Goethe-Universität Frankfurt
Institut für Mathematik
Winter term 2020/21

Algebra
Prof. Dr. Martin Möller
M.Sc. Riccardo Zuffetti

16. November 2020

Übungsblatt 3

Aufgabe 1 (4 Punkte)

Prove that $X^{n}+1$ is irreducible in $\mathbb{Q}[X]$ if and only if $n=2^{k}$ for some non-negative integer k. Is that true also in $\mathbb{Z}[X]$?
Hint: apply Eisenstein's criterion after a substitution.

Aufgabe 2 (4 Punkte)

(i) Prove that any algebraic closure of $\mathbb{Q}(\sqrt{11})$ is isomorphic to any algebraic closure of $\mathbb{Q}(\sqrt{-7})$.
(ii) Suppose that F / K is a field extension where F is algebraically closed. Prove that the set of elements of F which are algebraic over K is an algebraically closed field.
(iii) Let n be a positive integer. Let F be a splitting field of the set of all polynomials of degree at most n over \mathbb{Q}. Prove that F is not an algebraic closure of \mathbb{Q}.

Aufgabe 3 (4 Punkte)

Prove that every algebraically closed field consists of infinitely many elements.

Aufgabe 4 (4 Punkte)

Let \bar{K} be an algebraic closure of a field K. Prove that if K is countable, so is \bar{K}.
Hint: prove that the explicit construction of an algebraically closed extension L of K given by the proof of Satz 2.23 is countable. Then look at the proof of Korollar 2.25.

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 24.11.2020.

