Goethe-Universität Frankfurt Institut für Mathematik
 Winter term 2020/21

13. Dezember 2020

Algebra
Prof. Dr. Martin Möller
M.Sc. Jeonghoon So
M.Sc. Riccardo Zuffetti

Übungsblatt 7

Aufgabe 1 (4 Punkte)

(i) Show that $1+\sqrt[3]{2}$ is not a perfect square in $\mathbb{Q}(\sqrt[3]{2})$.
(ii) Show that $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$.

Aufgabe 2 (4 Punkte)

(i) Let K be a field and $L=K(a)$ a simple algebraic field extension with minimal polynomial $f_{a} \in K[X]$ of a. Show that $f(x)=\mathrm{N}_{L / K}(x-a)$ for all $x \in K$.
(ii) Show that if L / K is a finite non-separable field extension, then $\operatorname{Tr}_{L / K}(a)=0$ for every $a \in L$.
Hints: either $L / K(a)$ or $K(a) / L$ is non-separable. Use Satz 2.34.

Aufgabe 3 (4 Punkte)

(i) We want to compute all rational points of the unit circle of equation $X^{2}+Y^{2}=1$ in \mathbb{R}^{2}. Prove that two rational numbers $a, b \in \mathbb{Q}$ satisfy $a^{2}+b^{2}=1$ if and only if there exist $m, n \in \mathbb{Z}$ such that

$$
a=\frac{m^{2}-n^{2}}{m^{2}+n^{2}}, \quad b=\frac{2 m n}{m^{2}+n^{2}} .
$$

Hint: use Hilbert Theorem 90 applied to the extension $\mathbb{Q}(i) / \mathbb{Q}$.
(ii) Let D be a positive square-free integer. Compute all rational points of the ellipse of equation $X^{2}+D Y^{2}=1$ in \mathbb{R}^{2}.

Aufgabe 4 (4 Punkte)

(i) Let E / K and E^{\prime} / K be field extensions, where E^{\prime} / K is finite Galois. Prove that:
(a) $E \cdot E^{\prime} / E$ is finite Galois.
(b) The map $\varphi: \operatorname{Gal}\left(E \cdot E^{\prime} / E\right) \rightarrow \operatorname{Gal}\left(E^{\prime} / E \cap E^{\prime}\right),\left.\sigma \mapsto \sigma\right|_{E^{\prime}}$ is a group isomorphism.
(c) If also E / K is finite, then $\left[E \cdot E^{\prime}: K\right]=\frac{[E: K]\left[E^{\prime}: K\right]}{\left[E \cap E^{\prime}: K\right]}$.

Hint: this is a refinement of Übungsblatt 5, Aufgabe 1.
(ii) Let L be the splitting field of $f(X):=X^{7}-7 \in \mathbb{Q}[X]$, let ζ be a 7 -th primitive root of unity, and let $\alpha:=\sqrt[7]{7}$. Compute $[L: \mathbb{Q}]$, prove that $\operatorname{Gal}(L / \mathbb{Q}(\alpha))$ and $\operatorname{Gal}(L / \mathbb{Q}(\zeta))$ are cyclic, and compute their orders.

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 05.01.2021.

