Lineare Algebra zur Sekundarstufe I Übungsblatt 3

Dozent: Prof. Dr. A. Küronya 23.05.2019

Übungen: M. Nickel

Übung 1 (4 Punkte)

Zeigen Sie, dass die in Satz 1.6 im Skript angegebenen Lösungen eines homogenen linearen Gleichungssystems in spezieller Zeilenstufenform tatsächlich das Gleichungssystem lösen.

Übung 2 (4 Punkte)

Sei G eine Gruppe. Zeigen Sie:

- (a) Das neutrale Element von G ist eindeutig bestimmt.
- (b) Sei $a \in G$. Dann ist das Inverse zu a eindeutig bestimmt.

Übung 3 (4 Punkte)

Geben Sie die Anzahl der verschiedenen Gruppen mit 3 Elementen an (mit Beweis).

Übung 4 (4 Punkte)

Gegeben sei die Menge $\mathbb{R}[X]$ der Polynome in X mit reellen Koeffizienten. Zeigen Sie, dass $\mathbb{R}[X]$ zusammen mit der Addition von Polynomen und der Multiplikation durch Elemente von \mathbb{R} ein \mathbb{R} -Vektorraum ist und entscheiden Sie, ob die folgenden Teilmengen Untervektorräume sind (mit Beweis):

- (a) die Polynome vom Grad 10,
- (b) die Polynome vom Grad ≥ 10 ,
- (c) die Polynome vom Grad ≤ 10 .

Zusatzaufgaben Die folgenden Aufgaben sind zur eigenen Übung gedacht und werden nicht abgegeben oder korrigiert.

Übung 5

Entscheiden Sie, ob folgende Paare von Mengen und Verknüpfungen eine Gruppe bilden:

- (a) $(\mathbb{R}, +)$,
- (b) (\mathbb{R},\cdot) ,
- (c) $(\mathbb{Z}, +)$,
- (d) (\mathbb{Z},\cdot) ,
- (e) $(\mathbb{N}, +),$

(f) (\mathbb{N}, \cdot) .

Übung 6

Überprüfen Sie, ob folgende Mengen Untervektorräume von \mathbb{R}^3 sind:

(a)
$$V_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}$$

(b)
$$V_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$$

(c)
$$V_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x(y + 2z) = 0\}.$$

Dieses Blatt kann bis spätestens 14:00 Uhr am Freitag, den 31.05., im Schließfach ihrer jeweiligen Tutoren im 3. Stock, Robert-Mayer-Str. 6, abgegeben werden. Bitte denken Sie daran, Ihren Namen und Ihre Matrikelnummer mit anzugeben.