponents where the equality is attained. This initial conjecture
can no longer be upheld after more detailed numerical experiments by Fougeron,
see [Fou17]. We discuss this in more detail in Section 6).

Acknowledgements. The authors thank Fei Yu for the inspiring conjecture;
Simion Filip for enlightning discussions around Proposition 3.2, and the referee
for suggestions which improved the presentation. We also thank the Max-Planck-
Institute for Mathematics in Bonn for its hospitality during the preparation of the
paper.

2. Lyapunov exponents for flat bundles with non-expanding cusp
monodromies

In this section we show that Lyapunov exponents for flat bundles over the ge-
odesic flow on a (base) curve are defined for a very large class of flat bundles.
The only restriction that we impose is that the monodromies around the boundary
points have eigenvalues of absolute value one. This (strictly) includes the case of
quasi-unipotent monodromies.

We now give the background and the definitions alluded to above. Our base
manifold will always be an algebraic curve C = Γ\H, not necessarily compact. Let
C be the smooth compactification and ∆ = C r C be the boundary points. The
flow will always be the unit speed geodesic flow gt on the unit tangent bundle T 1C
for the metric of constant curvature −4 (see Remark 4.4 for the history of this
convention) and µ will be the corresponding invariant probability measure.

Let V be a flat bundle over C of rank r. We will denote by (VC ,∇) the asso-
ciated vector bundle with its flat connection. We say that V has non-expanding
cusp monodromies if for each element γ ∈ π1(C, c0) homotopic to a simple loop
around a point in ∆ all the eigenvalues of ρ(γ) have absolute value one. Re-
call that V has quasi-unipotent monodromies if for each element γ ∈ π1(C, c0)
homotopic to a simple loop around a point in ∆ there exists some n such that
ρ(γ)n − Id is nilpotent. Consequently, having quasi-unipotent monodromy implies
non-expanding cusp monodromies. We show in Section 2.4 and 2.5 that this con-
dition is necessary and sufficient for integrability of the flat bundle V.

The remaining ingredient we need for the definition of a Lyapunov spectrum is a
norm ‖·‖ on V. We will define in Section 2.3 a notion of admissible metric h that we
can provide any local system with and that is suitable for metric extensions of the
line bundle to C. Such a metric is also the basis to define Lyapunov exponents for
the flat bundle V. These two notions will be our main hypothesis for the existence
of Lyapunov exponents for flat bundles. Our aim is to show the following norm
bound for the lift Gt of the geodesic flow gt to V.

Theorem 2.1. If V is a flat bundle of C-rank r on C such that the eigenvalues of
monodromy around points in ∆ all have absolute value one, then for any admissible
metric on V the induced cocycle is integrable (in the sense of Definition A.1). The

1Simion Filip has recently announced a proof of this conjecture.
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corresponding Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λr are independent of the
choice of an admissible metric.

For practical purposes (e.g. for numerical simulations) it is useful to be able to
compute the Lyapunov exponents with a simpler norm. We define a constant norm
|| · ||const on V to be the parallel transport of any norm at the fiber over some base
point c0 extended to a Dirichlet fundamental domain for Γ on H, or equivalently,
on a simply connected complement of some geodesic “boundary” curves in C. Note
that the “constant” norm is not continuous across these boundary curves and de-
pends on the choice of the Dirichlet domain.

Proposition 2.2. Any constant norm || · ||const on a flat bundle as in Theorem 2.1
is also integrable and computes the same Lyapunov exponents as any admissible
metric.

2.1. Parabolic bundles and filtered vector bundles. We begin with the defi-
nition of a parabolic bundle (see also [MS80], [Ses77] for the origins of this notion).
We first define a [0, 1)-filtration on a complex vector space V to be a collection of
(real) weights 0 ≤ α1 < α2 < . . . < αn < αn+1 = 1 for some n ≥ 1 together with a
filtration of sub-vector spaces

F • : V = V ≥α1 ) V ≥α2 ) · · · ) V ≥αn+1 = V ≥1 = 0.

We denote by grαiV = the graded piece at weight αi. The filtered dimension of
(V, F •) is defined to be the real number

dimF•(V ) =

n∑
i=1

αi dim grαi(V ) .

The filtration is called trivial, if n = 1 and α1 = 0. This is equivalent to the
condition dimF•(V ) = 0.

Let E be a holomorphic vector bundle on a complex curve C and let ∆ be a finite
set of “boundary” points. A parabolic structure (E , F •) on E (with respect to ∆) is
a [0, 1)-filtration F •Ec on the fiber Ec for each c ∈ ∆. A parabolic bundle is simply
a holomorphic vector bundle with a parabolic structure.

The parabolic degree of (E , F •) is defined to be

degpar(E , F •) = deg(E) +
∑
c∈∆

dimF• Ec .

A morphism ϕ between parabolic bundles E and F is a morphism ϕ : E → F of
holomorphic vector bundles such that for each c ∈ ∆ each weight α of Ec the image
ϕ(E≥αc ) lies in F≥βc whenever β ≤ α. A parabolic subbundle E of F is an injective
morphism of parabolic bundle with the additional requirements that for each c ∈ ∆
the weights of E are a subset of the weights of F and if β is maximal such that
ϕ(E≥αc ) ⊆ F≥βc then β = α.

With this notion of degree and subbundles we will recall later that the usual
notions of stability and of the Harder–Narasimhan filtration carry over verbatim to
the parabolic case.

For taking exterior powers it will be convenient to use the following equivalent
notion. A filtered vector bundle E = {E•,•} on C is a collection Ec,α of vector
bundles in jc∗EC for every c ∈ ∆ and every α ∈ R (where jc : C → C ∪ {c} is
the inclusion), such that the filtration is descending (Ec,α ⊆ Ec,β if α ≥ β), right
continuous (Ec,α+ε = Ec,α for small ε) and such that Ec,α+1 = tEc,α ⊂ Ec,α, where t
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is a local parameter at c. To retrieve the corresponding bundle with parabolic
structure we take the extensions Ec,0 at every point c ∈ ∆ and the filtrations given
by the α ∈ [0, 1) where the rank of the fibers of Ec,α at c jumps. In particular, the
notions of parabolic degree etc. defined above apply to filtered vector bundles as
well. Obviously a filtered vector bundle is completely determined by the extensions
Ec,α for α ∈ [0, 1). Conversely, given a vector bundle with parabolic structure
(E , F •) we can provide E with the structure of a filtered bundle E•,• as follows. For
every α ∈ R and c ∈ ∆ we associate to a section s of E in a neighborhood of c the
sections sα = tbαcs resp. sα = tbαc+1 s depending on whether germ of s in the stalk
of E belongs to V ≥{α} or not. We define Ec,α to be the subspace generated by all
the section sα obtained in this way.

2.2. The Deligne extension. Here we recall the construction of Deligne’s exten-
sion of the bundle VC with flat connection to a holomorphic vector bundle V on
C with a logarithmic connection. The hypothesis on the non-expanding cusp mon-
odromies implies that V has a canonical2 parabolic structure, as we now explain.

To construct the Deligne extension of VC we use a small disc D centered around
the point c ∈ ∆ with coordinate q. We choose a base point c0 ∈ D \ {c}, the
conjugation by moving the base point will not affect the extension. We let T =
T (γ) ∈ GL(V0) be the monodromy of the the flat bundle V along a loop γ once
around c, where V0 = (VC)c0 is the fiber over the base point c0. For every α ∈ [0, 1)
we can define

Wα = {v ∈ V0 : (T − ζα)rv = 0}, where ζα = e2πiα and r = rk(V) . (2)

These vector spaces are zero for all but finitely many αi ∈ [0, 1). Finally, we define

Tα = ζ−1
α T |Wα

and Nα = log Tα ,

since Tα is unipotent.
Let q : H → D∗, q(z) = e2πiz be the covering of D∗ = D r {c}. Choose a basis

v1, . . . , vr of V0 adapted to the direct sum decomposition V0 = ⊕αWα. Since H is
simply connected, we may view the vi as sections vi(z) of q∗(VC |D∗). If vi ∈ Wα,
then we define

ṽi(z) = exp(2πiαz + zNα)vi . (3)

These sections are constructed to be equivariant under z 7→ z + 1, hence they give
global sections of VC(D∗). The Deligne extension V of VC is the vector bundle,
whose space of sections over D is the OD-module spanned by ṽ1, . . . , ṽr.

This construction naturally gives a parabolic structure on the special fiber Vx =
(VC)x. We let Vα be the subspace generated by the ṽi with vi ∈ Wα and we let
V ≥α = ⊕β≥αVβ to obtain a filtration F •γ on Vx.

2.3. Metric extension, acceptable and admissible metrics. The notion of an
admissible metric serves two technical purposes. On one hand it should specify the
correct metric extension by imposing appropriate growth near the cusp while on the
other hand giving an integrable flat bundle. This section follows the treatment of
metric extensions of vector bundles and local systems given in [Sim88], Section 10
and [Sim90].

2The choice of the interval [0, 1) is an artificial choice of a unit interval in R and so Deligne
([Del70]) calls this extension quasi-canonical.
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As preparation for the definition, we first recall the notion of metric exten-
sion Ξ(EC) of a vector bundle EC on C. Let j : C → C be the inclusion. Given
a metric h on E we define Ξ(EC) to be the family of subsheaves of j∗EC indexed
by α ∈ R such that sections s(q) of Ξ(EC)≥α are those holomorphic sections that
satisfy the following “growth” condition. For all ε ≥ 0 there exists Cε such that3

|s(q)|h ≤ Cε|q|α−ε . (4)

In general, the metric extension of a vector bundle is a coherent sheaf, not a vector
bundle. We will, however, use metric extensions only when they are vector bundles,
in fact Deligne extensions of local systems, see Lemma 2.4 below.

Following [Sim90] we say that a smooth metric h = 〈·, ·〉 on the bundle EC on
the curve C (provided with the Poincaré metric) is acceptable, if the curvature of
the metric h admits locally near every x ∈ ∆ a bound

|Rh| ≤ f +
C

|q|2| log(q)|2
with f ∈ Lp for some p > 1 . (5)

We also say that h is an acceptable metric on a filtered vector bundle E = {E•,•} if
the metric h is acceptable on E|C and E = Ξ(E|C).

For integrability purposes we require for admissibility growth rates that are
slightly more restrictive than (4), but obviously imply this bound.

Definition 2.3. A smooth metric h = 〈·, ·〉 on the bundle VC with underlying local
system V is called admissible, if for every cusp c ∈ ∆ with local coordinate q

i) the metric extension Ξ(VC) with respect to h is isomorphic as filtered vector
bundle to the Deligne extension V of VC ,

ii) for any e ∈ Ξ(VC)≥α and any e′ ∈ Ξ(VC)≥α
′

there is some n ∈ N and
C1 = C1(e, e′) > 0 independent of q such that

〈e, e′〉 ≤ C1 |q|α+α′(log |q|)2n ,

iii) there is some n ∈ N and C2 > 0 such that a generating section e of det(V)
has the lower bound

||e||2 ≥ C2 |q|2 dimF• Vc(log |q|)−2n .

iv) and, moreover, if the metric is acceptable.

In our situation, the relevant existence statement is the following lemma, that
follows from Theorem 4 in [Sim90].

Lemma 2.4. A local system V with non-expanding cusp monodromies has a metric
which is admissible for its Deligne extension V.

Proof. It suffices to construct such metrics locally and patch them with the help
of a partition of unity. On the complement of cusp neighborhoods we can take
any metric. On the cusp neighborhoods it suffices to treat each eigenspace for
the monodromy separately and declare the different eigenspaces to be pairwise
orthogonal. The basis elements ṽi of the α-eigenspace of the Deligne extension are
given the norm |q|α in the local coordinate q around the cusp and defined to be
pairwise orthogonal. This implies that the Deligne-extension is the metric extension
and that the norm bounds ii) and iii) hold. The fact that such a metric satisfies the

3[Sim88, Section 10] has a typo, the exponent there is erroneously α+ ε.
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curvature bound for being acceptable can be calculated directly, see also [Sim90],
Section 5. �

In the proof of the main theorem it will be convenient to pass to exterior powers.
We now provide the necessary background in the case of parabolic bundles. First
note, that if the metric h is acceptable on a bundle E , then the induced metric
on any exterior power of E is again acceptable. There are two natural ways to
define its exterior powers as filtered vector bundles. One is to declare v1 ∧ · · · ∧ vk
to lie in (∧kE)c,α, if and only if α ≤

∑
αi where αi is maximal with vi ∈ Ec,αi .

The second possibility is to take Ξ(∧k(E|C)). It is obvious from the definition that
∧k(E)α ⊆ Ξ(∧k(E|C))α. It was shown by Simpson ([Sim90], Proposition 3.1, using
the calculations leading to [Sim88], Corollary 10.4, in particular the Remark on
p. 911) that accessibility of h implies that the converse inequality also holds, i.e.

∧k(Ξ(E|C)) = Ξ(∧k(E|C)

and so both definitions of the exterior power agree.

Proposition 2.5. If E is a vector bundle of rank k then degpar E = degpar(∧kE).
Moreover, any acceptable metric h computes the parabolic degree of E, i.e.

degpar(E , F •) =
1

2πi

∫
C

∂∂ log(dethij) ,

where hij = 〈ei, ej〉 are the coefficients of the acceptable metric.

Proof. The first statement is a direct consequent of the first definition of the exterior
power.

By the first statement and since dethij is the coefficient of the induced acceptable
metric on the the k-th power (obvious from the second definition), we may suppose
that E is a line bundle. For any choice of a generating local section e = e(q) near
a point c ∈ ∆ and a smooth metric hε that agree with h outside ε-neighborhoods
of the cusps we have (see e.g. [Kaw82, page 60-61] for details)

deg(E) =
1

2πi

∫
C

∂∂ log hε

=
1

2πi

(∫
C

∂∂ log h +
∑
c∈∆

lim
ε→0

∫
|q|=ε

∂ log〈e(q), e(q)〉
)

=
1

2πi

∫
C

∂∂ log h −
∑
c∈∆

dimF•c
Ec

(6)

and this proves the claim. �

2.4. Proof of the integrability statements. It is obvious that in order to prove
Theorem 2.1 and Proposition 2.2 it suffices to prove the following two lemmas. We
use the cocycle language for the flat bundle, as introduced in the appendix.

Lemma 2.6. The cocycle A induced by the geodesic flow on a hyperbolic surface
with cusps on a normed flat bundle with non-expanding cusp monodromies is inte-
grable for a constant norm.

Proof. We have to estimate the growth of the norm over a geodesic segment of
length one. Consider a complement Cε to a neighborhood of cusps. If the starting
point is located in Cε then the geodesic segment of unit length starting at this



8 A. ESKIN, M. KONTSEVICH, M. MÖLLER, AND A. ZORICH

point can cross the boundary of the Dirichlet domain only finite number of times
where the bound is uniform for all starting points. Thus, the growth of the constant
norm is uniformly bounded for such segment (where the bound depends on the flat
bundle, on the Dirichlet domain and on the choice of ε).

It remains to estimate the growth of the norm for a geodesic segment of unit
length starting in a small neighborhood of a cusp. Since the boundary of the
Dirichlet domain near a cusp is represented by a geodesic ray going straight to the
cusp, we have to count how many times such a geodesic segment could turn around
the cusp. Consider standard coordinates in the neighborhood of the cusp, namely
take a half-strip − 1

2 ≤ x ≤
1
2 , y ≥ y0 � 1 in the upper-half plane with coordinates

z = x+ iy and with hyperbolic metric g of constant negative curvature −4,

g =
|dz|2

4(Im z)2
=

dx2 + dy2

4y2
. (7)

The upper bound of the number of turns around the cusp of a geodesic segment of
unit length starting at a point x+iy with y ≥ y0 � 1 is given by the path which first
goes straight to the cusp for time 1 and then follows the closed horocycle around
the cusp for time 1.

The first segment starts at a point x + iy and goes vertically up to the point
x + ie2y. The hyperbolic length of the closed horocycle around the cusp located
at the height y = e2y is 1

2e2y , so the path following the closed horocycle for time 1

makes at most 2e2y + 1 turns around the cusp. The condition on non-expanding
cusp monodromy implies that the norm of a constant vector transported N times
around the cusp grows linearly in N . Hence for x + iy ∈ Cε the growth of the
constant norm is bounded by

max
t∈[−1,1]

log+‖A(x+ iy, t)‖ < c1 log y + c2

for some constants c1, c2 ∈ R depending on the flat bundle. Clearly,∫ 1
2

− 1
2

dx

∫ +∞

y0

(c1 log y + c2)
dy

4y2
< +∞ ,

and the integrability of the cocycle for the constant norm follows. �

The notion of equivalent norms for integrable cocycles is definitely known, see,
for example, the corresponding remark in [Rue89]. However, since this notion is
important in the context of this paper, for the sake of completeness we collect all
necessary details in the appendix.

Lemma 2.7. A constant norm and an admissible norm h are L1(µ)-equivalent.

Proof. Consider standard coordinates in the neighborhood of the cusp, namely take
a half-strip − 1

2 ≤ x ≤
1
2 , y ≥ y0 in the upper-half plane with coordinates z = x+ iy

and hyperbolic metric g as in (7). Consider a geodesic ray {x0 + iy | y ≥ y0} going
straight to the cusp. Consider a section ~vx0+iy) of the flat bundle over the geodesic
ray constant with respect to the flat connection. The coordinate q in a punctured
disk around the cusp is related to our coordinate z as above as

2πiz = log q i.e. log |q| = −2πy .

By condition i) of admissibility the flat section ~vx0+iy can be expressed on the half-
strip as a linear combination of either the basis elements ṽi or the basis elements vi
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introduced along with the definition of the Deligne extension. By condition ii) of
admissibility the sections exp(−2πiαz)ṽi is bounded above by C log |q|2n for some C
and n. By the conversion (3) the flat sections vi and hence also ‖~vx0+iy‖adm is

bounded above by C log |q|2n′ (for an appropriate choice of the constant, depending
on the monodromies Nα). The lower bound for the determinant given by condition
iii) of admissibility and Cramer’s rule imply that the norm of such a non-zero flat

section is bounded below by C ′ log |q|−2n′′ . Thus the ratio of a constant norm and
an admissible norm is uniformly bounded in the complement of neighborhoods of
the cusps and has the form

max
~v∈Vx0+iy\~0

∣∣∣∣log
‖~v‖adm

‖~v‖const

∣∣∣∣ = max
~v∈Vx0+iy\~0

∣∣∣∣log
‖~v‖const

‖~v‖adm

∣∣∣∣ ≤ K log y .

in the local coordinates in the neighborhood of a cusp. The integral∫ 1
2

− 1
2

dx

∫ +∞

y0

log y
dy

4y2

converges, so the constant norm and the admissible norm are L1-equivalent, and
Theorem A.5 implies that the cocycle corresponding to the admissible norm is
integrable and defines the same Lyapunov exponents as the one corresponding to
the constant norm. �

2.5. Necessity of the non-expanding condition. We remark that if there exists
a cusp c0 of C such that at least one of the eigenvalues of the monodromy around this
cusp has absolute value different from one, then the flat bundle V is not integrable
with respect to the constant norm.

Proof. Suppose that the starting point p = x+ iy of a geodesic segment is located
sufficiently high in the cusp, that is y ≥ y0 � 1 in coordinates (7). We consider the
geodesics launched from p in direction ξ from the subset [π6 ,

π
3 ] ∪ [ 2π

3 ,
5π
6 ] ⊂ [0, 2π].

The direction is chosen to make the geodesic spiral toward the cusp so that its y
coordinate still grows at least for some uniform starting time ε(y0) > 0 depending
only on parameter y0. We have chosen our geodesic to go not too steep to the cusp.
The angle between the geodesic γt(p, ξ) as above and the vertical direction would
only grow for t ∈ [0, ε], so the horizontal projection of the geodesic has speed at
least 1

2 for the entire interval of time [0, ε]. Since the cusp at height y has width 1
2y

and for the time ε the geodesic does not get below the initial height y, we conclude
that in the interval of time [0, ε] it makes at least yε− 1 turns around the cusp.

Suppose that there is an eigenvalue of the mondromy around the cusp such that
its absolute value is different from one. Let a 6= 0 be the logarithm of this absolute
value. The calculation above shows that for any geodesic as above we have

sup
t∈[−ε,ε]

log+‖A(γt(p, ξ))‖const ≥ (yε− 1) · a .

The subset of starting directions allowed above has 1/6 of the measure of all unit cir-
cle. Since the integral of the function y is diverging with respect to the measure (7)
near the cusp, this implies that the integral∫

T 1C

sup
t∈[−1,1]

log+‖A(γt(p, ξ))‖const dµ(x)

is diverging and, hence, that the flat bundle V is not integrable. �
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3. Existence of Lyapunov exponents for variations of Hodge
structures

In this section we show that the Hodge metric for families of varieties or more
generally for a real variation of Hodge structures satisfies the admissibility assump-
tion of Section 2.3. For a variation of Hodge structures we sketch, moreover, that
there are uniform bounds for the Lyapunov exponents depending only on rank and
weight of the VHS. An interesting open problem is to prove sharp estimates and
interpret the families that reach the upper bounds geometrically.

We recall the definition of real and complex variations of Hodge structures
(VHS), also to introduce the Hodge metric. A C-VHS on the curve C consists of
a complex local system VC with connection ∇ and a decomposition of the Deligne
extension V =

⊕
p∈Z Ep into C∞-bundles, such that

i) Fp :=
⊕

i≥p E i are holomorphic subbundles and Fp :=
⊕

i≤pE
p are anti-

holomorphic subbundles for every p ∈ Z and
ii) the connection shifts the grading by at most one, i.e. ∇(Fp) ⊂ Ω1

C ⊗Fp−1

and ∇(Fp) ⊂ Ω1
C ⊗Fp+1.

To define the notion of R-VHS we first recall that for a real Hodge structure
of weight ` on W , we require a decomposition W ⊗R C = ⊕`p=0W

p,`−p, such that

W p,q = W q,p. An R-VHS of weight ` over the base C consists of a R-local system
V and a filtration

0 = F0 ⊂ F1 ⊂ F2 · · · F`−1 ⊂ F` ⊂ V
on the Deligne extension of V with the property that the bundles Hp,q = Fp ∩ Fq
fiberwise define an R-Hodge structure.

An R-VHS W is polarized, if there exists a non-degenerate, locally constant
bilinear form Q(·, ·) on W, skew for ` odd and symmetric for ` even, such that
Q(Hp,q,Hr,s) = 0, unless p = s and q = r, and such that ip−qQ(v, v) > 0 for every
non-zero v ∈ Hp,q. Consequently if we define an endomorphism S of V ⊗R OC by
S(v) = ip−qv for v ∈ Hp,q, then the Hodge scalar product h(v, w) = Q(Sv,w) is
positive definite. We let || · ||h be the associated Hodge norm of VC. It is obtained
by interpreting V as the direct sum of the smooth subbundles Hp,q and by using
the positive definite metric on each of them.

For any family of projective varieties f : X → C the `-th cohomology gives a
polarized R-VHS of weight ` in this sense.

Note that by a theorem of Borel (see e.g. [Sch73] Lemma 4.5) the non-expanding
cusp monodromy hypothesis holds. If the local system underlying the VHS has a Z-
structure (or arises as a direct summand of the cohomology of a family of varieties)
then the monodromies around the cusps are moreover quasi-unipotent.

Proposition 3.1. The Hodge metric on V is admissible.

Proof. The corresponding estimates were first derived by Schmid ([Sch73]). They
are restated in [Pet84], see Proposition 2.2.1 for the growth rates and Example 3.2
for how to derive the curvature estimate for acceptability. �

The following result gives a second proof of integrability in this case. Recall that
Gt denotes the lift of the geodesic flow gt.

Proposition 3.2. For a VHS the function x 7→ supt∈[0,1] log+ ‖Gt‖x is bounded by
a constants depending on the rank and the weight only. Consequently, the Lyapunov
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exponents of a VHS are bounded by a constants depending on the rank and the weight
only.

We make no attempt here to make the estimate precise, since the bound from
the estimate below is very rough.

Proof. Let D be the period domain for polarized weight ` Hodge structures with
dimensions of the filtration pieces as given by V. In general, D is not a symmetric
domain but just a homogeneous space. The tangent bundle to D has the so-called
horizontal subbundle Th with two properties. First, by Griffiths transversality the
tangent vectors to the period map p : H → D for V lie in Th ⊂ TD. Second,
the holomorphic sectional curvature of directions in Th is negative and bounded
away from zero ([GS69, Theorem 9.1]), [CMSP03, Chapter 13]), say by K. This
contractivity along the horizontal distribution implies the integrability as we now
elaborate.

To provide a universal bound it it suffices to bound for ∂
∂t log h(v(t), v(t)) |t=0,

where v(t) is the parallel transport of a unit norm vector v along gt. We decompose
v(t) =

∑
vp,q(t) into its Hodge components and write σ =

∑
σp for the graded

pieces σp : Hp → Hp+1 of the Gauss-Manin connection contracted against a unit
tangent vector at t = 0 in the direction of gt. Expanding into components, we
obtain

∂

∂t
log h(v(t), v(t))|t=0 =

∂
∂th(v(t), v(t))

h(v, v)

≤ 2

∑`−1
p=0 h(σp(v

p,`−p), vp+1,`−p−1) + h(σ†p+1(vp+1,`−p−1), vp,`−p)∑`
p=0 h(vp,`−p, vp,`−p)

,

(8)

where σ† : Hp+1 → Hp is the adjoint of σ. From this expression it is obvious that
it suffices to bound from above the operator norms of all the maps σp, hence of σ.
Since D is homogeneous and finite dimensional, any two norms are comparable, so
we may as well bound the euclidean norm σ. But since σ is just the derivative of
the period map p, we can now invoke the Ahlfors-Lemma in the version of [Roy80,

Theorem 2] to obtain the bound ||σ||2 ≤ ||dp||2 ≤
√
|k|/

√
|K|, where k = −4 is the

curvature of H in the convention we use. �

4. The bad locus and the main estimate

Suppose that we are given a C-local system V of rank r over a curve C with
non-expanding cusp monodromies. Let ∆ be the set of boundary points of C and
recall that by assumption χ(C) = −deg Ω1

C(∆) < 0. Denote by λ1 ≥ · · · ≥ λr
the Lyapunov exponents of V with respect to the norm ‖ · ‖ = ‖ · ‖h stemming
from an admissible metric h as given by Theorem 2.1. Note that the metric on V
naturally equips the dual bundle V∨ with an admissible metric ‖ · ‖∨ defined by
‖u‖∨ = supv 6=0 |u(v)|/‖v‖h, which is admissible as well ([Sim90], Theorem 4), and
can be used to compute the Lyapunov exponents of V∨.

In this section we prove a conjecture of Fei Yu [Yu14], or more precisely, a
generalization from the context of VHS to the case of local systems with non-
expanding cusp monodromies.
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Theorem 4.1. If E ⊂ V is a holomorphic parabolic subbundle of rank k of the
Deligne extension V of V⊗C OC , then

k∑
i=1

λi ≥
2 degpar(E)

deg Ω1
C

(∆)
=

2 degpar(E)

2g(C)− 2 + |∆|
. (9)

We do not assume that the flat bundle V is irreducible. Clearly, the theorem
is applicable to every irreducible summands of V, so if V is reducible, we can
decompose V into a direct sum of irreducible summands and obtain finer estimates
by applying the theorem individually to each irreducible summand.

The condition “parabolic subbundle” refers to the parabolic structure on V in-
troduced in Section 2.2. This condition is void for unipotent monodromies. For
Teichmüller curves one can always restrict to this case. In fact, we can in this case
(tacitly) replace C by a finite unramified covering such that the local monodromies
around the cusps in ∆ are unipotent. This is always possible, since in general local
monodromies are quasi-unipotent and since π1(C) is finitely generated and free if
C is not compact. This base change does not modify Lyapunov exponents and
multiplies numerator and denominator of the right hand side of (4.1) by the degree
of the covering.

We prepare for the proof with three reduction steps. First note that the Lya-
punov spectrum of V is symmetric with respect to zero, i.e. −λr+1−` = λ` for
any `. This follows since the geodesic flow in negative time has on the one hand
the negative of the Lyapunov spectrum for every flow and on the other hand (due
to the SL2(R)-action on H) the flow in positive and negative time are conjugated
and have consequently the same Lyapunov spectrum.

Second, we remark that λi(V) = −λr+1−i(V∨). Combining these two observa-
tions it suffices to prove that

k∑
i=1

λi(V∨) ≥
2 degpar(E)

deg Ω1
C

(∆)
. (10)

Moreover, we remark that it suffices to prove the theorem for the case when E
is a line bundle, i.e. to treat the case k = 1. In fact, given a parabolic subbundle
E ⊆ V as in statement of the theorem, the exterior power L = ∧kE is a parabolic
subbundle of ∧kV (obvious from the second definition of exterior powers as defined
in Section 2.3) and ∧kV is the Deligne extension of ∧kV ⊗ OC . (This also follows
from the first defining property of an admissible metric and the compatibility of the
metric with taking exterior powers.) Since degpar(E) = degpar(L) by Proposition 2.5

and since the top Lyapunov exponent of ∧kV is just
∑k
i=1 λi the claimed reduction

to k = 1 follows.
Mimicking the idea of [Kon97] we define an auxiliary norm on the dual bundle V∨

by defining for any point u in the total space of V∨

||u||E :=
|ωc(u)|√
|h(ωc, ωc)|

=
|ωc(u)|
‖ωc‖h

, (11)

where ωc is a nonzero element of the fiber Ec over the point c in C. This seminorm
is well-defined, i.e. it does not depend on the choice of the nonzero vector ωc in Ec,
since numerator and denominator are homogeneous of the same degree in ωc.
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The difference with the standard case of weight one (see [Kon97], [For02], [BM10],
[EKZ11]) is that the numerator can indeed become zero. We call the locus where
the numerator in (11) vanishes the bad locus with respect to E , that is, we define

T bad = {(c, u) : ωc(u) = 0}
as a subset of the total space of the bundle VC over C.

Since Lyapunov exponents are defined by parallel transport, we really need a
definition of the bad locus that records all translates of a given vector. Let p : H→
C denote the universal cover. The flat structure on V∨C provides a trivialization of
ϕ∗V∨C . Using the parallel transport of section given by this trivialization we define
for u ∈ V∨C the bad locus of u as

T bad(u) = {z ∈ H : ωz(u) = 0} . (12)

Here ωz is a generator in the fiber p∗Ez of the induced bundle p∗E over H. In other
words, T bad(u) is the set of points z in H for which the fiber p∗Ez of the line bundle
p∗E gets inside the hyperplane Annu.

Lemma 4.2. For every c ∈ C there is a countable union of hyperplanes H in V∨c
such that for u ∈ V∨c \H the bad locus T bad(u) is a discrete subset of H.

Proof. Since E is a holomorphic subbundle, locally T bad(u) is given as the vanishing
locus of a holomorphic function. Thus, for any given u the locus T bad(u) is either
discrete in H or equal to H. The second possibility might only occur on the hyper-
plane Ann ωc. (The countable union results from the choice of a p-preimage.) �

One can prove in fact that, if the flat bundle V is irreducible over C, the sub-
bundle of V∨ given by those u for which T bad(u) = H is actually the zero bundle.
Next, we compare the admissible metric and the ‖ · ‖E -seminorm.

Lemma 4.3. For any point c of the curve C and for any u in the fiber V∨c over c

‖u‖∨
‖u‖E

≥ 1 . (13)

Proof. The definition of the norm on the dual bundle implies |ωc(u)| ≤ ‖ωc‖h ·‖u‖∨,
implying the claim. �

Proof of Theorem 4.1. Pull back the flat bundle and the holomorphic linear sub-
bundle E to the universal cover H over C. For any z ∈ H and for almost any u in
the fiber V∨z over z one can express the Lyapunov exponent λ1(V∨) (see [EKZ14],
§3.2) as

λ1(V∨) = lim
T→∞

1

T

1

2π

∫ 2π

0

log ||gT rθu||∨dθ .

Now we replace the admissible norm ‖ · ‖∨ by the seminorm ‖ · ‖E . Lemma 4.3
implies the inequality

lim
T→∞

1

T

1

2π

∫ 2π

0

log ||gT rθu||∨dθ ≥ lim
T→∞

1

T

1

2π

∫ 2π

0

log ||gT rθu||Edθ . (14)

A priori, the limit in the right-hand-side might be equal to −∞. As an outline for
the remaining proof, we want to run the standard argument (compare e.g. [For02],
or [EKZ14] §3.2–3.3, see [KM16], proof of Theorem 3.3 with n = 1 and κ = 1/2,
for details allowing to trace the origin of the normalizing factor 2 in the numerator
given our curvature conventions) for computing Lyapunov exponents in terms of
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degree of holomorphic subbundle. We use that from the definition of the seminorm
‖gtrθL‖E in (11) we get

log ||gtrθu||E = log(|ωgtrθz(gtrθu)|)− log(‖ωgtrθz‖h) .

In contrast to the classical case we need to consider the Laplacian of the first
summand on the right hand side. Away from T bad(gtrθu) the argument of the
logarithm is a non-zero holomorphic functions and since ∆hyp is proportional to ∂∂
this contribution vanishes. Near a bad point, the local contribution is the integral
of ∆hyp log(|z|n) for some positive n, hence positive. Altogether, we argued (by
integrating over the hyperbolic disc D(u) around the base point of u swept out by
gtrθ) that, for almost every u,∫

D(u)

∆hyp log ||uz||Edghyp(z) ≥ −
∫
D(u)

∆hyp log(‖ωz‖h)dghyp(z) . (15)

Here uz is the parallel transport of u to the point z ∈ D(u). This inequaliy will
imply that λ1(V∨) is greater or equal to the parabolic degree of E , suitably nor-
malized.

To be self-contained, we reproduce this computation in detail. Let Dt be the
hyperbolic disc of radius t and ∆hyp be the Laplacian for the hyperbolic metric ghyp

on Dt. In the following chain of (in)equalities, we first apply an extra averaging over
the unit tangent bundle T 1C. Next, we apply a version of Green’s formula ([For02,
Lemma 3.1] or [EKZ14, Lemma 3.6]) for the disc Dt(u) centered around the base
point of u of hyperbolic radius t. The subsequent inequality follows from (15). Then
we exchange the T -limit and the C-integration, justified by dominated convergence
due to the accessibility of the metric h. The resulting double integration over C and
Dt(u) both just shift the base point and can be subsumed into a single integration.
To pass to the next line, we use that the integrand no longer depends on T and
interchange the order of integration again. Finally we pass from ∆hyp to ∂∂.

vol(C)λ1(V∨) ≥
∫
T 1C

lim
T→∞

1

T

1

2π

∫ 2π

0

log ||gT rθu||Edθ dµT 1C(u)

=

∫
T 1C

lim
T→∞

1

T

1

2π

∫ T

0

d

dt

∫ 2π

0

log ‖gtrθu‖E dθ dtdµT 1C(u)

=

∫
T 1C

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt)

∫
Dt(u)

∆hyp log ‖uz‖E dghyp(z) dtdµT 1C(u)

≥
∫
C

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt)

∫
Dt(u)

−∆hyp log ‖ωz‖h dghyp(z) dtdghyp

= lim
T→∞

1

T

∫ T

0

tanh(t) dt

∫
C

−1

2
∆hyp log ‖ωz‖h dghyp(z)

= −1

2

∫
C

∆hyp log ‖ωz‖h dghyp(z) = −1

4

∫
C

∆hyp log |dethij | dghyp(z)

= −1

4

∫
C

4
∂2

∂z∂z̄
log |dethij |

i

2
dz ∧ dz̄ =

1

2i

∫
C

∂∂ log |dethij |

= π degpar(Ξh(E|C)) ≥ π degpar(E) ,

where the last inequality is justified as follows. By the hypothesis E ⊂ V, the
hypothesis V = Ξh(V|C) on the metric h and the definition of a parabolic subbundle,
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the metric h is acceptable for Ξh(E|C), and hence Ξh(E|C) contains E as parabolic
subbundle. The degree is decreasing in passing to subbundles. (In fact the last
inequality would even be an equality by Proposition 2.5 if the metric h restricted
from V to E was acceptable for E .)

Taking into consideration that the hyperbolic area vol(C) in the hyperbolic met-
ric of constant negative curvature −4 has the form vol(C) = π

2

(
2g(C)− 2 + |∆|

)
we obtain the desired inequality. �

Remark 4.4. The normalization of the constant negative curvature on the Rie-
mann surface C to −4 is a matter of pure convention coming, partly, from the tra-
dition to associate Teichmüller geodesic flow to the action of the 1-parameter group(
et 0
0 e−t

)
, and to have λ1 = 1 for the top Lyapunov exponent of the Hodge bundle

over the Teichmüller geodesic flow. The choice of the constant negative curvature
−1 would impose time normalization which is twice slower, so the 1-parameter

subgroup corresponding to geodesic time for curvature −1 would be
(
et/2 0

0 e−t/2

)
.

In other words, the Lyapunov exponents for the geodesic flow in constant negative
curvature −k2 are k times the Lyapunov exponents for the geodesic flow in constant
negative curvature −1. The hyperbolic area of the Riemann surface in the metric
of constant negative curvature −k2 is k−2 times the hyperbolic area of the same
Riemann surface in the metric of constant negative curvature −1. The latter is
equal to 2π(2g(C)− 2 + |∆|).

5. Application: Lyapunov exponents for the Hodge bundle over the
Teichmüller geodesic flow

Here we give applications of the main theorem for the Teichmüller geodesic flow.
The first is a comparison of slope polygons and the second is a contribution towards
the large genus asymptotics of individual Lyapunov exponents. Both results were
observed in [Yu14], and proved there conditionally to our main theorem. We assume
in this section that the reader is familiar with the stratification of the moduli space
of abelian differentials and with the notion of Teichmüller curves, see e.g. [KZ03],
[Zor06], [Möl13].

5.1. Two polygons. The slope of a vector bundle F on a curve is defined as
µ(F) = deg(F)/rank(F). A bundle is called semistable if it contains no subbundle
of strictly larger slope. A filtration

0 = F0 ⊂ F1 ⊂ F2 · · · ⊂ Fg = F

is called a Harder–Narasimhan filtration if the successive quotients Fi/Fi−1 are
semi-stable and the slopes are strictly decreasing, i.e.

µi := µ(Fi/Fi−1) > µi+1 := µ(Fi+1/Fi) .

The Harder–Narasimhan filtration is the unique filtration with these properties.
Given such a filtration, one can record the numerical data in a “Harder–Narasimhan
polygon” with vertices (rk(Fi), 2 deg(Fi)/|χ|), where |χ| = 2g − 2 + |∆|.

Here, we apply these considerations to a Teichmüller curve C and to F =
f∗ωX/C , the direct image of the relative dualizing sheaf of the family of stable

curves f : X → C. This agrees with the Deligne extension of first filtration piece
of the weight one VHS associated with f .
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Similarly, one can record the numerical data of the Lyapunov exponents in a

“Lyapunov polygon” with vertices (k,
∑k
i=1 λi).

The Harder–Narasimhan polygon and the Lyapunov polygon share the endpoints
(0, 0) and (g, 2 deg f∗ωX/C/|χ|). Applying the main theorem to the subbundles in

the Harder–Narasimhan filtration gives immediately the following result, originally
conjectured by Fei Yu ([Yu14]).

Corollary 5.1. The Lyapunov polygon of a Teichmüller curves lies always above
the Harder–Narasimhan polygon (equality permitted).

5.2. Lyapunov exponents for strata. So far, we only have been working over
curves. From this we can deduce properties of Lyapunov exponents for strata thanks
to a convergence result in [BEW16] for individual Lyapunov exponents.

Theorem 5.2 ([BEW16]). If
∑k
i=1 λi ≥ M for a dense set of Teichmüller curves

in some connected component stratum H∗(κ) of the moduli space of Abelian differ-
entials H(κ), then the Lyapunov exponents λi(κ) for the Teichmüller geodesic flow

on the entire component H∗(κ) also satisfy
∑k
i=1 λi(κ) ≥M .

This theorem applies also to any GL+
2 (R)-invariant suborbifold that contains a

dense set of Teichmüller curves.

In [KZ97] the two authors conjectured the large genus limit of the Lyapunov is

lim
g→∞

λ2 = 1

for the hyperelliptic components of the strata H(2g − 2) and H(g − 1, g − 1) and
that for all other strata and their components

lim
g→∞

λ2 =
1

2
.

This first part of this conjecture now follows. The proof of this corollary was
given by F. Yu, assuming the validity of Theorem 4.1 and Theorem 5.2.

Corollary 5.3 ([Yu14, Conjecture 5.13]). For the hyperelliptic components of the
series of strata H(2g − 2) and H(g − 1, g − 1) the large genus limits of Lyapunov
exponents are

lim
g→∞

λk = 1

for any fixed k ≥ 1.

(The Lyapunov exponents in the preceding statement are defined for g ≥ k.)

Proof. For those hyperelliptic strata the Harder–Narasimhan filtration over any
Teichmüller curve is computed in [YZ13] to be given by the subbundles Ek =
f∗ωX/C(−(2g − 2k)S) resp. Ek = f∗ωX/C(−(g − k)(S1 + S2)) for k = 1, . . . g and

the degrees of the successive quotient line bundles Ek/Ek−1 are equal to

deg(Ek/Ek−1) =
|χ|
2

(
1− 2(k − 1)

2g − 1

)
resp. deg(Ek/Ek−1) =

|χ|
2

(
1− (k − 1)

g

)
.

The implies that 2 deg(Ek)/|χ| tends to k in both cases as g tends to infinity.
Together with the Theorem 5.2 our main theorem implies the result. �

A similar statement holds for any family of hyperelliptic loci in a sequence of
strata where the order of at least one singularity tends to infinity.
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6. Application: Lyapunov exponents for some hypergeometric groups
and Calabi–Yau threefolds

In this section we apply our main theorem to a class of VHS of rank greater than
one. Our example is the well-studied class of hypergeometric local systems that arise
from Calabi–Yau threefolds with h2,1 = 1. The irreducible local systems that meet
the additional requirements imposed by physics (existence of a MUM-point and a
conifold point, see Section 6.3 for details) depend on two parameters µ1, µ2 called
local exponents (see Section 6.4 for the definition). For any pair 0 < µ1 ≤ µ2 ≤ 1/2
with µi ∈ R the corresponding local system admits an R-VHS. We compute the
degrees of the Hodge bundles and, consequently, a lower bound for the Lyapunov
exponents.

Theorem 6.1. Suppose that the local exponents 0 < µ1 ≤ µ2 ≤ 1/2 at the point
z = ∞ of a Calabi–Yau-type hypergeometric group with h2,1 = 1 are (µ1, µ2, 1 −
µ2, 1− µ1). Then the degrees of the Hodge bundles are

degpar E3,0 = µ1 and degpar E2,1 = µ2 .

For families of Calabi–Yau threefolds the local mondromies are quasi-unipotent,
hence µi ∈ Q. In Table 1 we reproduce from [DM06] the well-known list of possible
parameters (µ1, µ2) that meet the physically relevant conditions together with ap-
proximations for the Lyapunov exponents. Explanations for the first three columns
are given in Section 6.3.

The most remarkable conclusion from the numerical approximation of Lyapunov
exponents is the following. In the first seven cases the sum of Lyapunov exponents
matches the lower bound predicted by Theorem 4.1. The table lists the correspond-
ing sum as exact fractions, but note that only three digits seem to be reliable in
the experiments. In the remaining cases, the sum λ1 + λ2 of Lyapunov exponents
is strictly larger than predicted by the lower bound in Theorem 4.1. Note that
in precisely the 7 cases of (numerical) equality the monodromy groups of the hy-
pergeometric local systems are of infinite index (“thin”) in Sp(4,Z) while in the
other 7 cases the monodromy group is of finite index in Sp(4,Z). This follows from
combining the results in [BT14] and [SV14]. It would be interesting to decide if in
these seven cases actually equality holds and to explain the relation to the arith-
meticity of the monodromy groups. We provide further conjectures in this direction
in Section 6.5 below.

Note that there is another commonly used normalization of the degrees and
Lyapunov exponents. Instead of working with parabolic degrees and over P1 with
three singular points, we can view the above local systems as representations of
the Fuchsian triangle group ∆(n,∞,∞), where n is the least common multiple of
the denominators of µ1 and µ2 if 0 < µ1 < µ2 < 1/2 and where n = ∞ if at
least one of the inequalities becomes an equality. Geometrically, this corresponds
to viewing the local systems over the orbifold C = H/∆(n,∞,∞). The orbifold
Euler characteristic −χ of C is given in each case in the last column. Note that
0 < −χ ≤ 1 in all the cases. One can also define and compute Lyapunov exponents
λorb

1 , λorb
2 of the corresponding local systems over the orbifold C = H/∆(n,∞,∞).

They are related to the Lyapunov exponents λi over the thrice punctured sphere
by

λi = λorb
i · |χ|.
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# Model C d µ1, µ2 λ1 λ1 + λ2 −χ
1 46 1 1/12, 5/12 0.97 1 11/12
2 44 2 1/8, 3/8 0.95 1 7/8
3 52 4 1/6, 1/2 1.27 4/3 1
4 P4[5] 50 5 1/5, 2/5 1.12 6/5 4/5
5 56 8 1/4, 1/2 1.40 3/2 1
6 P6[22, 3] 60 12 1/3, 1/2 1.53 5/3 1
7 P7[24] 64 16 1/2, 1/2 1.75 2 1

8 22 1 1/6, 1/6 0.75 0.92 1
9 34 1 1/10, 3/10 0.77 0.83 9/10
10 32 2 1/6, 1/4 0.84 0.97 11/12
11 42 3 1/6, 1/3 0.96 1.06 5/6
12 40 4 1/4, 1/4 1.07 1.30 1
13 48 6 1/4, 1/3 1.15 1.31 11/12
14 54 9 1/3, 1/3 1.34 1.60 1

Table 1. Table of CY-VHS and approximate values of their Lya-
punov exponents

The corresponding orbifold degrees of Hodge bundles can be computed as ordinary
degrees of line bundles on a cyclic cover where all the monodromies are unipotent, as
indicated in Section 6.3. The orbilfold normalization λorb

1 , λorb
2 was used in previous

computations for Teichmüller curves (e.g. in [BM10] and [EKZ11]).

6.1. Hypergeometric differential equations. We fix two sequences of real num-
bers α = (α1, . . . , αn) and β = (β1, . . . , βn) with

0 ≤ α1 ≤ · · · ≤ αn < 1

0 ≤ β1 ≤ · · · ≤ βn < 1
(16)

and with the property αi 6= 1−βj . The regular hypergeometric differential operator
is the operator

P = P (α,β) =
n∏
i=1

(D − αi)− t
n∏
i=1

(D − βi), D = t
d

dt
(17)

It gives rise to a flat connection ∇ on the trivial vector bundle V0 on P1 with regular
singularities precisely at the points {0, 1,∞}. We refer to this local system as the
hypergeometric local system V = V(α,β).

A hypergeometric group with parameters a = (a1, . . . , an) and b = (b1, . . . , bn)
subject to the conditions |ai| = 1 = |bj | and ai 6= 1/bj for all (i, j) is a subgroup of
GLn(C) generated by three elements

h0, h1, h∞ ∈ GLn(C) with h∞h1h0 = Id (18)

such that

det(X Id− h∞) =

n∏
i=1

(X − ai), det(X Id− h−1
0 ) =

n∏
i=1

(X − bi) (19)

and such that h1 is a pseudo-reflection. Here, a pseudo-reflection is an element
g ∈ GLn(C) such that g − Id has rank one.
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Up to conjugation there is a unique hypergeometric group for a given set of
parameters. The proof due to Levelt and monodromy matrices can be found e.g.
in [BH89], Theorem 3.5. The hypothesis ai 6= 1/bj guarantees that the flat bundle
V is irreducible ([BH89], Proposition 3.3).

The monodromy group of V is the hypergeometric group with parameters a
and b where e2πiαj = aj and e2πiβj = bj for j = 1, . . . , n.

6.2. Simpson’s correspondence in the parabolic case. In order to state Simp-
son’s correspondence we need to extend the definition of parabolic structure and
stability from vector bundles to the cases of parabolic vector bundles, local systems
and Higgs bundles, respectively.

A regular parabolic Higgs bundle is a parabolic vector bundle (E , F •) together
with a Higgs field, i.e. a map of sheaves of OC-modules

θ : E → E ⊗ Ω1
C (20)

that respects the parabolic structure in the sense that for every c ∈ ∆ the map θ
extends for every α ∈ [0, 1) to

θc,α : E≥αc → E≥αc ⊗ Ω1
C

(∆) . (21)

A regular parabolic system of Hodge bundles is a regular parabolic Higgs bundle
whose underlying vector bundle admits a decomposition E = ⊕p∈ZEp, such that θ
has degree −1 with respect to the grading given by this decomposition.

Recall that a vector bundle V is called stable, if for every subbundleM⊂ V the
condition

deg(M)

rank(M)
<

deg(V)

rank(V)
(22)

holds. Similarly, a parabolic vector bundle (resp. a local system, resp. a Higgs bundle)
is called stable, if the condition (22) holds for every parabolic subbundle (resp.
every subbundle preserved by the connection, resp. every subbundle preserved by
the Higgs field).

Simpson’s correspondence ([Sim90]) for the non-compact case states that there is
a natural one-to-one correspondence between stable regular parabolic Higgs bundles
and stable parabolic local systems of degree zero.

There is an action of C∗ on the set of regular parabolic Higgs bundles of degree
zero, where s ∈ C∗ sends (E, θ) to (E, sθ) while preserving the filtration. Fixed
points of this action are precisely the regular parabolic systems of Hodge bundles
of degree zero.

Since hypergeometric local systems are rigid (e.g. [BH89], Proposition 3.5), Simp-
son’s correspondence implies the following ([Sim90], Corollary 8.1).

Corollary 6.2. A hypergeometric local system V = V(α,β) carries a complex
variation of Hodge structures.

The Hodge numbers, i.e. the ranks hp of the summands Ep, are known by a
theorem of Fedorov. If we set ρ(k) = #{j : αj < βk} − k, then the main theorem
of [Fed15] (Theorem 1) states that

hp = #ρ−1(p) (23)

after an appropriate shifting of the weight (or the grading).
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6.3. Families of Calabi–Yau threefolds with h2,1 = 1 and generalizations.
Families of Calabi–Yau threefolds with h2,1 = 1 carry a weight 3 variation of Hodge
structures and by definition of Calabi–Yau threefolds the Hodge numbers of these
families are (1, 1, 1, 1), i.e. dim Ep,q = 1 for p = 0, 1, 2, 3. In a VHS arising from ge-
ometry the VHS has an R-structure and quasi-unipotent monodromies. Motivated
by physics requirements the most intensely investigated families satisfy the follow-
ing properties. They are over P1, smooth outside three points, have one point of
maximal unipotent monodromy (MUM, i.e. there is only one Jordan block of maxi-
mal size) and one rank one unipotent point. There are 14 possible cases, as derived
in [DM06]. They are given in Table 1. In some cases, these families have been
realized geometrically (e.g. as complete intersection in weighted projective spaces)
and the first column of the table lists this realization (if available, e.g. P4[5] refers
to the (mirror) quintic)).

The local exponents of such a hypergeometric system, with real structure, with
a MUM-point and with a point where the monodromy is unipotent of rank one, are

β = (0, 0, 0, 0) at t = 0

(0, 1, 1, 2) at t = 1

α = (µ1, µ2, 1− µ2, 1− µ1) at t =∞ ,

(24)

see e.g. [Yos87], [Yos97], [BH89], [Fed15] for general background.
A realization of monodromy groups of the hypergeometric local systems listed

in Table 1 is given by

T0 =

(
1 0 0 0
1 1 0 0

1/2 1 1 0
1/6 1/2 1 1

)
, T1 =

(
1 −C/12 0 −d
0 1 0 0
0 0 1 0
0 0 0 1

)
with the parameters (C, d) as in the table. Here, the symplectic form defining the
polarization of the Hodge structure on V(α,β) is given by

Ω =

(
0 C/12 0 d

−C/12 0 −d 0
0 d 0 0
−d 0 0 0

)
and this symplectic form can be conjugated into Sp(4,Z). The proof of Theorem 6.1
does not use properties of these realizations. In fact, the representation is real by
[Fed15], Theorem 2 if

αm + α4+1−m ∈ Z and βm + β4+1−m ∈ Z .

The basic principle for the proof of Theorem 6.1 is the following. We consider
the Kodaira–Spencer maps (graded pieces of the Higgs fields)

τp−1 : Ep,q → Ep−1,q+1 ⊗ Ω1
C

(∆) . (25)

In our situation, these are maps between line bundles. The maps τ0, τ1 and τ2
are non-zero by Lemma 6.3 below, hence inclusions. To compute the (parabolic)
degrees it suffices to compute the length of the cokernels of these maps and to
determine the parabolic structure. We prove the following lemma (which applies
not only to hypergeometric systems, but to any self-dual flat bundle) and explain
the notions about differential equations in the next subsection.

Lemma 6.3. If x ∈ C is a regular point of the local system V on C, then all the
Kodaira–Spencer maps τi are isomorphisms at x.
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More generally, if x ∈ C and the local exponents µ1 < µ2 < µ3 < µ4 are distinct
and integral, then τ0 has a cokernel of length µ2−µ1−1, and so does τ2 by duality.
The map τ1 has a cokernel of length µ3 − µ2 − 1.

If c ∈ ∆ ⊂ C and with local exponents µ1 ≤ µ2 ≤ µ3 ≤ µ4, then τ0 has a cokernel
of length bµ2c−bµ1c, and so does τ2 by duality. The map τ1 has a cokernel of length
bµ3c − bµ2c.

Proof of Theorem 6.1. We can apply the first observation in Lemma 6.3 to every
point different from 0, 1,∞ and we can apply the observation for boundary points
in this Lemma at the MUM-point t = 0 and to the point t = ∞ to conclude
that at all these points all the τi are isomorphisms. Finally, the last statement in
Lemma 6.3 tells us that at the unipotent rank one point at t = 1, the maps τ1 is
still an isomorphism, while τ0 and τ2 have cokernels of length one.

Next, we consider the [0, 1)-filtrations, which are non-trivial only at the point
t =∞. There, since all the Ep,q are line bundles, the only possibility of a filtration
respecting the regularity hypothesis (21) and the fact that for a system of Hodge
bundles θ shifts the degree by −1 is

V ≥µi∞ = ⊕3
p=4−iEp,3−p∞ .

We deduce from properties of an R-VHS that degpar Ep,q = −degpar Eq,p. Hence

the fiber at t = ∞ of Ep,3−p is the graded piece of weight µ4−p of the filtration.
This implies that

−deg(E2,1) = deg(E1,2) + 1, −deg(E3,0) = deg(E0,3) + 1 .

Since τ1 is an isomorphism, we conclude from (25) that deg(E2,1) = deg(E1,2) + 1
and hence deg(E2,1) = 0 Since τ0 has a cokernel of length 1 we conclude from (25)
again deg(E3,0) = 0. This gives the parabolic degrees as claimed in the theorem. �

6.4. Local exponents, weight filtration and the cokernel lemmas. We need
two general concepts about a flat bundles V, local exponents and the monodromy
weight filtration. We let n = rank(V) and later we specialize to the case n = 4 of
primary interest.

To recall the definition and the properties of local exponents, fix a point c ∈ C,
let t be a coordinate of C such that c is the point t = 0 and fix a section ω(t) of
V, whose first n derivatives (with respect to ∇d/dt) generate V in a neighborhood
of c. Then there are meromorphic functions Pi(t) such that

L(ω) = (∇nd/dt +

n−1∑
i=0

Pi(t)∇id/dt)(ω) = 0

Since the local system V is supposed to have regular singularities, tn−1−iPi(t) is
holomorphic at 0. It will be convenient to rewrite the differential equation in terms
of the differential operator D as

∇nd/dt +

n−1∑
i=0

Pi(t)∇id/dt = ∇nD +

n−1∑
i=0

Qi(t)∇iD.

Now consider in general a linear differential operator

L(y) =
dny

d tn
+

n−1∑
i=0

Qi(t)
diy

d ti
(26)
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The local exponents {µ1(c), . . . , µn(c)} of L at c ∈ C are the solutions of the
equation

yn +

n−1∑
i=0

Qi(0)yi = 0 .

The local exponents at a point c are well-defined up to a simultaneous shift by some
integer. This ambiguity is due to the possibility of replacing the section ω(t) by
tkω(t), see Frobenius’ theorem (e.g. in [Yos87]) and below.

A point c ∈ C is called regular if the functions Pi(t) are regular at c. The
regular points are precisely those points where the local exponents are of the form
{k, k + 1, . . . , k + n− 1} for some k.

The local exponents {µ1(c), . . . , µn(c)} determine the exponents needed to write
local solutions of the differential equation as a power of uniformizer times a power
series expansion. More precisely, if the difference of any two local exponents is non-
integral, then the theorem of Frobenius states that the solutions of the differential
equation (26) are

si = tµiPi with Pi ∈ 1 + C[[t]] .

We refer to this basis of solutions as Frobenius basis. If some difference of local
exponents is integral, then one has to add logarithmic terms, according to the
monodromy at c. We give an example for n = 4.

Suppose that the monodromy is maximal unipotent (hence all the µi are the
same). Then the solutions are of the form

s1 = tµ1P1 ,

s2 = log(t)s1 + tµ2P2

s3 = 1
2 log(t)2s2 + log(t)s1 + tµ3P3

s4 = 1
6 log(t)3s3 + 1

2 log(t)2s2 + log(t)s1 + tµ4P4 .

We deduce that, by definition, a basis of local sections of the the Deligne extension
is tµ1P1, t

µ2P2, t
µ3P3, t

µ4P4. In fact, this last conclusions holds for any local mon-
odromy matrix. For this reason the proof of Lemma 6.3 does not depend on the
form of the monodromy matrix.

We have expressed above the local exponents in terms of a (polynomial associated
to a) differential operator L, which in turns depends on the choice of a local section
ω of V. We recall how to retrieve (V, ω) up to isomorphism from L. In fact, let
Sol ⊂ OC be the rank-n local system of solutions of L. Then Sol ∼= V∨, since in
fact the multiplication map

m : Sol⊗OC → OC ,

defines a section of V and the pair (Sol,m) is isomorphic to the pair (V, ω) we
started with.

In terms of a basis of Sol and its dual basis we can compute the effect of the
covariant derivative. To simplify notations, we restrict to the case n = 4 of primary
interest here. Let {s1, s2, s3, s4} be a basis of Sol around c and denote by

s∨j :

4∑
i=1

si ⊗ gi 7→ gj ∈ Sol∨ ∼= V (gi ∈ OC(U) for some U)
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the elements of the dual basis. In this basism =
∑4
i=1 sis

∨
i , as a section of Sol∨ ∼= V.

Moreover,

∇d/dt(m)
( 4∑
i=1

si ⊗ gi
)

= d
( 4∑
i=1

si ⊗ gi
)
−

4∑
i=1

sigi =

4∑
i=1

s′i ⊗ gi,

i. e. ∇d/dt(m) =

4∑
i=1

s′is
∨
i .

This completes the preparation for the main lemma.

Proof of Lemma 6.3. We start with the case of a regular point. Without changing
the length of the cokernels we may choose the section ω to be non-vanishing at c,
hence the local exponents are {µ1 = 0, 1, 2, 3}. The length of the cokernel of τ0 at
the point c, i. e. at t = 0, is the vanishing order of

∇d/dt(m) =

4∑
i=1

s′is
∨
i ∈ V/〈m〉, (27)

where V = 〈s∨1 , s∨2 , s∨3 , s∨4 〉 is the fiber of V over c. We use the Frobenius ba-
sis {s1, s2, s3, s4} from now on. Consider the matrix M = M(t) with entries

Mij(t) = s
(j−1)
i (t). Since the 2 × 2-minor M12

12 of M has a determinant with
non-zero constant term (considered as element of C[t]), the vanishing order of (27)
is zero, i.e. the map τ0 is an isomorphism at c. Similarly, the minor M123

123 and also
the determinant M itself have non-zero constant terms by our hypothesis on the
local exponents. Since

∇(j)
d/dt(m) =

4∑
i=1

s
(j)
i s∨i ,

this is precisely what we need to deduce that also the Kodaira–Spencer maps τ1
and τ2 are isomorphisms at x.

The case of general (but still integral) local exponents, follows similarly. In fact,
the minimal order of vanishing of a 2× 2-minor of the first two rows of M is given
by M12

12 , which starts with tµ2−1. Hence the length of the cokernel of τ0 is as
claimed. The minor M123

123 starts with tµ3−2. This is the length of the cokernel of
the composition of Kodaira–Spencer maps τ1 ◦ τ0 : E3,0 → E1,2 → Ω1

C
(∆)⊗2 and

it implies the claim about τ1. The same argument with the determinant M finally
implies the claim about τ2.

The discussion so far was concerned with points c ∈ C. If c ∈ ∆ ⊂ C, then
the calculations above are the same with M replaced by the matrix with entries

Mij(t) =
(
t ∂∂t
)j−1

si(t). This increases the length of each of the cokernels by one
with respect to the previous calculations.

Finally in the case of non-integral local exponents recall that the sections of the
Deligne extension are given by t{µi}si in terms of the Frobenius basis, where {µ} =
µ − bµc denotes the fractional part of µ. Consequently, the preceding calculation
applies again, now with µi replaced by bµic. �

6.5. Conjectural region of equality. It seems likely, that the seven cases of
Calabi–Yau type families with equality are not isolated examples. Initially we
conjectured that the equality λ1 +λ2 = 2(µ1 +µ2) is attained in the entire region
in the (µ1, µ2)-plane defined by the linear inequality 3µ2 ≥ µ1 + 1. After more
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detailed numerical experiments by Fougeron the conjecture cannot be upheld in
this form any more (see [Fou17]). According to these experiments it rather appears
that equality is attained at an infinite number of rational points in the (µ1, µ2)-
plane. It would be very interesting to relate in general thinness of the monodromy
group and the equality λ1 + λ2 = 2(µ1 + µ2), see also [DD17] for some results in
this direction.

Special cases of the conjecture can be equivalently formulated as a number-
theoretic problem. This new hypothetical non-vanishing property is similar to
the non-vanishing of the classical modular form ∆(q) := q

∏
n≥1(1 − qn)24 for

0 < |q| < 1. Consider the mirror quintic (case 4 in Table 1), normalized so that the
MUM-point is zero, the conifold point is at t =∞ and the remaining singular point
is t = (1/5)5 instead of t = 1 before. Since strict inequality in Theorem 4.1 is caused
by the presence of bad points (see (12)), it seems natural to look for a flat section
of p∗(∧2V) (where p : H → C is the universal cover) that avoids the bad locus.
As a first attempt we take L to be the Lagrangian 2-plane that is invariant under
the monodromy around t = 0 and the flat section it defines by parallel transport
along the upper half plane. In fact, since the condition of having empty bad locus
is open, it suffices to find a single flat section of p∗(∧2V∨) such that the pairing
with L is everywhere non-zero on H. Here, again, we try the 2-plane invariant
under the monodromy around t = 0 and its parallel transport. Near t = 0, the
2-plane L is generated by the differential 3-forms {Ω3,0 and Ω2,1} generating E3,0

and E2,1 respectively. The homology 2-plane is generated by the two “shortest”
3-cycles {γ0, γ1}. It is well-known (e.g. [Kon95]) that

ψ0(t) :=

∫
γ0

Ω3,0(t) =
∑
n≥0

(5n)!

n!5
tn

and

ψ1(t) :=

∫
γ1

Ω3,0(t) = log(t)ψ0 +
∑
n≥0

(5n)!

n!5

(
5n∑

k=n+1

1

k

)
tn .

Since the Kodaira–Spencer map is non-vanishing (on P1 \ {0, (1/5)5,∞}), the inte-
gral against Ω2,1(t) is given by the t-derivatives of ψ0 and ψ1 respectively. Conse-
quently, the contraction of L against 〈γ0, γ1〉 is given by the Wronskian

W (t) = ψ0(t)ψ′1(t)− ψ′0(t)ψ1(t) .

We consider the composition F (q) = W ◦ λ(q) with the λ-function

λ : ∆∗ → C, λ(q) =
q

55
·

(∑
n∈Z q

n2+n∑
n∈Z q

n2

)4

,

where ∆∗ = {q ∈ C : 0 < |q| < 1} denotes the punctured unit disc. By the choice
of L and {γ0, γ1}, the function F extends meromorphically with a simple pole across
q = 0.

Altogether, the non-vanishing of L contracted against 〈γ0, γ1〉 on the whole upper
half plane and the mirror quintic case µ1 = 1/5, µ2 = 2/5 of the conjecture stated
in the introduction follows from the following statement.

Conjecture 6.4. The pullback F of the Wronskian W (t) via λ vanishes nowhere
on the puntured unit disc ∆∗.
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Strong numerical evidence for this conjecture is given by considering the growth
rate of the coefficients of 1/F . They appear to be growing like exp(C

√
n) for

some C, whereas for the reciprocal of function with a zero in the disc (like e.g.
1/ψ0(λ(q)) ) has radius of convergence strictly smaller than one and coefficients
growing like exp(n).

Appendix A. The multiplicative ergodic theorem and equivalent
norms for measurable cocycles

Suppose that we have a smooth, or continuous (or just measurable) finite-dimen-
sional complex vector bundle V of rank r over the base B, where the smooth (or
topological) manifold B is endowed with a probability measure µ. Suppose that
a map T : B → B ergodic with respect to the measure µ extends to a smooth
(continuous, measurable) automorphism A of the vector bundle V. In other words,
we suppose that the map T of the base to itself lifts to a map A of the total space of
the vector bundle to itself preserving the bundle structure, such that A is fiberwise
C-linear, and such that the induced linear transformations Ax : V(x) → VT (x) of the
fibers is invertible for any x ∈ B. Suppose finally that each fiber V(x) of the vector
bundle V is endowed with a norm ‖ ‖(x) which depends smoothly (continuously,
measurably) on the base point x ∈ B.

Consider the usual operator norm

‖Ax‖ := max
~v∈Vx\~0

‖Ax~v‖(T (x))

‖~v‖(x)
.

Define log+(y) = max(0, log(y)).

Definition A.1. The above data (B, T, µ,V, ‖ ‖, A) defines a measurable cocycle if
log+ ‖Ax‖ is integrable over B with respect to the measure µ,∫

B

log+‖Ax‖ dµ(x) <∞ .

We state the Multiplicative Ergodic Theorem in a form close to the original
formulation in [Ose68].

Theorem A.2 (Oseledets Theorem). Suppose that (B, T, µ,V, ‖ ‖, A) is an in-
tegrable cocycle. Then there exist real numbers λ(1) > λ(2) > · · · > λ(k) and
T -equivariant complex subbundles of V defined for almost every x ∈ B, denoted by

0 ( V≤λ(k) ( · · · ( V≤λ(1) = V ,
such that for vectors v ∈ V≤λ(i) \ V≤λ(i+1) we have

lim
N→∞

1

N
log ‖TN (v)‖ → λ(i) .

We also use the notation λ1 ≥ λ2 ≥ · · · ≥ λr for the Lyapunov spectrum
consisting of the numbers λ(i) from Oseledets Theorem repeated with multiplicity

rank(V≤λ(i)/V≤λ(i+1)).
Instead of a discrete ergodic transformation of the vector bundle one can con-

sider an ergodic flow gt on the base B and a smooth (continuous, measurable)
connection ∇ on the vector bundle, where ∇ is not assumed to be necessarily flat.
Denote by A(x, t) : V(x) → Vgt(x) the linear transformation of the fibers induced by
the holonomy along the trajectory of the flow.
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Definition A.3. The cocycle (B, gt, µ,V,∇, ‖ ‖) is called integrable if the function
supt∈[−1,1] log+ ‖A(x, t)‖ is integrable over B with respect to the measure µ, i.e.∫

B

sup
t∈[−1,1]

log+‖A(x, t)‖ dµ(x) <∞ .

In this situation we also say that (V, gt, ‖ ‖) is an integrable flat bundle.

The Multiplicative Ergodic Theorem stated above generalizes naturally to mul-
tiplicative cocycles over flows.

It is clear from the definition that integrability of the cocycle and the Lyapunov
spectrum do not depend on the choice of the norm in the vector bundle for a large
class of norms. To provide a convenient sufficient condition of equivalence of norms
we start with the following definition.

Definition A.4. Let V be a vector bundle over the base B; let µ be a probability
measure on B. We say that two norms ‖ ‖1 and ‖ ‖2 on the vector bundle V are
L1(µ)-equivalent if the quantity

max
~v∈Vx\~0

∣∣∣∣log
‖~v‖2 (x)

‖~v‖1 (x)

∣∣∣∣ = max
~v∈Vx\~0

∣∣∣∣log
‖~v‖1 (x)

‖~v‖2 (x)

∣∣∣∣ (28)

is integrable over B with respect to the measure µ,∫
B

max
~v∈Vx\~0

∣∣∣∣log
‖~v‖2 (x)

‖~v‖1 (x)

∣∣∣∣ dµ(x) <∞ . (29)

The relation of L1(µ)-equivalence is, clearly, reflexive, symmetric, and transitive.

Theorem A.5. Suppose that data (B, T, µ,V, ‖ ‖1, A) define a measurable cocycle.
For any norm ‖ ‖2 which is L1(µ)-equivalent to ‖ ‖1 the data (B, T, µ,V, ‖ ‖2, A)
also define a measurable cocycle, and it has the same Lyapunov filtration and the
same Lyapunov exponents as the original one.

Suppose that data (B, gt, µ,V,∇, ‖ ‖1) define a measurable cocycle. For any norm
‖ ‖2 which is L1(µ)-equivalent to ‖ ‖1 the data (B, gt, µ,V,∇, ‖ ‖2) also define a
measurable cocycle, and it has the same Lyapunov filtration and the same Lyapunov
exponents as the original one.

Proof. We prove the Theorem for the cocycle with the discrete time; the proof for
the cocycles with continuous time is completely analogous.

log+ max
~v∈Vx\~0

‖Ax~v‖2 (T (x))

‖~v‖2 (x)
=

= log+ max
~v∈Vx\~0

‖Ax~v‖2 (T (x))

‖Ax~v‖1 (T (x))
·
‖Ax~v‖1 (T (x))

‖~v‖1 (x)
·
‖~v‖1 (x)

‖~v‖2 (x)

≤ log+ max
~w∈VT (x)\~0

‖~w‖2 (T (x))

‖~w‖1 (T (x))
+ log+ max

~v∈Vx\~0

‖Ax~v‖1 (T (x))

‖~v‖1 (x)
+ log+ max

~v∈Vx\~0

‖~v‖1 (x)

‖~v‖2 (x)

≤ max
~w∈VT (x)\~0

∣∣∣∣log
‖~w‖2 (T (x))

‖~w‖1 (T (x))

∣∣∣∣+ log+ max
~v∈Vx\~0

‖Ax~v‖1 (T (x))

‖~v‖1 (x)
+ max
~v∈Vx\~0

∣∣∣∣log
‖~v‖1 (x)

‖~v‖2 (x)

∣∣∣∣



It remains to note that since T : B → B is measure preserving we have∫
B

max
~w∈Vx\~0

∣∣∣∣log
‖~w‖2 (T (x))

‖~v‖1 (T (x))

∣∣∣∣ dµ(x) =

∫
B

max
~v∈Vx\~0

∣∣∣∣log
‖~v‖2 (x)

‖~v‖1 (x)

∣∣∣∣ dµ(x) .

Thus, the first and the third terms in the latter sum are L1(µ)-integrable by defi-
nition of L1(µ)-equivalent norms and the second term is L1(µ)-integrable since the
cocycle represented by the data (B, T, µ,V, ‖ ‖1, A) is integrable by assumption of
the Theorem. We have proved that L1(µ)-equivalence of the norms ‖ ‖1 and ‖ ‖2
implies that as soon as the cocycle represented by the data (B, T, µ,V, ‖ ‖1, A) is in-
tegrable, the cocycle represented by the data (B, T, µ,V, ‖ ‖2, A) is also integrable.
It remains to prove that the Lyapunov filtrations and the Lyapunov spectra of the
two cocycles coincide.

For almost all points x ∈ B the Lyapunov filtrations and Lyapunov expo-
nents are well-defined for both cocycles and the ergodic sum along the trajectory
x, T (x), T (T (x)), . . . of the quantity (28) converges to the integral (29). Namely,
let

aN (x) :=
1

N

(
max
~v∈Vx\~0

∣∣∣∣log
‖~v‖2 (x)

‖~v‖1 (x)

∣∣∣∣+ max
~v∈VT (x)\~0

∣∣∣∣log
‖~v‖2 (T (x))

‖~v‖1 (T (x))

∣∣∣∣+ . . .

· · ·+ max
~v∈VTN−1(x)\~0

∣∣∣∣log
‖~v‖2 (TN−1(x))

‖~v‖1 (TN−1(x))

∣∣∣∣
)

The Ergodic Theorem implies that for almost all x ∈ B

lim
N→+∞

aN (x) =

∫
B

max
~v∈Vx\~0

∣∣∣∣log
‖~v‖2 (x)

‖~v‖1 (x)

∣∣∣∣ dµ(x) < ∞ ,

which implies that for almost all x ∈ B the vanishing of the limits

lim
N→+∞

(aN − aN−1) = 0 and lim
N→+∞

1

N
aN−1 = 0 ,

and hence

lim
N→+∞

1

N
max

~v∈VTN−1(x)\~0

∣∣∣∣log
‖~v‖2 (TN (x))

‖~v‖1 (TN (x))

∣∣∣∣ = lim
N→+∞

aN −
N − 1

N
aN−1 = 0 . (30)

Thus, for almost any x ∈ B and for any ~v ∈ Vx \~0 we have

λ(1)(~v) = lim
N→+∞

1

N
log ‖TN~v(x)‖1 = lim

N→+∞

1

N
log

(
‖TN~v(x)‖1
‖TN~v(x)‖2

· ‖TN~v(x)‖2
)

= lim
N→+∞

1

N
log
‖TN~v(x)‖1
‖TN~v(x)‖2

+
1

N
log ‖TN~v(x)‖2 = 0 + λ(2)(~v) ,

where λ(1)(~v) (respectively λ(2)(~v)) is the Lyapunov exponent associated to the
vector ~v defined by the first (respectively by second) cocycle, and where the equality

lim
N→+∞

1

N
log
‖TN~v(x)‖1
‖TN~v(x)‖2

= 0

is the corollary of (30). �
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