Goethe-Universität Frankfurt
Institut für Mathematik
Sommersemester 2018/19
24. April 2019

Komplexe Algebraische Geometrie II
Prof. Dr. Martin Möller
Dr. Matteo Costantini
Dr. David Torres-Teigell

Übungsblatt 1

Let D be a divisor on a variety X and recall the different definitions of the complete linear system

$$
\begin{aligned}
|D| & =\mathbb{P} H^{0}\left(X, \mathcal{O}_{X}(D)\right)=\left\{D^{\prime} \in \operatorname{Div}(X): D^{\prime} \sim D \text { and } D \geq 0\right\}= \\
& =\mathbb{P} L(D):=\{f \text { meromorphic function on } X:(f)+D \geq 0\} .
\end{aligned}
$$

Assume that D is effective and write $D=\left(s_{D}\right)$ for a section $s_{D} \in H^{0}\left(X, \mathcal{O}_{C}(D)\right)$. The equivalences between the definitions above are given by

$$
\begin{array}{ccccc}
\mathbb{P} H^{0}\left(X, \mathcal{O}_{X}(D)\right) & \longleftrightarrow & \left\{D^{\prime} \sim D \text { and } D \geq 0\right\} & \longleftrightarrow & \mathbb{P} L(D) \\
{[s]=[\lambda s]} & \mapsto & (s) & \mapsto & {\left[s / s_{D}\right]} \\
{\left[f \cdot s_{D}\right]} & \longleftrightarrow & D^{\prime}=D+(f) & \longleftrightarrow & {[f]=[\lambda \cdot f]}
\end{array}
$$

More generally, any linear subspace $V \subset|D|$ is called a linear system. We define the base locus of V as

$$
\operatorname{Bs}(V)=\bigcap_{D^{\prime} \in V} D^{\prime}=\left\{x \in X: s(x)=0 \text { for all } s \in V \subset \mathbb{P} H^{0}\left(X, \mathcal{O}_{X}(D)\right)\right\}
$$

Aufgabe 1 (5 Punkte)

Consider the affine curve in \mathbb{C}^{2} given by equation $y^{3}=x^{5}-1$ and the projection $\pi(x, y)=x$. Let X be the curve given by the unique smooth completion of the above affine curve and call $\pi: X \rightarrow \mathbb{P}^{1}$ the extension of the above projection. Set $p=\pi^{-1}(\infty)$ and $r_{\alpha}=\left(e^{2 \pi i \cdot \alpha / 5}: 0: 1\right)$ for $\alpha=0, \ldots, 4$.
(a) Find the ramification divisor of π and compute the genus of X.

Hint: The ramification divisor of a map π is $\sum_{p \in X}\left(e_{p}-1\right) \cdot[p]$, where e_{p} is the ramification index of π at p.
(b) Establish the linear equivalences $3 p \sim 3 r_{\alpha}$, for $\alpha=0, \ldots, 4$, and $\sum_{\alpha=0}^{4} r_{\alpha} \sim 5 p$.
(c) Determine the space $H^{0}\left(X, K_{X}\right)$ of holomorphic differentials on X.

Hint: Find $|D|$ where $D=(d x)$.
(d) Describe the canonical map $\phi_{K_{X}}: X \rightarrow \mathbb{P}^{3}$ and determine the equations of its image.
(e) Using part (c) show that for $D=\sum_{\alpha=0}^{4} r_{\alpha}$ one has $h^{0}\left(X, K_{X}(-D)\right)=1$.

Use Riemann-Roch to conclude that $h^{0}(X, \mathcal{O}(D))=3$.

Aufgabe 2 (3 Punkte)

Let D be a divisor on a curve X.
(a) Prove that D is base-point-free if and only if $h^{0}(X, D-[p])=h^{0}(X, D)-1$ for all points $p \in X$.
(b) Prove that D is very ample if and only if $h^{0}(X, D-[p]-[q])=h^{0}(X, D)-2$ for all points $p, q \in X$.

Aufgabe 3 (4 Punkte)

Let D be a divisor on \mathbb{P}^{2} and $V \subset|D|$ a linear system. Write $\varphi_{V}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{N}$ for its associated map and assume that the base locus $\operatorname{Bs}(V)$ consists of a single point P. Consider the blow-up $\pi: \mathrm{Bl}_{P}\left(\mathbb{P}^{2}\right) \rightarrow \mathbb{P}^{2}$ and prove that there exists a morphism $\Phi: \mathrm{Bl}_{P}\left(\mathbb{P}^{2}\right) \rightarrow \mathbb{P}^{N}$ everywhere defined such that $\Phi=\phi_{V} \circ \pi$.

Hint: What can you say about the linear systems

$$
\pi^{*} V-k E=\left\{\pi^{*} D^{\prime}-k E: D^{\prime} \in V\right\}
$$

for different $k \in \mathbb{Z}$, where $E=\pi^{-1}(P)$ is the exceptional divisor?

Aufgabe 4 (4 Punkte)

In this exercise we construct maps ϕ_{L} associated to certain line bundles L on projective spaces.
(a) Let L be a very ample line bundle on a variety X. Prove that $L^{\otimes m}$ is very ample for every $m \geq 1$.
(b) Consider the line bundle $\mathcal{O}(d)$ on \mathbb{P}^{n}. Recall that its global sections can be identified with homogeneous polynomials of degree d. Describe the map $\phi_{\mathcal{O}(d)}$, called the Veronese embedding. Why is it an embedding?
(c) Let $X=\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}$ and write $p_{i}: X \rightarrow \mathbb{P}^{n_{i}}$ for the two natural projections. Describe the map ϕ_{L} associated to the line bundle $L=p_{1}^{*} \mathcal{O}(1) \otimes p_{2}^{*} \mathcal{O}(1)$ on X, called the Segre embedding. What is the base locus $\operatorname{Bs}(|L|)$?

Abgabe Zu Beginn der Übung um 14:00 am Mittwoch, den 8. Mai.

