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1. Special curves on Hilbert modular surfaces

Consider the Hilbert modular surfaces XD = H2/SL(oD ⊕ o
∨
D) where o is the order

of discriminant D in K = Q(
√

D). Clearly the most special algebraic curve in
XD is the diagonal, the image of the composition z 7→ (z, z) and the projection
π : H2 → XD. For any matrix M ∈ GL+

2 (K) one can consider the twisted diagonal
z 7→ (Mz,Mσz), where σ is the generator of the Galois group. The π-images of
these twisted diagonals are still algebraic curves, called special curves, Shimura
curves, modular curves or Hirzebruch-Zagier cycles and the literature on them is
even longer than the number of names. Note that for these curves both components
of the universal covering map are given by Mobius transformations.
An algebraic curve C → XD in a Hilbert modular surface is still quite special
if one asks just that (at least) one of the components of the universal covering
map H → H2 should be a Mobius transformation. Equivalently, one may ask that
C → XD is totally geodesic for the Kobayashi metric and we thus call these curves
Kobayashi geodesics. Yet equivalently, we can characterize these curves as being
everywhere transversal to (at least) one of the two foliations of H2. See [MV10] for
more equivalent conditions.
We will provide examples of these curves soon. We give one number theoretic reason
why one might be interested in these curves. Consider the differential equation

(1)

L(y, t) =
(
A(t) y′(t)

)′
+ B(t) y(t) = 0

A(t) = t (t − 1) (t − `)(t − `−1) = t4 − βt3 + βt2 − t ,

B(t) =
3

4

(
3t2 − (β + γ) t + γ

)

where

` =
31 − 7

√
17

2
, β = ` + `−1 + 1 =

1087 − 217
√

17

64
, γ =

27 − 5
√

17

4
.

There is a well-known recursive procedure for finding a solution y =
∑

n≥0 antn of

such a differential equation that involves dividing by (n + 1)2 when computing the
n-th term. But the solution of this particular differential equation

y = 1 +
81 − 15

√
17

16
t +

4845 − 1155
√

17

64
t2 +

3200225 − 775495
√

17

2048
t3 + ...(2)

has coefficients in the ring of integers o
√

17[1/2] ([BM10]). The differential equation
is the Picard-Fuchs equation for the curve W17 introduced below.
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2. Theta derivatives

Let Θ(m,m′)(v, Z) be the usual Siegel theta function on C2 ×H2 with characteristic

(m,m′) ∈ ( 1
2Z2/Z2)2. A choice of a basis for oD determines a ’Siegel’ modular

embedding, i.e. map ψ : H2 → H2 and equivariant with respect to an adapted
group homomorphism Ψ : SL(oD ⊕ o

∨
D) → Sp4(Z).

In Siegel upper half space there are no distinguished directions and consequently
none of the partial derivatives of Θ with respect to εi is distinguished. Altogether
the form a vector-valued modular form. But H2 has two distinguished foliations
and thus the restriction of Θ(z1, z2) to the universal covering of XD has two distin-
guished partial derivatives. We denote second of these derivatives by D2Θ(z1, z2).
This is a modular form of weight (1/2, 3/2) for some subgroup of SL(oD ⊕ o

∨
D).

Theorem 2.1 ([MZ11]). The function

D2Θ(z1, z2) =
∏

(m,m′) odd

D2Θ(m,m′)(0, ψ(z1, z2))

is a modular form for the full Hilbert modular group SL(oD ⊕ o
∨
D) of weight (3, 9).

Its vanishing locus

WD = {D2Θ(z1, z2) = 0} ⊂ XD

is a Kobayashi geodesic.

Sketch of proof. Being transversal to the second of the two foliations means that the
derivative in the z2-direction never vanishes. Using the heat equation this means
that the third partial derivative of the theta function never vanishes on WD (in the
interior of XD). This third derivative is a ’modular form’ on WD. The number of
zeros on a compactification of WD can thus be computed. It suffices thus to list the
number of cusps of WD and show that the vanishing orders of the third derivative
at these points add up to the required number. ¤

3. Connection to Teichmüller curves

Teichmüller curves are algebraic curves in the moduli space of curves Mg that are
totally geodesic for the Kobayashi (equivalently: Teichmüller) metric. In [McM03]

McMullen found an interesting series of such curves WEig
D using eigenforms for real

multiplication, see [McM05] for a complete classification. Precisely,

WEig
D ={[X] ∈ M2 : Jac(X) has RM by oD,

a RM-eigenform ω ∈ H0(X,Ω1
X) has a double zero}

Theorem 3.1 ([MZ11]). These two series of curves coincide, i.e. WD = WEig
D

when considered in A2.

The proof relies on two facts. First, a genus two curve equals the theta divisor in
its Jacobian. Second an eigenform has a double zero if and only if the derivative of
the theta function in a ’foliation’ direction vanishes at a Weierstraß point.

By construction WEig
D is in M2, hence disjoint from the locus PD ⊂ XD of reducible

abelian surfaces. There are two more proofs of this fact using theta functions only.

Theorem 3.2 ([MZ11]). The loci WD and PD are disjoint.
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Sketch of proof. The reducible locus is the vanishing locus of the product of all even
theta functions. Its restriction to XD is the vanishing locus of a modular form of
weight (5, 5). As in the proof of Theorem 2.1 one can thus calculate the number of
intersection point of WD and PD by intersection theory. Again, a local calculation
at the cusps of WD shows that the intersection points are all located there.
For the second proof, one shows that on the reducible locus the derivatives of theta
functions factor as a product of two unary theta series. They are known to vanish
only at the cusps. ¤

Since a Kobayashi geodesic C in XD is a Teichmüller curve if and only if C is
disjoint from PD, this provides a proof of the property Teichmüller curve using
theta functions only.
Disconnecting from the world of Teichmüller curves. Given the univeral
covering map z 7→ (z, ϕ(z)) of a Kobayashi geodesic one can obtain more Kobayashi
geodesics by twisting, i.e. considering the π-images of z 7→ (Mz,Mσϕ(z)). For these
curves one can ask the same questions as for the Hirzebruch-Zagier curves. Some
answers are provided in the forthcoming Ph.D. thesis of C. Weiß. But this is still
surely not yet the end the story.
If C is Kobayashi geodesic and Li are the classes of the two foliations of XD,
then the quantity λ2 = (C · L1)/(C · L2) is invariant under twisting. Beside the
case λ2 = 1 (HZ-cycles) and λ2 = 1/3 (from WD) C. Weiss also showed that the
Prym Teichmüller curves of [McM06] give Kobayashi geodesics with λ2 = 1/7. A
construction of these curves using Θ-functions is in progress.

4. Two compactifications

A list of cusps of WD was needed in (some of the) proof(s) sketched above. To

describe them, there is a very useful compactification XD

B
defined by Bainbridge

([Ba07]) as follows. Consider the preimage of XD in M2, lift to ΩM2, the total
space of the relative dualizing sheaf over the Deligne-Mumford compactification,

and take XD

B
to be the normalization of the closure.

On the other hand there is Hirzebruch’s compactification XD

H
, the minimal smooth

compactification. This compactification is toroidal, that is given by a fan, a se-
quence of αn ∈ oD totally positive with σ(αn)/αn decreasing and invariant under
multiplication by squares of units in oD. The toroidal structure allows to compute
easily e.g. if and at which point HZ-cycles meet the boundary.

There is also a way of realizing XD

B
as a toroidal compactification. For a fractional

oD ideal a let a
∗[2] be the set of non-zero elements in 1

2a/a. We let M̃M(a, ξ) be

the set of α ∈ K such that the quadratic form F (x) = tr(αx2) is positive definite
and assumes its minimum on a + ξ more than once (where x and −x are not
distinguished). We define a multiminimizer for ξ to be the equivalence classes

MM(a, ξ) = M̃M(a, ξ)/Q∗

and we let the set of multiminimizers be the union of MM(a, ξ) over all ξ ∈ a∗[2].

Theorem 4.1 ([MZ11]). For any a, the set of multiminimizers forms a fan. The

associated toroidal compactification is Bainbridge’s compactification XD

B
at the

cusp a.
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This compactification can be calculated by an easy algorithm. In fact, given one
multiminimizer, the subsequent ones can be constructed using the ’slow-greater one’
continued fraction algorithm. Here ’slow-greater one’ continued fraction algorithm
means that

xn+1 =

{
xn − 1 if xn > 2

1/(xn − 1) if 2 > xn > 1
.

Note that Hirzebruch’s compactification is driven by the ’fast-minus’ continued
fraction algorithm

x = p1 −
1

p2 − 1

. . .

,

where at each step pi = dxie.

References

[Ba07] Bainbridge, M., Euler characteristics of Teichmüller curves in genus two, Geom.
Topol. 11 (2007), 1887–2073
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