Goethe-Universität Frankfurt
Institut für Mathematik
Winter term 2020/21
25. Januar 2021

Algebra
Prof. Dr. Martin Möller
M.Sc. Jeonghoon So
M.Sc. Riccardo Zuffetti

Übungsblatt 11

Aufgabe 1 (3 Punkte)

Let $f \in K[X]$ be a separable polynomial of degree n, with coefficients in a field K of characteristic different from 2. Prove that the embedding of the Galois group of f over K into S_{n}, as permutations of the roots of f, has image in A_{n} if and only if the discriminant of f is a square in K.

Aufgabe 2 (5 Punkte)

Determine whether the following equations are solvable by radicals.
(i) $X^{5}-2 X+1=0$ over \mathbb{Q}.
(ii) $X^{7}-7 X^{6}+13 X^{5}+X^{4}-27 X^{3}+25 X^{2}-3 X-1=0$ over \mathbb{Q}.
(iii) $X^{7}+4 X^{5}-\frac{10}{11} X^{3}-4 X+\frac{2}{11}=0$ over \mathbb{Q}.
(iv) $X^{5}-X-1=0$ over \mathbb{Q}.

Hints: the associated Galois group contains a permutation of the roots with cycle type $(2,3)$, that is, a 2 -cycle composed with a 3 -cycle. (This follows from a reduction theorem due to Dedekind.) Also, there is no subgroup of S_{5} of cardinality 30.

General hint: plot the graph of the polynomials using e.g. GeoGebra.

Aufgabe 3 (6 Punkte)

Let $\{0,1\} \subseteq M \subseteq \mathbb{C}$. We denote by $\mathfrak{K}(M)$ the set of points in \mathbb{C} that can be obtained by compass and straightedge constructions from M. Note that $F_{\sqrt{ }}=\mathfrak{K}(\{0,1\})$.
(i) Prove that $\mathfrak{K}(M)$ is a field.
(ii) Prove that if $z \in \mathfrak{K}(M)$, then z is contained in a Galois extension L of $\mathbb{Q}(M \cup \bar{M})$, where $\bar{M}=\{\bar{m}: m \in M\}$, whose degree is a power of 2 .
Hint: Generalizing Proposition 5.11 of the skript, starting from M instead of $\{0,1\}$, it is possible to prove that $z \in \mathscr{K}(M)$ if and only if there exists a chain of field extensions

$$
\mathbb{Q}(M \cup \bar{M})=L_{0} \subset L_{1} \subset \cdots \subset L_{n} \subset \mathbb{C},
$$

such that $z \in L_{n}$ and $\left[L_{i+1}: L_{i}\right]=2$ for $i=0, \ldots, n-1$. You can assume this.
(iii) Prove that $\mathfrak{K}(M)$ is an algebraic extension of $\mathbb{Q}(M \cup \bar{M})$ and that the degree over $\mathbb{Q}(M \cup \bar{M})$ of any element $z \in \mathfrak{K}(M)$ is a power of 2 .

Aufgabe 4 (3 Punkte)

Prove that the angle trisection is a geometric problem that can not be solved with compass and straightedge.
Hint: start with $M=\{0,1, \zeta\}$, for some root of unity ζ.

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 02.02.2021.

