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The tautological ring

The Chern classes and the EC of strata

The moduli space
The functor of multi-scale differentials

Let
Mg ,n = {(X , p1, . . . , pn) : pi ∈ X}

be the moduli space of n-pointed Riemann surfaces of genus g .
Let

ΩMg ,n(µ) =

{
(X , ω, p1, . . . , pn) : div(ω) =

n∑
i=1

mipi

}

be the stratum of meromorphic abelian differentials of profile
µ = (m1, . . . ,mn) with mi ∈ Z and

∑n
i=1 mi = 2g − 2.
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Let
Mg ,n = {(X , p1, . . . , pn) : pi ∈ X}

be the moduli space of n-pointed Riemann surfaces of genus g .
Let

B := PΩMg ,n(µ) =

{
(X , [ω], p1, . . . , pn) : div([ω]) =

n∑
i=1

mipi

}

be the projective stratum of meromorphic abelian differentials of
profile µ = (m1, . . . ,mn) with mi ∈ Z and

∑n
i=1 mi = 2g − 2.
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The moduli space
The functor of multi-scale differentials

Let Mg ,n be the Deligne-Mumford compactification of Mg ,n. It is
the moduli space of n-pointed stable curves of genus g .
It has very nice properties:

I It is an orbifold/smooth proper Deligne-Mumford stack.

I The boundary is a normal crossing divisor.

I The boundary strata are indexed by stable graphs, i.e. the
dual graphs of stable curves of genus g .
The codimension of a boundary component is given by the
number of edges of the graph.
Each boundary stratum is almost a product of moduli
spaces of curves of lower complexity.
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The moduli space
The functor of multi-scale differentials

Theorem (BCGGM, 2019) For each stratum PΩMg ,n(µ) of
meromorphic abelian differentials there exists a compactification
PΞMg ,n(µ), the moduli space of multi-scale differentials, with the
following properties:

I It is an orbifold/ smooth proper Deligne-Mumford stack.

I The boundary is a normal crossing divisor.

I The boundary strata are indexed by enhanced level graphs,
i.e. dual graphs of stable curves with a total order on the
vertices and an additional prong matching enhancement.

I The codimension of a boundary component is given by the
number of level crossings and horizontal nodes.

I Each boundary stratum is almost a product of moduli
spaces of multi-scale differentials of lower complexity.
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Examples of boundary strata in M2,1

1 M1,2 ×M0,3

1 1 M1,1 ×M1,2

1 M1,1 ×M0,3 ×M0,3
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The moduli space
The functor of multi-scale differentials

A level graph is a stable graph with a full order, equality
permitted. Usually given by a normalized level function

lev : Γ→ {0,−1, . . . ,−N} ,

In pictures: Level zero = top level = top row of the stable graph.
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The boundary of PΞM2,1(2)
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Adjacency of level graphs is by squishing a level passage.

This gives degeneration maps δI , indexed by
the level passages that remain.
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A twisted differential of type µ on a stable curve (X , z) with dual
graph Γ is a collection of meromorphic differentials ηv 6= 0 for
v ∈ V (Γ) such that the following conditions hold:

(0) Vanishing as prescribed

(1) Matching orders at nodes

ordq1 ηv1 + ordq2 ηv2 = −2 .

(2) Matching residues at simple poles
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The functor of multi-scale differentials

A twisted differential is compatible with the level graph (Γ,<) if
the following conditions hold:

(3) (Partial order)

v1 < v2 if and only if ordq1 ηv1 ≥ −1

(4) (Global residue condition)
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Define the incidence variety compactification IVC(µ) ⊂Mg ,n to
be the closure of the stratum PΩMg ,n(µ) (with labeled zeros).

Theorem (BCGGM, 2016) Points in IVC(µ) are characterized by
the existence of a twisted differential compatible with some level
graph structure on the dual graph of the underlying stable curve.

(A twisted canonical divisor in [Farkas-Pandharipande] does not
include GRC. This chacterises a subspace of PΩMg ,n(µ) with
extra components with generic point in the boundary.)
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The functor of multi-scale differentials

Problems of the naive compactification (IVC):

1) IVC is not normal

2) The normalization of the IVC is not smooth, e.g.
not Q-factorial

Problems of the notion twisted differential:

1) Need to separate branches:
Enhanced level graphs and prong matchings

2) Parametrize differentials rescaled by level.
Notation: η(i) the collection of all differentials on level i .
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Solution: .... along with PΞM1,3(k , 1,−k − 1)

H/Γ(2) ⊆ D4

D5,2

D1,4

D1,3

D1,1

H
/Γ(4) ⊆

D
4

D∞

D2

D5,1

D1,2

D5,3

(Case k = 5)
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Boundary divisors (besides Dh and some compact type D3)

D1,a =


−k − 1

−a − 1

a − 1

−1− b

b − 1

k1

 D2 =


1

−k − 1

−k − 3

k + 1

1k

 ,

D4 =


−k − 1 1

1
−k

k − 2

k

 , D5,a′ =


−k − 1 1

−a′ − 1

a′ − 1

−1− b′

b′ − 1

k
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Schematic picture of a prong matching:
for a zero of order two with a pole of order four:

The numer of prongs is κ = 3.
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Aim: compare the open boundary divisor
D◦1,a = D1,a \ {degenerations} to the product of the top level
stratum PΩM0,3(a− 1, b − 1,−k − 1) and the bottom level
stratum PΩM0,4(k, 1,−a− 1,−b − 1):

I Fix a differential ω0 in ΩM0,3(a− 1, b − 1,−k − 1) on top
level and take a quotient mod C∗ for all level simultaneously
in the end.

I Fix also a differential ω−1 in ΩM0,4(k, 1,−a− 1,−b − 1) on
bottom level.

I For a node q a prong matching is an identification σq of the
tangent spaces at the two ends q±, mapping incoming
horizontal prongs at q+ to outgoing horizontal prongs at q−.
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I The universal cover C→ C∗ of the rescaling torus acts
simultaneously on (ω−1, σq1 , σq2).

I The prong rotation subgroup RD1,a
∼= Z ⊂ C fixes ω−1, thus

acts on (σq1 , σq2) only.

I The RD1,a-orbits are prong matching equivalence classes.
There are g1,a = gcd(κ1, κ2) = gcd(a, b) equivalence classes.

I The subgroup Tw1,a ⊂ RD1,a fixing all prongs matchings is
called the Twist group. It acts trivially on (ω−1, σq1 , σq2).

I The action of C on (ω−1, σq1 , σq2) factors through the level
rotation torus T1,a = C/Tw1,a.
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First conclusion: The map

D◦1,a → PΩM0,3(a−1, b−1,−k−1)×PΩM0,4(k , 1,−a−1,−b−1)

is a (usually connected) cover of degree g1,a (number of prong
matching equivalence classes)

D1,a =


−k − 1

−a − 1

a − 1

−1− b

b − 1

k1
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Construction:

I Complete the (level rotation) torus bundle T1,a
∼= C∗-bundle

over D◦1,a to a C-bundle.

I The zero section is isomorphic to D◦1,a.

I Over the complement of the zero section we construct a family
of (ordinary) Abelian differentials in the stratum PΩMg ,n(µ).

I (This is the plumbing construction.)
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Degenerating further: Intersection of D1,a and D5,a′

D∆ =



−k − 1

1

k

b
a

c


Here c = b − 1.
The universal covering C2 → (C∗)2 acts by rescaling
(ω−1, ω−2, σ1, σ2, σ3).
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D∆ =



−k − 1

1

k

b
a

c


The prong rotation group R∆

∼= Z2 acts on (σ1, σ2, σ3).
The twist group Tw∆ contains

Tws
∆ =

〈
(lcm(a, b), 0), (0, lcm(a, c))

〉
the simple twist group.
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D∆ =



−6

1

5

2

4

1


But if e.g. k = 5 and b = 2 so a = 4 and c = 1, then

[Tw∆ : Tws
∆] = 2

generated by (2,−2).
This factor group causes a stack structure at the boundary
not stemming from automorphisms of stable curves.
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D∆ =



−6

1

5

2

4

1


The action of C2 factors through the level rotation torus
T∆ = C2/Tw∆.
It is covered by the simple level rotation torus T s

∆ = C2/Tws
∆.
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Construction II:

I Complete the (simpl level rotation) torus T s
1,a
∼= (C∗)2-bundle

over D∆ to a C2-bundle.

I The zero section is isomorphic to D∆.

I The locus where either coordinate is zero gives D1,4 resp.
D5,1. (Normal crossing boundary divisor)

I Over the complement of the zero section we construct a family
of (ordinary) Abelian differentials in the stratum PΩMg ,n(µ).

I (This is the plumbing construction.)

I In a neighborhood Tw∆/Tw
s
∆ acts and the orbits are

isomorphic multi-scale differentials.
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Second conclusion: The intersection point of D1,4 and D5,1 has
an order 2 quotient stack structure that does not come from
automorphisms of stable curves.

H/Γ(2) ⊆ D4

D5,2

D1,4

D1,3

D1,1

H
/Γ(4) ⊆

D
4

D∞

D2

D5,1

D1,2

D5,3
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Point-wise definition:

A multi-scale differential of type µ on a stable curve X is

(i) an enhanced level structure on the dual graph Γ of X ,

(ii) a twisted differential of type µ compatible with the enhanced
level structure,

(iii) and a prong-matching for each node of X joining components
of non-equal level.

Two multi-scale differentials are equivalent if they differ by the
action of the level rotation torus.
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Missing steps/details in this story:

I Definition of the functor?

I Pullback of families via a morphism that factors through a
boundary stratum?

I How to associate functorially a prong-matching equivalence
class to a degenerating family?

I Recaling parameters, rescaling ensemble!
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Tautological ring of Mg ,n

The tautological ring is the smallest system of Q-subalgebras
R•(Mg ,n) ⊂ CH•(Mg ,n) which

I contains the ψ-classes attached to the marked points,

I is closed under the pushfoward of the map forgetting a point,
and

I is closed under the clutching homomorphisms induced by
Mg1,n1+1 ×Mg1,n1+1 →Mg1+g2,n1+n2 and
Mg ,n+2 →Mg+1,n.

It contains the λ-classes and κ-classes.
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Theorem (Graber-Pandharipande, 2001) The tautological ring
of Mg ,n has a finite set of additive generators given by monomials
in ψ-classes and κ-classes on every boundary stratum.
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Tautological ring

Tautological ring of PΞMg ,n(µ)

The tautological ring is the smallest system of Q-subalgebras
R•(PΞMg ,n(µ)) ⊂ CH•(PΞMg ,n(µ)) which

I contains the ψ-classes attached to the marked points,

I is closed under the pushfoward of the map forgetting a regular
marked point (a zero of order zero), and

I is closed under the clutching homomorphisms ζΓ,∗p
[i ],∗ for all

level graphs without horizontal nodes.
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Tautological ring

Theorem (CMZ, 2020) The tautological ring of B = PΞMg ,n(µ)
has a finite set of additive generators given by products of
monomials of ψ-classes on each level of every boundary stratum
without horizontal nodes.

It contains

I the classes ξ
[i ]
Γ given by the first Chern class of the

tautological line bundle at level i on the boundary stratum
DΓ, for any level graph Γ,

I and the κ-classes
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We denote by LGL(B) the set of level graphs without horizontal
nodes and with L + 1 levels.

They define boundary strata of codimension L.
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Ingredients:
Excess intersection formula ([CMZ20]), the relation (Sauvaget)

ξ = (mi + 1)ψ(i) −
∑

Γ∈ (i)LG1(B)

`Γ[DΓ]

Theorem (CMZ, 2020) Suppose that DΓ is a divisor
corresponding to a level graph Γ ∈ LG1(B). Then

c1(NΓ) =
1

`Γ

(
−ξ>Γ − c1(L>Γ ) + ξ⊥Γ

)
in CH1(DΓ) .

Here
L> = O

( ∑
Γ∈LG1(B>)

`ΓDΓ

)
.
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Current knowledge about the topology of strata of
meromorphic abelian differentials:

I Connected components: Yes!
(Kontsevich-Zorich (’03), Boissy (’12))

I Fundamental group: Not much.
(Looijenga-Mondello (’12), Hamenstaedt, Salter-Calderon)

I Homology groups: Nothing.

I Chern classes and Euler characteristics: [CMZ20].
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Martin Möller Multi-scale differentials



Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Current knowledge about the topology of strata of
meromorphic abelian differentials:

I Connected components: Yes!
(Kontsevich-Zorich (’03), Boissy (’12))

I Fundamental group: Not much.
(Looijenga-Mondello (’12), Hamenstaedt, Salter-Calderon)

I Homology groups: Nothing.

I Chern classes and Euler characteristics: [CMZ20].
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The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Some Euler characteristics

µ χ(B)

(0) − 1
12

(2) − 1
40

(1, 1) 1
30

(4) − 55
504

(3, 1) 16
33

(2, 2) 15
56

(2, 1, 1) −6
7

(1, 1, 1, 1) 11
3

µ χ(B)

(6) −1169
720

(5, 1) 27
5

(4, 2) 76
15

(3, 3) 188
45

(4, 1, 1) −200
9

(3, 2, 1) −96
5

(2, 2, 2) −187
10

(2, 2, 1, 1) 504
5
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Strategy for Mg ,n.

Find a complex (the arc complex) on which the fundamental
group acts and count orbits and stabilizer groups:

Theorem (Harer-Zagier, 1986) The Euler characteristic of the
moduli space of curves is given by

χ(Mg ,1) = −B2g/2g and χ(Mg ,n+1) = (2−2g−n)χ(Mg ,n)
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Strategy for PΩMg ,n(µ).

Show that the Chern classes of the logarithmic tangent bundle
of B are tautological and compute them in terms of additive
generators.

Main tool: An Euler sequence for compactified strata.
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Recall that if X is a compact complex manifold of dimension n,
then

χ(X ) =
∑
i≥0

(−1)i dimH i (X ,Q).

By Hirzebruch-Riemann-Roch we can compute it via the
Gauß-Bonnet formula

χ(X ) =

∫
X

cn(X )

where cn(X ) = cn(TX ) is the top Chern class of the tangent
bundle of X .
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The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

We can generalize the Gauß-Bonnet formula in two ways:

1. If X is not compact, but there is a compact manifold X such
that X ⊂ X is an open submanifold and D = X \ X is a
smooth normal crossing divisor, then

χ(X ) =

∫
X

cn(TX (− log(D)))

where TX (− log(D)) is the dual of the logarithmic cotangent
bundle.

2. If X is an orbifold/analytic Deligne-Mumford stack, then

χorb(X ) =

∫
X

cn(TX (− log(D)))

still holds by replacing with orbifold Euler characteristic.
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The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Logarithmic (co)-tangent bundle
If X is a compact manifold with a normal crossing divisor D.

Locally, in coordinates x1, . . . , xdim(X ), if D =
{∏s

i=1 xi = 0
}

,

then

Ω1
X

(logD) =
〈dx1

x1
, . . . ,

dxs
xs
, dxs+1, . . . , dxdim(X )

〉
.

Orbifold Euler characteristic
If X = Y /Γ is a global quotient of a complex space Y
and ∆ is a finite-index torsion-free subgroup, then

χorb(X ) :=
1

[Γ : ∆]
χ(Y /∆)

If X is not a global quotient, apply this mechanism locally.
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Martin Möller Multi-scale differentials



Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Example: M1,1 = PΩM1,1(0)

Since B =M1,1 = H/ SL2(Z), take a complement of ±I2 in Γ(2),
i.e. such that Γ(2) = Γ(2)+ × {±I2}. Then

[SL2(Z) : Γ(2)+] = 12 and H/Γ(2)+ ∼= P1 r {0, 1,∞}

hence

χ(M1,1) = − 1

12
.

On the other hand∫
M1,1

c1(Ω1(log(∞))) =
1

2π

∫
M1,1

d volhyp =
1

12
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Theorem (CMZ, 2020) The Chern character of the logarithmic
cotangent bundle is tautological and given by

ch(Ω1
B

(logD)) = eξ·
N−1∑
L=0

∑
Γ∈LGL(B)

`Γ

(
N − NT

δL(Γ)

)
iΓ∗
( L∏
i=1

td
(
N⊗−`Γ,i

Γ/δ{i (Γ)

)−1)
,

where N denotes the normal bundle, δL and δ{i are the
undegeneration maps of the boundary strata, and N = dim(B) + 1
and NT

δL(Γ) = dim(BT
δL(Γ)) + 1 are the unprojectivised dimensions.
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Corollary (CMZ, 2020) The canonical class of the moduli space
B = PΞMg ,n(µ) of multi-scale differentials is

c1(Ω1
B

(logD)) = N · ξ +
∑

Γ∈LG1(B)

(N − N>Γ )`ΓDΓ ∈ CH1(B) .
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The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Compare:

Theorem (Harris-Mumford, 1983) The canonical class of the
moduli stack of curves Mg is

c1(Ω1
Mg

) = 13λ− 2

bg/2c∑
i=0

δi .
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Theorem (CMZ, 2020) The Euler characteristic of the moduli
space B = PΩMg ,n(µ) is given by

χ(B) = (−1)d
d∑

L=0

∑
Γ∈LGL(B)

`ΓN
>
Γ

∫
B

L−1∏
i=0

(ξ
[i ]
Γ )d

[i ]
Γ

where d
[i ]
Γ is the dimension of the projectivized moduli space at

level i and N>Γ = d
[0]
Γ + 1.
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Multi-scale differentials
The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

How to evaluate this:

I Construct all possible non-horizontal enhanced level
graphs: construct all 2-level graphs and recursively glue the
2-level graphs of each level stratum.

I Evaluate the top power of ξ on each level stratum:

Remark: For holomorphic strata, ξtop is the Masur-Veech
volume (up to constant) for minimal strata, zero otherwise
(Sauvaget ’18).

For all other strata, the evaluation of tautological classes is
performed using the formula for fundamental classes of strata
conjectured in [FP18] and [Sch18] and proven recently in
[HS19] and [BHPSS20].
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Topology of strata
The Chern classes
Idea of proof: The Euler sequence

The evaluation of these formulas is performed by a sage package
diffstrata that builds on the package admcycles for
computation in the moduli space of curves ([DSZ20]).
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The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

µ (02,−2) (2,−2) (12,−2) (4,−2) (3, 1,−2) (2, 1,−3) (5,−3)∫
B ξ

dim(B) 1 − 1
8

0 −−23
1152

, 0 5
8

− 21
20

µ χ(B)

(0) − 1
12

(2) − 1
40

(12) 1
30

(4) − 55
504

(3, 1) 16
33

(22) 15
56

(2, 12) − 6
7

(14) 11
3

µ χ(B)

(6) − 1169
720

(5, 1) 27
5

(4, 2) 76
15

(32) 188
45

(4, 12) − 200
9

(3, 2, 1) − 96
5

(23) − 187
10

(22, 12) 504
5

µ χ(B)

(4,−2) − 19
24

(4,−12) 8
5

(3, 1,−2) − 28
15

(3, 1,−12) −4

(22,−2) 17
10

(22,−12) −4

(2, 12,−2) −6

(2, 12,−12) 14
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The tautological ring

The Chern classes and the EC of strata

Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Idea of proof of the formulas: use the same strategy as for
projective space!

Suppose B = P(V ) is the projective space of a vector space V of
dimension N. Then there is an exact sequence, the Euler
sequence

0 −→ Ω1
P(V ) −→ V ⊗OP(V )(−1)

ev−→ OP(V ) −→ 0 .

From this one gets

ch(Ω1
P(V )) = N(1 + ξP(V ))

ck(P(V )) =

(
N

k

)
ξkP(V )
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Topology of strata
The Chern classes
Idea of proof: The Euler sequence

Open stratum:
Projective strata have a projective structure induced by
period coordinates. Glue together all local Euler sequences!

Suppose B = PΩMg ,n(µ) is an (open) stratum. Then there is an
exact sequence

0 −→ Ω1
B −→ (H1

rel)
∨ ⊗OB(−1)

ev−→ OB −→ 0

where H1
rel is the local system with fiber V = H1(X \ P,Z ;C) and

where

ev : (H1
rel)
∨ ⊗OB(−1)→ OB , γ ⊗ ω 7→

∫
γ
ω
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Idea of proof: The Euler sequence

Over the compactification: extend and correct an error term.
There is an exact sequence

0 −→ K −→ (H1
rel)
∨ ⊗OB(−1)

ev−→ OB −→ 0 ,

where H1
rel is the Deligne extension of the local system and where

0 −→ Ω1
B

(logD)⊗ L−1 → K → C −→ 0

with C and L supported on the non-horizontal boundary divisor D.
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Idea of proof: The Euler sequence

A local calculation near the boundary implies that
C = ⊕Γ∈LG1(B)CΓ with

ch(CΓ) = ch
(

(iΓ)∗
(`Γ−1⊕
j=0

N⊗−jDΓ
⊗ Ω1

B>Γ
(log(D>Γ ))⊗ L−1

B>Γ

))
Via Grothendieck-Riemann-Roch, we get a recursive expression for
ch(Ω1

B
(log(D)) that we can eventually expand.
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Thank you!
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