Goethe-Universität Frankfurt
Institut für Mathematik
Winter term 2020/21
8. Februar 2021

Algebra
Prof. Dr. Martin Möller
M.Sc. Jeonghoon So
M.Sc. Riccardo Zuffetti

Übungsblatt 13

Aufgabe 1 (4 Punkte)

(i) Let p be a prime. Prove that the equation $f(X)=0$ is solvable by radicals over \mathbb{F}_{p}, for every separable polynomial $f \in \mathbb{F}_{p}[X]$.
(ii) Prove that the equation

$$
X^{10}+3 X^{6}+X^{2}-T^{2}=0
$$

is solvable by radicals over the field of fractions $\mathbb{F}_{5}(T)$.
(iii) Provide an example of a separable polynomial f with coefficients in a field of positive characteristic, such that the equation $f(X)=0$ is not solvable by radicals.

Hint: Recall the Artin-Schreier Theorem and the version of "solvability by radicals" for field extensions in positive characteristic; see Bosch' book, Sections 4.8 and 6.1.

Aufgabe 2 (4 Punkte)

(i) Compute the transcendence degree of the following field extensions.

$$
\begin{array}{lr}
\mathbb{Q}\left(\sqrt[n]{n}: n \in \mathbb{Z}_{>0}\right) / \mathbb{Q}, & \mathbb{Q}\left(\sqrt[n]{\pi}: n \in \mathbb{Z}_{>0}\right) / \mathbb{Q}, \\
\mathbb{C} / \mathbb{R}, & \mathbb{F}_{p^{n}}(T) / \mathbb{F}_{p} \text { where } n>0
\end{array}
$$

(ii) Show that every transcendence basis of \mathbb{R} / \mathbb{Q} is uncountable.
(iii) Let L / K be a field extension and \mathfrak{X} an algebraically independent system of L / K. Show for every intermediate field K^{\prime} of L / K that is algebraic over K that \mathfrak{X} is algebraically independent over K^{\prime}.
(iv) Let L / K be a finitely generated field extension. Show for every intermediate field L^{\prime} of L / K that the extension L^{\prime} / K is finitely generated.

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 16.02.2021.

