Übungen zur Vorlesung Algebraische Geometrie I Übungsblatt 1

Dozent: Prof. Dr. A. Küronya Übungen: M. Nickel

Definition 0.1 Es sei $A \subseteq B$ ein Unterring. Ein Element $b \in B$ heißt ganz über A, falls b die Nullstelle von einem normierten Polynom aus A[X] ist. Falls jedes Element $b \in B$ ganz über A ist, dann sagen wir, dass B ganz über A ist, oder dass B eine ganze Erweiterung von A ist.

Übung 1 (Präsenz)

Es sei $b \in B$. Die folgenden Aussagen sind für b äquivalent.

- (a) b ist ganz über A.
- (b) A[b] ist ein endlich erzeugter A-Modul (wobei A[b] für den in B von A und b erzeugten Unterring steht).
- (c) Es gibt einen Unterring $A \subseteq C \subseteq B$, der ein endlich erzeugter A-Modul ist und b enthält.

Definition 0.2 (Verschwindungsordnung von Polynomen in mehreren Variablen) Sei $f \in k[x_1, \ldots, x_n]$, $a \in \mathbb{A}_k^n$, m eine naturliche Zahl. Wir sagen f verschwindet in a mit Ordnung m, falls

$$\partial_{\alpha} f(a) = 0$$

für alle Multiindizes $\alpha \in \mathbb{N}^n$ with $|\alpha| := \alpha_1 + \cdots + \alpha_n < m$.

Hat man eine Teilmenge $X \subseteq \mathbb{A}^n_k$, so sagt man f verschwindet auf X mit Ordnung m, falls es mit Ordnung m auf allen Punkten von X verschwindet. Wir setzen

 $\operatorname{ord}_X f := \max\{m \in \mathbb{N} \mid f \text{ verwschwindet auf } X \text{ mit Ordnung } m\}$.

Übung 2 (Verschwindungsordnung, Präsenz)

Mit Notation wie oben, zeigen Sie die Äquivalenz der folgenden Aussagen mithilfe der multivariaten Taylor Formel.

- (a) f verschwindet mit Ordnung m bei $p \in \mathbb{A}_k^n$.
- (b) Falls $f(x_1, ..., x_n) = \sum_{\alpha \in \mathbb{N}} a_{\alpha}(x-p)^{\alpha}$, so ist $a_{\alpha} = 0$ für alle Multiindizes α with $|\alpha| < m$.

Übung 3 (Abgabe)

Zeigen Sie die folgenden Aussagen:

- (a) Es seien $b_1, \ldots, b_n \in B$ ganz über A, dann ist $A[b_1, \ldots, b_n]$ ein endlich erzeugter A-Modul und ganz über A.
- (b) Die Untermenge $A'_B = \{b \in B \mid b \text{ ganz "über } A\}$ ist ein Unterring von B.

Übung 4 (Abgabe)

Es sei C ein Unterring von A. Falls B ganz über A und A ganz über C ist, dann ist auch B ganz über C. Falls ein Element $b \in B$ ganz über A'_B ist, dann gilt bereits $b \in A'_B$.

Übung 5 (Abgabe)

Es seien $A \subseteq B$ wie oben, $I \triangleleft B$. Dann lässt sich $A/I \cap A$ mit einem Unterring von B/I identifizieren. Falls B ganz über A ist, dann gilt auch B/I ganz über $A/I \cap A$.

Übung 6 (Rechenregeln für ord_X , Abgabe)

Zeigen Sie die folgenden Aussagen:

- (a) $\operatorname{ord}_p(f \cdot g) = \operatorname{ord}_p(f) + \operatorname{ord}_p(g)$ für alle $p \in X$.
- (b) $\operatorname{ord}_X(f+g) \ge \min{\{\operatorname{ord}_X(f), \operatorname{ord}_X(g)\}}.$
- (c) Ist $\partial_{x_i} f \neq 0 \in k[x_1, \dots, x_n]$, so hat man $\operatorname{ord}_X(\partial_{x_i} f) \geq \max\{0, \operatorname{ord}_X(f) 1\}$.