Goethe-Universität Frankfurt Institut für Mathematik

Wintersemester 2022/23

30. Januar 2023

Algebra

Prof. Dr. Martin Möller M.Sc. Jeonghoon So M.Sc. Johannes Schwab

Übungsblatt 12

Sei R ein Ring. Für zwei Polynome $f = \sum_{i=0}^{n} a_i X^i$ und $g = \sum_{i=0}^{n} b_i X^i$ in R[X] ist die Resultante $\operatorname{res}(f,g)$ definiert als die Determinante der $(m+n) \times (m+n)$ -Matrix

$$\begin{pmatrix} a_n & a_{n-1} & \cdots & a_0 \\ & \ddots & \ddots & & \ddots \\ & & a_n & a_{n-1} & \cdots & a_0 \\ b_m & b_{m-1} & \cdots & b_0 & & \\ & \ddots & \ddots & & \ddots & \\ & & b_m & b_{m-1} & \cdots & b_0 \end{pmatrix}.$$

Aufgabe 1

Es sei R ein Ring. Man bestimme die Resultante $\operatorname{res}(f,g)$ der Polynome $f,g\in R[X]$ in folgenden Fällen:

- (i) $f = a_0, g = b_0$.
- (ii) $f = a_1 X + a_0, g = b_0$.
- (iii) $f = a_1X + a_0, g = b_1X + b_0.$

Aufgabe 2

Es sei K ein Körper und $f, g \in K[X] \setminus \{0\}$ zwei Polynome. Zeigen Sie:

- (i) Die Resultante $\operatorname{res}(f,g)$ verschwindet genau dann, wenn es Polynome $a,b\in K[X]$ gibt mit $(a,b) \neq (0,0)$, deg $a < \deg f$, deg $b < \deg g$ und bf + ag = 0.
- (ii) Die Polynome f, g besitzen genau dann einen nichtkonstanten gemeinsamen Faktor, wenn res(f, g) = 0 ist.

Aufgabe 3

(i) Bestimmen Sie den Tranzendenzgrad der folgenden Erweiterungen.

$$\mathbb{Q}(\sqrt[n]{n}: n \in \mathbb{Z}_{>0})/\mathbb{Q}, \qquad \mathbb{Q}(\sqrt[n]{\pi}: n \in \mathbb{Z}_{>0})/\mathbb{Q},$$

$$\mathbb{C}/\mathbb{R}, \qquad \mathbb{F}_{p^n}(T)/\mathbb{F}_p \text{ für } n > 0.$$

(ii) Zeigen Sie, dass jede Transzendenzbasis von \mathbb{R}/\mathbb{Q} überabzählbar ist.

Aufgabe 4

(i)	Sei L/K eine Körpererweiterung und $\mathfrak X$ ein über K algebraisch unabhängiges System
	von Elementen aus L . Zeigen Sie, dass für jeden über K algebraischen Zwischenkörper
	K' von L/K das System \mathfrak{X} algebraisch unabhängig über K' ist.

(ii)	Sei L/K eine endlich erzeugte Körpererweiterung. Zeigen Sie, dass dann auch für jeden
	Zwischenkörper L' von L/K die Erweiterung L'/K endlich erzeugt ist.