Goethe-Universität Frankfurt
Institut für Mathematik
Winter term 2020/21
2. November 2020

Algebra
Prof. Dr. Martin Möller
M.Sc. Riccardo Zuffetti

Übungsblatt 1

WARM-UP EXERCISES

Aufgabe 1 (3 Punkte)

(i) Let G be a group. Prove that $T:=\{\alpha \in \operatorname{Aut}(G) \mid \alpha(U)=U$ for all subgroups U of $G\}$ is a normal subgroup of $\operatorname{Aut}(G)$.
(ii) Prove that

$$
G:=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z} / 3 \mathbb{Z}\right\},
$$

endowed with the usual matrix multiplication, is a group of order 27 , where every element different from the identity matrix has order 3 .
Use this to find two non-isomorphic finite groups for which for every n the number of elements of order n coincide for the two groups.

Aufgabe 2 (5 Punkte)

Let R be a ring. We denote by 1 the unit of R. Prove or disprove the following claims.
(i) If $x^{2}=x$ for every $x \in R$, then R is commutative.
(ii) If I is an ideal of R such that $1 \in I$, then $I=R$.
(iii) If I is an ideal of R, then also $r(I):=\{x \in R \mid x a=0$ for all $a \in I\}$ is an ideal of R.
(iv) Let I and J be ideals of R, then also $\operatorname{prod}(I, J):=\{a b \mid a \in I$ and $b \in J\}$ is an ideal of R.
(v) If R is a PID (i.e. "Principal Ideal Domain", in German "Hauptidealring"), then the previous point is correct.
(vi) Consider $\mathbb{Z}[\sqrt{-5}]:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ as a subring of \mathbb{C}, where the operations are the ones inherited from the field \mathbb{C}. The map

$$
N: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}, \quad a+b \sqrt{-5} \longmapsto a^{2}+5 b^{2}
$$

is a ring homomorphism.
(vii) $\mathbb{Z}[\sqrt{-5}]$ is a PID.

Aufgabe 3 (2 Punkte)

Let R be a ring and let I, J be ideals of R.
(i) Prove that $I+J:=\{a+b \mid a \in I$ and $b \in J\}$ is an ideal of R.
(ii) Define $I J$ the set of all elements of R that can be written as finite sums of elements of the form $a b$, where $a \in I$ and $b \in J$. Prove that $I J$ is an ideal of R.

Aufgabe 4 (6 Punkte)

(i) Prove or disprove the following claim.

The set of 2×2 matrices of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, where $a, b \in \mathbb{R}$, endowed with the usual matrix operations, is a field.
(ii) Prove that the following sets of real numbers are subfields of \mathbb{R}.

$$
\begin{aligned}
\mathbb{Q}[\sqrt{2}] & :=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \\
\mathbb{Q}[\sqrt[3]{2}] & :=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}
\end{aligned}
$$

