Hodge theory of Teichmüller curves

Martin Möller Universität Duisburg-Essen

Mathematische Arbeitstagung June 10-16, 2005 Max-Planck-Institut für Mathematik, Bonn, Germany

Introduction

Let M_g be the moduli space of curves of genus $g \geq 2$ and let $\Omega M_g \to M_g$ be the total space of the Hodge bundle. There is a natural $\operatorname{GL}_2^+(\mathbb{R})$ -action on the complement ΩM_g^* of the zero section in ΩM_g : For $A \in \operatorname{GL}_2^+(\mathbb{R})$ and $(X, \omega) \in \Omega M_g^*$ postcompose the charts given by integration of ω with the linear action of A on $\mathbb{C} \cong \mathbb{R}^2$. This defines a new complex structure on X and a one-from that is holomorphic for this complex structure. Moreover the action preserves the stratification of ΩM_g^* according to the number and multiplicities of the zeros of ω .

Some motivation why it seems worth studying this action:

First, the $\operatorname{GL}_2^+(\mathbb{R})$ -action lifts in a natural way to the Hodge bundle over the Teichmüller space T_g . The images of orbits in T_g are complex geodesics for the Teichmüller (equivalently: Kobayashi-) metric.

In the -rare- case that the image C of such a geodesic in M_g is closed, C is called a *Teichmüller curve*. This happens if and only if the $\operatorname{GL}_2^+(\mathbb{R})$ -orbit is closed in ΩM_g .

Second, the action sheds much light in the behaviour of trajectories on rationalangled billiard tables. See [MaTa] for a survey and the references therein.

Third, how do closures of $\operatorname{GL}_2^+(\mathbb{R})$ -orbits look like ? M_g seems to behave as nicely as a symmetric domain with respect to this action. Compare the following two results:

Theorem 1 (Ratner, special case) Let $M = \mathbb{H}^n/\Gamma$ be the quotient of hyperbolic n-space by a discrete group. Then the closure of an $SL_2(\mathbb{R})$ -orbit in the frame bundle $FM = SO^0(1,n)/\Gamma$ is the orbit of a closed subgroup $H < SO^0(1,n)$, whose intersection with some conjugate of Γ is a lattice.

Theorem 2 (McMullen, [Mc1]) In ΩM_2 an orbit closure is one of the following possibilities: i) the lift of a Teichmüller curve to ΩM_g ; ii) the locus of eigenforms for real multiplication by a fixed order; iii) a stratum $\Omega M_2(2)$ or $\Omega M_2(1,1)$.

The arguments used to prove this are particular to genus 2. In higher genus the locus of eigenforms for real multiplication is no longer $\text{GL}_2^+(\mathbb{R})$ -invariant.

In the sequel we restrict ourselves to the case of closed orbits i.e. to Teichmüller curves and give a characterization valid in all genera as well as applications towards the classification of Teichmüller curves.

Teichmüller curves

Given a point $(X, \omega) \in \Omega M_g^*$, we denote by $\operatorname{Aff}^+(X, \omega)$ the group of orientation preserving diffeomorphism of X, that are affine with respect to the charts given by ω . There is a well-defined map $D : \operatorname{Aff}^+(X, \omega) \to \operatorname{SL}_2(\mathbb{R})$ by taking the matrix part of the diffeomorphism. Let Γ be the image of D. Then (X, ω) generates a Teichmüller curve if and only if Γ is a lattice in $\operatorname{SL}_2(\mathbb{R})$. In this case, up to conjugation, $C = \mathbb{H}/\Gamma$.

This observation makes it possible to detect Teichmüller curves. Examples are torus coverings ramified over only one point, or regular 2*n*-gons with opposite sides glued by translation. The latter belong to the first series of examples, discovered by Veech ([Ve]), where the trace field $K = \mathbb{Q}(\operatorname{tr}(\gamma), \gamma \in \Gamma)$ is different from \mathbb{Q} . K is always a number field. Let L be the Galois closure of K/\mathbb{Q} .

Theorem 3 ([Mo1]) If $C \to M_g$ is a Teichmüller curve, then there exists a finite unramified covering $C_1 \to C$, such that the variation of Hodge structures (VHS) of the family $f : \mathcal{X} \to C_1$ decomposes as follows:

$$R^{1}f_{*}L = (\bigoplus_{\sigma \in \operatorname{Gal}(L/\mathbb{Q})/\operatorname{Gal}(L/K)} \mathbb{L}^{\sigma}) \oplus \mathbb{M}.$$

Here \mathbb{L}^{id} is 'maximal Higgs', i.e. the corresponding representation $\pi_1(C) \to \operatorname{Aut}(\operatorname{Fibre of } \mathbb{L}^{\mathrm{id}})$ has image Γ . \mathbb{M} splits off over \mathbb{Q} .

Conversely a family f whose VHS contains a maximal Higgs local subsystem of rank 2 defined over \mathbb{R} comes from a finite unramified covering of a Teichmüller curve.

Hence Teichmüller curves 'behave' a little like Shimura curves, for which the VHS is built up only of local subsystems, that are maximal Higgs, and unitary local systems, see [ViZu] for more details. Some consequences:

Corollary 4 ([Mo1]) The family of Jacobians over a Teichmüller curve contains a family of r-dimensional abelian subvarieties A_r with RM by K. Teichmüller curves are defined over number fields and the absolute Galois group of \mathbb{Q} acts on the set of Teichmüller curves.

Suppose (X, ω) generates a Teichmüller curve. A point P on X is called *periodic*, if the orbit $\operatorname{Aff}^+(X, \omega) \cdot P$ is finite. Examples of periodic points are the zeros of ω , preimages of torsion points for torus coverings and Weierstraß points for hyperelliptic Teichmüller curves. Periodic points give rise to a section of f for a suitable unramified covering $C_1 \to C$.

Theorem 5 ([Mo2]) For each unramified covering $C_1 \to C$ the Mordell-Weil group of the family of abelian varieties A_r/C_1 is finite. In particular if r = g the difference of two periodic points is torsion.

A Teichmüller curve generated by (X, ω) is called primitive, if (X, ω) does not arise via a covering from lower genus. If r = g, a Teichmüller curve is obviously primitive, but the converse does not hold.

Since there are 'few' torsion points lying on the image of a curve in its Jacobian, Theorem 5 'explains' why -contrary to the intuition coming from dimension counting- primitive Teichmüller curves in strata with many zeros are 'rare'. In fact the above result is used in [Mc2] to complete the classification of Teichmüller curves in genus 2.

References

- [MaTa] Masur, H., Tabachnikov, S., Rational billiards and flat structures, Handbook of Dyn. Systems, Vol. 1 North-Holland (2002)
- [Mc1] McMullen, C., Dynamics of $SL_2(\mathbb{R})$ over moduli space in genus two, preprint (2003)
- [Mc2] McMullen, C., Teichmüller curves in genus two: Torsion divisors and ratios of sines, preprint (2004)
- [Mo1] Möller, M., Variations of Hodge structures of Teichmüller curves, preprint (2004)
- [Mo2] Möller, M., Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, preprint (2004)
- [Ve] Veech, W., Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 533–583
- [ViZu] Viehweg, E., Zuo, K., A characterization of Shimura curves in the moduli stack of abelian varieties, J. of Diff. Geometry 66 (2004), 233–287