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Abstract Our visual environment is not random, but follows
compositional rules according towhat objects are usually found
where. Despite the growing interest in how such semantic and
syntactic rules – a scene grammar – enable effective attentional
guidance and object perception, no common image database
containing highly-controlled object-scene modifications has
been publically available. Such a database is essential in mini-
mizing the risk that low-level features drive high-level effects of
interest, which is being discussed as possible source of contro-
versial study results. To generate the first database of this kind –
SCEGRAM – we took photographs of 62 real-world indoor
scenes in six consistency conditions that contain semantic and
syntactic (both mild and extreme) violations as well as their
combinations. Importantly, always two scenes were paired, so
that an object was semantically consistent in one scene (e.g.,
ketchup in kitchen) and inconsistent in the other (e.g., ketchup
in bathroom). Low-level salience did not differ between object-
scene conditions and was generally moderate. Additionally,
SCEGRAM contains consistency ratings for every object-
scene condition, as well as object-absent scenes and object-
only images. Finally, a cross-validation using eye-movements
replicated previous results of longer dwell times for both

semantic and syntactic inconsistencies compared to consistent
controls. In sum, the SCEGRAM image database is the first to
contain well-controlled semantic and syntactic object-scene in-
consistencies that can be used in a broad range of cognitive
paradigms (e.g., verbal and pictorial priming, change detection,
object identification, etc.) including paradigms addressing de-
velopmental aspects of scene grammar. SCEGRAM can be
retrieved for research purposes from http://www.
scenegrammarlab.com/research/scegram-database/.
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Introduction

From the basic shapes used in the classic perception experi-
ments of the Gestalt school, vision science has evolved to use
more and more complex stimuli including depictions of real-
world scenes. While more simple stimuli (e.g., oriented lines
or gabor patches) remain essential to gain insights into the
fine-grained mechanisms of human visual perception, more
complex cognitive processes – like scene understanding –
require the use of more realistic stimuli. This increase in com-
plexity for the sake of realism goes hand in hand with a de-
crease in controllability of low-level image features and other
confounding factors (e.g., object familiarity). In order to study
real-world scene perception and understanding, a highly-
controlled image database is essential.

Scenes can be considered a composition of objects that
follow organizational principles. Biederman, Mezzanotte,
and Rabinowitz (1982) provided a first terminology that in-
cluded a semantic-syntactic distinction which was based on
whether the properties of the relations require retrieval of the
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meaning of the object. According to this definition object-
scene relations including probability, size, and position con-
cern semantics. That is, in order to know that a fire hydrant
does not belong in the kitchen or on a mailbox, you need to
know what it is. Syntax – in Biederman’s terminology – com-
prises violations of support and interposition, as both relations
violate physical constraints of gravity independent of the
meaning of the single object, for instance a hydrant hovering
above the street.

Võ and Wolfe (2013) introduced a refined, but slightly
different taxonomy of semantic and syntactic object-scene vi-
olations: The authors refer to violations of semantics for an
object that does not fit into the global meaning of the scene
(e.g., milk in the bathroom). In contrast to Biederman and
colleagues (1982), they refer to violations of syntax for objects
that are not at their typical locationwithin the scene. The term
syntax is further divided into mild syntax violations (e.g.,
toothbrush in the bathroom sink) versus physically impossible
syntax violations (e.g., toothbrush hovering above the bath-
room sink). Indeed, using event-related potentials (ERPs), Võ
and Wolfe (2013) provided evidence for independent neural
representations of the types of scene semantics and syntax in
line with their taxonomy, as well as differential processing of
extreme and mild violations of syntax. Exposing observers to
such object-scene violations helps studying the underlying
knowledge system – our scene grammar – and elucidating
how it interacts with ongoing behavior.

In the last decades, the effects of scene grammar on eye-
movement control have been studied using different types of
stimulus material ranging from line drawings (e.g., De Graef,
Christiaens, & D’Ydewalle, 1990; Henderson, Weeks, &
Hollingworth, 1999; Loftus & Mackworth, 1978) to 3D-
rendered images (Võ & Henderson, 2009, 2011) and color
photographs of real-world scenes (e.g., Becker, Pashler, &
Lubin, 2007; Bonitz & Gordon, 2008; Underwood &
Foulsham, 2006; Underwood, Templeman, Lamming, &
Foulsham, 2008). For instance, Henderson et al. (1999) used
line drawings extracted from scenes (adapted from De Graef
et al., 1990) containing an object that was either semantically
consistent (e.g., cocktail glass in the bar) or inconsistent (e.g.,
microscope in the bar). They reported longer dwell times (i.e.,
the sum of all fixation durations) on the inconsistent object,
once it was fixated.

Meanwhile further research accumulated to form consen-
sus that semantic (Bonitz & Gordon, 2008; Rayner,
Castelhano, & Yang, 2009), and also syntactic inconsistencies
(Spotorno, Malcolm, & Tatler, 2015; Võ & Henderson, 2009)
have an influence on processing stages upon the first fixation
of the object as shown in longer dwell times. However, wheth-
er these high-level inconsistencies also exhibit eye-movement
control at earlier stages of processing prior to fixation of the
object is still under debate. While some studies have found
evidence for attentional attraction towards inconsistent objects

prior to their fixation (Becker et al., 2007; Bonitz & Gordon,
2008; Loftus & Mackworth, 1978; Spotorno et al., 2015;
Underwood & Foulsham, 2006; Underwood, Humphreys, &
Cross, 2007), other studies did not find any evidence for such
an attraction of eye movements (De Graef et al., 1990;
Henderson et al., 1999; Võ & Henderson, 2009, 2011). A
possible reason for these controversial results might lie in
the fact that the stimuli used so far have varied widely across
studies (for a discussion see Võ & Henderson, 2009). The
level of clutter in the scene has been proposed as one possible
factor that could explain some of the variance between study
results. For instance, the scenes in the original “octopus in
farmyard” study by Loftus and Mackworth (1978), which
reported inconsistency effects on initial eye movements, only
contained a few objects between big unoccupied areas of
white background that might have favored a “pop-out” of
the semantic inconsistencies.

Along the same lines, Võ and Henderson (2009) discuss
that the average low-level saliency rank of the critical objects
in the scene – according to Itti and Koch’s (2000) saliency
model – varied across studies between the third
(Underwood, Humphreys, & Cross, 2007) and the ninth (Võ
& Henderson, 2009) most conspicuous area of the image (see
also Spotorno et al., 2015, but only medians indicated).
Manipulating both salience and semantic consistency of crit-
ical objects revealed that both components might not function
independently (Spotorno, Tatler, & Faure, 2013; Underwood
& Foulsham, 2006; but see Underwood, Templeman,
Lamming, & Foulsham, 2008). For instance, in a scene view-
ing task similar to the one used by Henderson et al. (1999),
inconsistent objects were only fixated earlier and with fewer
fixations compared to consistent objects when they were in-
conspicuous, whereas when they were conspicuous both in-
consistent and consistent objects were fixated early
(Underwood & Foulsham, 2006). These results indicate that
when studying high-level scene-object inconsistencies high-
saliency ranks might be less appropriate.

Furthermore, in some studies the critical objects were
inserted post-hoc into color photographs which might have
resulted in artificial shadows, edges, or depth cues that might
have affected or even attracted the gaze of observers (Becker
et al., 2007; Spotorno et al., 2015; Underwood et al., 2007; for
discussions see Spotorno et al., 2015; Võ & Henderson,
2009). As another consequence, post-hoc editing might affect
the ambiguity of the intended inconsistency manipulation: For
instance, when objects do not appear true to scale with their
context, an intended violation of only position might be con-
founded with the violation of size. Such a double-
inconsistency might have contributed to some of the previous-
ly reported eye-movement effects rendering their interpreta-
tion more difficult (Spotorno et al., 2015).

This debate is supposed to illustrate the importance of well-
controlled stimulus material to ensure the reliability and
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replicability of eye-movement findings in general (e.g., stud-
ies on the relations between dwell times and age, personality
traits, and cultural background) and emphasizes which image
parameters are the most relevant to control for. Hence, a data-
base of images, well-controlled for visual saliency and image
editing artifacts, which depicts a range of well-defined and
counterbalanced inconsistency manipulations that can be used
in a variety of paradigms might shed new light on this or other
debates and could provide the grounds for more converging
results.

There are numerous databases containing hundreds or even
thousands of images – such as the Caltech-256 object category
dataset (Griffin, Holub, & Perona, 2007), the ImageNet
Database (Deng et al., 2009), and for scenes specifically the
SUN Database (Xiao, Hays, Ehinger, Oliva, & Torralba,
2010) and the MIT-CSAIL Database of Objects and Scenes
(Torralba, Murphy, & Freeman, 2004), relying on photo-
graphs retrieved from various internet sources. On the one
hand this provides a nearly inexhaustible number of images,
as it is needed for certain research purposes. On the other
hand, many important image features and the objects them-
selves cannot be as carefully controlled for or manipulated as
in photographs that are purposefully generated. There are also
databases of photos purposefully generated such as the
Columbia Object Image Library (COIL-100; Nene, Nayar,
& Murase, 1996), the McGill Calibrated Color Image
Database (Olmos & Kingdom, 2004), and the Berlin Object
in Scene Database (BOiS; Mohr et al., 2016), but only the
latter contains one type of object-scene manipulation, i.e. the
mild-syntactic one.

Some other studies (additionally) also included seman-
tic manipulations and took great care to control for effects
related to the salience and familiarity of the critical objects
when designing their own stimulus set for their studies
(e.g., Henderson et al., 1999; Võ & Henderson, 2009).
The line drawings of 24 real-world scenes used by
Henderson et al. (1999) were paired such that a critical
object occurred as consistent in one scene, but inconsistent
in the other scene. Similarly, Võ and Henderson (2009)
paired 20 3D-rendered images of real-world scenes to
counterbalance the assignment of objects to conditions.
In addition, they created for each scene a condition of
physically impossible syntax violations (i.e. the critical ob-
ject hovering in midair), in addition to semantic inconsis-
tencies making both directly comparable. However, the
latter study only investigated extreme syntax violations,
not mild ones. Furthermore, while 3D-rendering is becom-
ing more and more sophisticated and allows for high con-
trol of image features, the 3D-rendered scenes used in ex-
periments usually do not reach the same level of realism
that can be achieved by digital photography. More impor-
tantly, due to the fact that 3D-rendered scenes are generat-
ed from scratch by the experimenter, these rarely contain

the amount of clutter that is natural in our environment and
realistically captured in photographs.

Võ and Wolfe (2013) generated a stimulus set of pho-
tographs of real-word scenes that represented all possible
conditions of scene-object inconsistency. However, a giv-
en scene was not photographed in all syntax conditions,
i.e. scenes either had a mild or an extreme syntax viola-
tion, but not both. Furthermore, the scenes were not
paired to avoid effects of mere object familiarity. This
renders such stimuli less appropriate for developmental
studies with children, where varying degrees of familiarity
with different objects per se might influence children’s
looking times as has been suggested by studies using the
habituation paradigm (for a review see Turk-Browne,
Scholl, & Chun, 2008).

In order to address the shortcomings presented above,
we generated an image database with SCEne GRAMmar
manipulations (SCEGRAM) that consists of highly-
controlled photographs of objects in real-world scenes.
Each of the scenes was photographed in all six possible
semantic and syntactic conditions: (1) a consistent con-
trol, (2) an inconsistent-semantic condition, (3) a mild
inconsistent-syntax condition, (4) a mild double-
inconsistency condition, (5) an extreme inconsistent-
syn tax cond i t ion , and (6) an ex t reme double -
inconsistency condition. Two scenes were always paired
so that each object occurred once in a consistent and once
in an inconsistent scene context. Furthermore, each scene
was also photographed without the critical object and fi-
nally each object was photographed individually against a
white background. In addition, we obtained consistency
ratings for each scene-object version, included a visual
salience analysis of the entire database, and performed a
cross-validation of two condition subsets.

Methods

The SCEGRAM database can be retrieved for research pur-
poses from our website at: http://www.scenegrammarlab.
com/research/scegram-database/. In the following, we
describe the creation and composition of the image database
in more detail.

Apparatus

Digital photographs were taken with a Nikon D5100 single-
lens reflex (SLR) digital camera with an 18–55 mm zoom
lens. The original image aspect ratio was 3:2 with a resolution
of 4,928 × 3,264 pixels and images were stored in JPG format
(JPG fine).
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Procedure

The photos were taken in apartments of the private living
spaces of colleagues, friends, and family in Frankfurt,
Germany, and rural surroundings. Because of the varying
and uncontrollable lighting conditions in different rooms
and apartments, we took the photos according to the fol-
lowing scheme: First, we determined the recommended
ISO and shutter speed using the auto (flash off) mode,
then we switched to manual mode and used those param-
eters. All photographs were taken without using the flash
under natural lighting conditions, but the room light was
switched on if needed. Focus and zoom were adapted
manually for each scene, but were kept constant across
all conditions within the same scene. A tripod was used
to ensure identical positioning of the camera and therefore
identical placement of all objects within a photograph for
all conditions of a given scene.

We did not insert features post hoc, that is, hovering objects
were photographed actually hovering in mid air using a stick
and transparent cord. Thus post hoc editing via, for example,
Adobe Photoshop (see following paragraph) of the images
was kept to a minimum to avoid artificially introduced arti-
facts. Where possible, floating objects were photographed to
remain upright in the air to underline their impossible physical
state rather than, for example, giving the impression that ob-
jects were photographed while being thrown.

Image post-processing

In the first post-processing step, scenes were modified in
Adobe Photoshop CS (Adobe, USA) only in the following
cases:

(a) If the transparent cord was visible in the extreme syntax-
violation scenes, the corresponding pixels were adapted
to the surrounding pixels using the Photoshop retouching
and healing tools.

(b) If an identically looking object occurred in another scene
as a distractor object (only in scenes 28, 42, and 51), the
color of the distractor object was changed into a realistic
color for that specific object using the Photoshop replace
color adjustment.

Then, the photographs were cropped in width so that
they matched the standard aspect ratio 4:3 and resized to
a resolution of 1,024 × 768 pixels in MATLAB (The
MathWorks Inc., USA) using the Image Processing
Toolbox. The cropped and resized images were then
exported to PNG format and saved in addition to the orig-
inal image files. All following steps in the methods section
refer to the cropped images.

Conditions

Object present images (see Fig. 1): A given scene was
photographed with

(a) a semantically consistent object in a consistent location
(consistent control condition; CON),

(b) a semantically inconsistent object in a syntactically con-
sistent location (inconsistent-semantics condition; SEM),

(c) a semantically consistent object in a syntactically incon-
sistent, but physically possible location (mild
inconsistent-syntax condition; SYN),

(d) a semantically inconsistent object in a syntactically in-
consistent, but physically possible location (mild double-
inconsistency condition; SEMSYN),

(e) a semantically consistent object in a syntactically incon-
sistent, but physically impossible location, that is hover-
ing in midair (extreme inconsistent-syntax condition;
EXSYN),

(f) a semantically inconsistent object in a syntactically in-
consistent, but physically impossible location, that is
hovering in midair (extreme double-inconsistency condi-
tion; EXSEMSYN).

In order to create these conditions, two objects were
always paired according to their visual attributes (i.e.,
shape, color, and size) as illustrated in Fig. 2 and both
were photographed once in a consistent and once in an
inconsistent scene at consistent and inconsistent locations.
As can be seen in Fig. 1, the toilet paper in the bathroom
fits into the context and is at its most probable location,
the toilet paper holder (CON). When instead of the toilet
paper, a cup appears at this location, it is inconsistent with
the global semantics of the scene (SEM). When occurring
on the toilet seat cover, the toilet paper is at a physically
possible yet inconsistent location, but still fits into the
meaning of the scene (SYN), whereas for the cup both
the context and the location are inconsistent (SEMSYN).
When hovering in midair above the toilet, both toilet pa-
per and cup are at physically impossible inconsistent lo-
cations, but only for the cup the meaning of the scene is
inconsistent (EXSYN vs. EXSEMSYN). It should be not-
ed that an object that does not fit into the meaning of a
scene obviously has no appropriate position in that scene.
Therefore, the object locations of the CON, SYN, and
EXSYN conditions were maintained to control for loca-
tion in the double-inconsistency conditions.

Object absent images:
We additionally photographed each scene without the
critical object (absent condition; ABS) immediately after
creating the present scene. This was done to minimize
changes – e.g. due to changes of lighting conditions –
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when transitioning between object present and absent
versions of each consistency condition, allowing for
smooth sequential presentation of both photos with only
the critical object changing.

Object-only images (see Fig. 2): Furthermore, each object was
photographed in isolation in front of the identical white
background. This gives the opportunity to use the object
image to prime the target or the scene or to test recogni-
tion performance for the objects (object only condition;

OBJ). The object-only portrait images were post-
processed by cropping the original white back-
ground as well as centering, and resizing the object
to fit into a central box of 2,144 × 2,144 pixel on a
uniform white background using Adobe Photoshop
CS (Adobe, USA). In a second step, object-only
images were cropped and resized in the same man-
ner as the scenes. The resulting object-only photos
are depicted in Fig. 2.

Fig. 1 Consistency conditions and counterbalancing. The consistency
conditions are illustrated for the two example scenes 1 and 2. The
occurrence of objects in scenes was counterbalanced in a way that each

object was photographed in a consistent and inconsistent context,
respectively (e.g., cup in kitchen vs. cup in bathroom)
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Counterbalancing

We took great care to eliminate as many confounding factors
as possible (e.g., object familiarity, low-level saliency of im-
age features) that might co-vary with the inconsistency condi-
tions. To do so, we tried to match the semantically inconsistent
and consistent object of each scene in their appearance (see
Fig. 2). As a major feature of this database, the same object
occurs in two paired scenes (with even and odd numbers):
once in a scene where it was semantically consistent and once
in a different scene where it was not. For instance, in Scene 1
(see Fig. 1), the cup appears in the kitchen as consistent con-
dition (CON), whereas in Scene 2 the same cup appears in the

bathroom, where it is semantically inconsistent with the scene
context (SEM). As objects were photographed at both consis-
tent and inconsistent locations in both the consistent and in-
consistent scenes, each object occurs in each of the six con-
sistency conditions. For instance, in Scene 1 (see Fig. 1), the
cup appears on the door of the dishwasher (SYN), whereas in
Scene 2 the same cup appears on the toilet seat (SEMSYN).
This principle also applies for the extreme-syntax condition.

Areas of interest (AOIs)

Areas of interest (AOIs) were drawn manually around the
critical object in each scene so that they form the smallest
possible rectangle that encloses the object. In case of occlu-
sion of object parts, only the visible object contours were
considered for defining the AOIs, however, this does not mean
that the remaining part of the object is not entirely included as
AOIs are always rectangular. The AOIs were obtained in im-
age coordinates and described in the format according to their
horizontal and vertical center, as well as their width and the
height. TheAOI information can be found in columns 13 to 16
of the database excel sheet (see following section). Note that
for certain purposes (e.g., eye tracking, saliency checks) the
size of the AOIs across conditions should be equalized within
the same scene by any user of this database. This is to prevent
differences in dependent measures only due to differently
sized AOIs. This equalization procedure is described in detail
in the sections for the saliency check and the eye-tracking
cross-validation.

Low-level image features: Saliency check

The counterbalancing of critical objects between conditions
reduces the influence of confounding factors. To further con-
trol for saliency differences that might co-vary with the con-
sistency manipulation, we calculated the saliency rank within
15 simulated fixations using the Saliency Toolbox (Walther &
Koch, 2006). The saliency rank reflects the serial rank of a
model fixation calculated based on brightness, color, contrast,
and edge orientation. It has a value of 1 for the most salient
area of an image. For the saliency analysis we used the AOIs
defined in the previous step and equalized their size in a given
scene in all six scene-object conditions. For instance in Scene
1 (see Fig. 1) the AOIs of cup and toilet paper were adjusted to
be equally large in all six images, even if the size of the objects
themselves differed. The AOIs covered the identical area of
the scene for objects that were supposed to be at the same
location (i.e., CON and SEM, SYN and SEMSYN, EXSYN
and EXSEMSYN) by defining the smallest rectangle that en-
closes the critical objects. When the first model fixation fell
within the critical object AOI, this AOI received the respective
saliency rank. In case none of the simulated fixations fell into
a given AOI, its fixation rankwas set to 15. The mean saliency

Fig. 2 Examples of the object-only portrait images included in the
SCEGRAM database. Two objects (e.g., cup and toilet paper) were
always paired according to their visual attributes (i.e., shape, color, and
size) and served as consistent and inconsistent object, respectively
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rank was compared across all conditions of a given scene
using a one-way repeated-measures ANOVAwith consistency
condition as factor with six levels. The mean saliency rank for
the critical objects did not differ significantly between consis-
tency conditions, F < 1. As this analysis is conducted in favor
of the null hypothesis, we furthermore quantified the evidence
for the null compared to the alternative hypothesis by calcu-
lating the Bayes Factor (BF01) using the BayesFactor package
(Morey, Rouder, & Jamil, 2013) implemented in R. The
resulting BF01 of 82.86 indicates a “very strong evidence for
the null hypothesis” according to Wagenmakers, Wetzels,
Borsboom, and van der Maas (2011; adapted from Jeffreys,
1961), thus minimizing the influence of the low-level saliency
of image features on response differences between the consis-
tency conditions. As can be seen in Fig. 3, the mean saliency
rank was larger than 4.5 in all conditions. In other words, the
AOI was on average not fixated before the 5th simulated fix-
ation, which is lower than the high-saliency definition of
Underwood and colleagues (2008) and Underwood and
Foulsham (2006). Note that the saliency calculations resulting
from this procedure are only valid when considering the full
database in all conditions and when adjusting the AOIs in the
way previously described. Therefore, this step has to be
adapted by every user, who uses the database in a customized
manner.

SCEGRAM database

The database consists of 62 scenes in all six consistency con-
ditions (372 individual images) and the ABS condition (372
individual images), resulting in 744 scene photos in total. In
addition, it includes 62 object photos (OBJ). The excel file
containing the database information can be downloaded from
http://www.scenegrammarlab.com/research/scegram-
database/.

Within this excel file, the spreadsheet “scenes” contains all
relevant information for using the scenes. It is described in
detail as follows:

Column #1: name of the scene image file indicating the
number of the scene and the consistency and absent
condition.
Column #2: scene ID (62 scenes in total)
Column #3: image ID, irrespective of scene and condition
(744 images in total)
Column #4: presence of critical object (1 = present, 0 =
absent).
Column #5-6: name of the critical object in English and
German respectively and ‘XXX’ in case the object was
absent
Column #7-8: scene category, in English and German,
respectively
Column #9-10: scene category, in which the critical ob-
ject was consistent, in English and German, respectively
Column #11-12: consistency condition, abbreviated and
number coded, respectively
Column #13-16: location of critical object as coordinates
of the AOI center on the horizontal and vertical axes, and
the width and height of the AOI, containing ‘-99’, in case
the critical object was absent
Column #17-18: scene image width and height in pixels
Column #19: average consistency rating (1=consistent, 6
= inconsistent) for the scene-object condition rated by 12
participants (see following section)

The spreadsheet “objects” contains all relevant information
for using the individual object images and is described in
detail as follows:

Column #1: name of the image file
Column #2-3: object names in English and German,
respectively
Column #4: object ID (62 objects in total)
Column #5-8: scene category, in which the object is con-
sistent and the one in which it is inconsistent in English
and German, respectively
Column #9-10: scene ID, in which the object was consis-
tent and inconsistent

Database validation

Consistency rating

As a manipulation check we obtained consistency ratings of
the critical object in a given scene across all six consistency
conditions (see Column #19). Since people tend to differ in the

Fig. 3 Mean saliency rank per consistency condition. Error bars indicate
±1 standard error
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way they interpret how consistent or inconsistent an object is
within a scene (similar to valence ratings on emotional im-
ages), we encourage every user to always collect their own
ratings of the stimulus set they use. In the following, we pro-
vide one of many possible examples of how to do this.

Apparatus

Participants were seated at an approximate viewing distance
of 65 cm. The scenes were presented on a 24-in. monitor
(resolution: 1,920 × 1,080 pixels, refresh rate: 60 Hz) and
subtended a visual angle of 23.54° horizontally and 18.06°
vertically. Stimulus presentation and response recording were
controlled with Matlab (The MathWorks Inc., USA) using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Participants

Twelve undergraduate students (mean age = 20.83, SD = 2.25,
range: 18–25 years, six female) participated in the consistency
rating for course credit. All participants had normal or
corrected-to-normal vision and color vision.

Procedure

The participants were presented with all 372 object present
scenes (62*6 conditions) successively and were asked to
rate on a discrete scale from 1 to 6 how well the critical
object fits into a given context or the location of the con-
text ( Supplementary Materials #1 for the original instruc-
tions). For each scene, the critical object was indicated by a
red frame that appeared on the scene 500 ms after scene
onset and remained visible for 2 s. Then the original scene
was presented without the frame for another 500 ms before
the grey response display was shown. The participants rat-
ed each scene and gave confidence ratings in each condi-
tion in a within-subject design. The presentation of the 372
scenes was divided into six blocks of 62 trials with each
block containing exactly one condition-scene version of
the scene. The occurrence of the condition-scene versions
in the image sequence was counterbalanced across groups
of six participants according to a latin-square design.

Results

All types of scene-object violations were rated more inconsis-
tent compared to the consistent control condition, F(5, 55) =
87.56, p < .001, η2G = 0.80, all ts > = 5.79, indicating that our
object-scene manipulations had their intended effects (see
Fig. 4). Semantic violations were judged higher in inconsis-
tency compared to both mild, t(11) = 10.68, p < .001, and
extreme-syntactic violations, t(11) = 4.16, p < .05, which did
not differ significantly from each other after controlling for

multiple comparisons using Bonferroni adjustments, t(11) =
2.49, p = .451. These observations diverge from those report-
ed by Võ and Wolfe (2013) and are partly attributed to the
inter-subject variability in the extreme-syntax condition as
will be discussed in the following section. The rating data of
individual participants is displayed in the supplementary ma-
terials (Fig. 7; Supplementary Materials #2).

The participants’ rating confidence also differed between
consistency conditions as shown in Fig. 5, F(5, 55) = 4.59, p <
.05, η2G = 0.21. Post-hoc comparisons controlling for multi-
ple comparisons using Bonferroni adjustments revealed that
this effect was driven by the participants being less confident
in their ratings of mild-syntax violations compared to the con-
sistent object-scene pairings, t(11) = 5.36, p < .01. Again
subjects especially differed in their ratings for extreme-
syntax violations. The confidence ratings of individual partic-
ipants are displayed in the supplementary materials (Fig. 8;
Supplementary Materials #2).

Cross-validation using eye-movements

The aim of the cross-validation was to replicate the well doc-
umented eye-movement findings of longer dwell times to se-
mantic and syntactic violations (Henderson et al., 1999; Võ &

Fig. 4 Mean consistency ratings judged from 12 participants on a scale
from 1 to 6 (1=consistent, 6=inconsistent) as a function of consistency
condition. Error bars indicate ±1 standard error

Fig. 5 Mean rating confidence judged from 12 participants on a scale
from 1 to 6 (1=consistent, 6=inconsistent) as a function of consistency
condition. Error bars indicate ±1 standard error
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Henderson, 2009). We wanted to accumulate further evidence
that the SCEGRAM stimuli have their intended effects on eye-
movement control, while we leave it to the users of this data-
base to address theoretical questions and debates about incon-
sistent findings in the field. For this eye-tracking paradigm we
focused on the semantic and both the mild- and extreme-
syntactic inconsistencies. Even with the lower than expected
ratings for the extreme-syntax violations we anticipated to
observe a strong consistency effect to these violations in the
more sensitive eye-movement measure and wanted to extend
this finding to mild-syntax violations for the first time.

Apparatus

Participants were seated at an approximate viewing distance
of 80 cm. The scenes were presented on a 24-in. monitor
(resolution: 1,920 × 1,080 pixels, refresh rate: 60 Hz) and
subtended a visual angle of 19.49° horizontally and 14.84°
vertically. Stimulus presentation and response recording were
controlled with Matlab (The MathWorks Inc., USA) using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). For the
cross-validation experiment, eye movements were recorded
monocularly with an Eyelink 1000 Plus desktop mount eye
tracker (SR Research, Canada) at a sampling rate of 500 Hz in
remote mode.

Participants

Three different groups of participants non-overlapping with
the sample from the rating experiment, were either tested on
the inconsistent-semantics condition (n = 15, mean age =
20.98, SD = 2.71, range: 18–27 years, 12 female) or the mild
inconsistent-syntax condition (n = 7, mean age = 21.13, SD =
1.99, range: 19–25 years, seven female) and extreme
inconsistent-syntax condition (n = 7, mean age = 25.66, SD
= 5.50, range: 19–33 years, five female) in comparison to the
consistent control condition. All participants had normal or
corrected-to-normal vision and color vision.

Stimuli

For the cross-validation experiment, a subset of 40 scenes was
used in the inconsistent-semantics and the inconsistent-syntax
experiments, which where overlapping between semantics
and syntax conditions apart from six scenes. To apply the
strength of SCEGRAM to compare the identical scenes be-
tween conditions, we did a sub-analysis of the eye-movement
data for the 34 scenes that were identical in the three condi-
tions with a consequence that our counterbalancing was not
maintained on analysis level. However, results were compa-
rable to those obtained with the full design, so that in the
following only the results of the sub-analysis are reported.
The original AOIs were equalized to have the same size for the

inconsistent-syntax and control condition, and the same size
and location for the inconsistent-semantics and control condi-
tion, respectively. Online, a buffer of 75 pixels was added to
each side of the AOI to counteract possible tracking impreci-
sion. The mean saliency rank of the 34 scenes did not differ
between the consistent and the semantic (CON: M = 5.74, SD
= 5.14, SEM:M = 6.47, SD = 5.58, t(33) = 0.60, p = 0.55), the
mild-syntactic condition (CON: M = 6.06, SD = 5.36, SYN:
M = 7.32, SD = 5.71, t(33) = 1.3, p =.20), or the extreme-
syntactic condition (CON: M = 5.18, SD = 4.93, EXSYN: M
= 4.65, SD = 3.98, t(33) = 0.77, p = .44).

Procedure

Before the experiment, a 5-point-calibration and validation
were performed. Drift checks were inserted every ten trials,
and a recalibration was administered if necessary during the
experiment. Following two practice trials, the 40 experimental
trials started. The trial sequence was as follows: A blank
screen was presented for 500 ms, followed by an animated
fixation spiral randomly presented on the left or right side in
half of the trials. As soon as the participants were looking at
the fixation spiral for 500 ms, the scene was presented for 7 s
upon the first gaze sample detected on the scene. After half of
the scenes, a 10 s reward video was presented. The partici-
pant’s task was to simply view the scene presented. No man-
ual response was required. Fifteen participants viewed 20
scenes with inconsistent semantics and 20 consistent control
scenes, whereas two different groups of 20 participants
viewed 20 scenes with mild or extreme inconsistent syntax
and 20 consistent control scenes. After terminating the exper-
iment, the participants rated the scene-object consistency for
the subset of scenes presented during the experiment – a pro-
cedure recommended for each user of this database (see
Discussion section).

Results

In order to directly compare our results to previous findings on
the effects of semantic and syntactic inconsistencies on eye
movement control (Henderson et al., 1999; Võ & Henderson,
2009), we calculated the dwell time. The dwell time is defined
as the sum of all durations of fixations that fell on the critical
object starting with the first gaze sample on the scene until the
offset of the scene. Fixation durations shorter 100 ms, as well
as fixation durations that deviated for more than 2.5 SD from
the mean were considered as artifacts and discarded from the
analysis (SEM: 5 %, SYN: 7 %, EXSYN: 7 % of all fixations
excluded).

Three paired student t-tests were conducted to calculate
within-subject comparisons between the consistent control
and the inconsistent-semantics experiment and the
inconsistent-syntax experiments, respectively. Participants
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showed longer mean dwell times when the object was either
semantically inconsistent, t(14) = 6.37, p < .001, when it was
at a syntactically mild, t(6) = 2.96, p < .05, or syntactically
extreme (i.e. floating) location, t(6) = 4.37, p < .01, compared
to the consistent control condition. It should be noted that the
results rely on different sample sizes (n = 15 vs. n = 7 vs. n =
7). However, in all experiments corresponding effect size
measures (Cohen’s d = 1.64 vs. d = 1.12 vs. d = 1.65) can
be considered as large (Cohen, 1992). As shown in Fig. 6, the
consistency effects in dwell times were comparable for seman-
tic and syntax violations experiments.

Discussion

To our knowledge SCEGRAM is the first ready-to-use
image database which includes real-world photographs
depicting a range of well-controlled object-scene incon-
sistencies. So far, SCEGRAM includes 62 indoor scenes
in six consistency conditions. Average low-level salience
was calculated and controlled between consistency con-
ditions for the whole database. Furthermore, consistency
ratings were obtained for each object-scene condition in
each scene. To our surprise, the extreme-syntax condi-
tion was not judged more extreme than the mild-syntax
condition as could have been expected based on the
ratings reported by Võ and Wolfe (2013). However, in
their study both violations were not present in the iden-
tical scene and they also included objects balancing on
edges, while our extreme syntax condition only included
floating objects. As another possible explanation, one
could argue that when semantic violations are presented,
the syntactic violations seem less inconsistent. We ob-
served higher degrees of inter-individual variance for
the extreme-syntax than the other violations as reflected

in higher standard errors and participant’s verbal reports
(e.g., one participant reported imagining a hand holding
the object in midair): some participants considered the
extreme-syntactic violations as inconsistent, while for
others the hovering objects did not appear inconsistent
as long as they fit the global meaning of the scene.
Such inter-individual differences have not been system-
atically addressed so far, but suggest that depending on
the specific sample, the ratings might vary. In general,
we encourage any user of the database to replicate con-
sistency and salience checks for the purpose of their
own experiments. We provide detailed usage instructions
in the Methods section.

Despite the general ambiguity in any subjective con-
sistency ratings, the cross-validation of the database
using a simple eye-tracking paradigm provided a repli-
cation of previous findings in that we found longer
dwell times for both semantic and syntactic inconsis-
tencies compared to the control condition (e.g.,
Henderson et al., 1999; Võ & Henderson, 2009; see
also Bonitz & Gordon, 2008; Rayner et al., 2009;
Spotorno et al., 2015). We can now even expand and
directly compare these findings to mild-syntax violations
suggesting that our manipulations have the expected ef-
fects on eye-movement control. Future research might
want to cross-validate the database in populations with
different cultural backgrounds to make it accessible for
studies on intercultural differences with regard to the
perception of semantic and syntactic inconsistencies.
The SCEGRAM database further includes a scene con-
dition, in which the critical object is absent. When these
scenes are presented successively with the correspond-
ing object present scenes, the critical object is the only
changing stimulus feature as it might be needed for
some tasks (e.g., change detection) or gaze-contingent
paradigms. To make the database also useful for picto-
rial priming paradigms, as well as tests of recognition
memory for critical objects, we additionally provide
object-only images, where the isolated object is
displayed on a uniform white background.

In contrast to BOiS (Mohr et al., 2016), the only other
publically accessible database on scene-object inconsis-
tencies, SCEGRAM not only refers to the syntactic placement
of the objects, but also contains object pairs of similar appear-
ance, which occur in a semantically consistent and inconsis-
tent scene. While BOiS was intentionally designed for visual
search experiments, the SCEGRAMdatabase can also be used
in other tasks such as passive viewing, priming, change detec-
tion, or in flash-preview moving-window paradigms etc., as
well as for developmental or EEG recording purposes, for
which the objects are supposed to be easily identifiable.
Hence, in terms of research purposes both databases might
be considered as a complementation of one another.

Fig. 6 Mean dwell times as a function of consistency condition (CON vs.
INCON) in the inconsistent-semantics (SEM-Experiment, n = 15), the
mild (SYN-Experiment, n = 7), and extreme (EXSYN-Experiment, n =
7) inconsistent-syntax experiment. Error bars indicate ±1 standard error
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In sum, with SCEGRAMwe have created a well-controlled
multifunctional database that we hope helps interested re-
searchers to better address a broad range of research questions
even beyond those aimed at investigating scene grammar.

Author notes Many thanks to Daniela Gresch, Anna Semenkova,
Elisabeth Zey, Vanessa Tratsch, and Renaud Clerel for their help in the
creation of the SCEGRAM database. This work was funded by DFG
grant VO 1683/2-1 to MLV.
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