Elementarmathematik Übungsblatt 7

Dozent: Prof. Dr. A. Küronya 01.06.2017

Übungen: M. Nickel

Übung 1 (2+2+2 Punkte)

- 1. Sei $f: \mathbb{R} \to \mathbb{R}$ streng monoton fallend. Zeigen Sie, dass f injektiv ist.
- 2. Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und injektiv. Man zeige, dass f streng monoton fallend oder streng monoton wachsend ist.
- 3. Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) := \frac{71x^4 + 3x - 2}{x^2 + 1} \,.$$

Zeigen Sie, dass f mindestens zwei Nullstellen besitzt und dass es ein $x_0 \in \mathbb{R}$ gibt mit $f(x_0) = \frac{-137}{201}$.

Übung 2 (3+3 Punkte)

- 1. Sei $f:[a,b] \to [a,b]$ stetig. Zeigen Sie, dass es ein $x_0 \in [a,b]$ gibt mit $f(x_0) = x_0$.
- 2. Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion, die periodisch ist mit Periode $T \in \mathbb{R}$, das heißt f(x+T) = f(x) für alle $x \in \mathbb{R}$. Zeigen Sie, dass es $x_0, y_0 \in \mathbb{R}$ gibt mit $f(x_0) = \sup\{f(x) \mid x \in \mathbb{R}\}$ und $f(y_0) = \inf\{f(x) \mid x \in \mathbb{R}\}$.

Übung 3 (2+2 Punkte)

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind (jeweils mit Begründung).

- 1. Jede stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ besitzt eine stetige Umkehrfunktion.
- 2. Sei $f:[a,b] \to \mathbb{R}$ stetig und streng monoton wachsend. Dann gibt es genau ein $x_0 \in [a,b]$ mit $f(x_0) = \sup\{f(x) \mid x \in [a,b]\}.$

Dieses Blatt kann bis spätestens **14:00 Uhr** am **Donnerstag, den 08.06.**, im Schließfach ihrer jeweiligen Tutoren im 3. Stock, Robert-Mayer-Str. 6, abgegeben werden. Bitte denken Sie daran, Ihren Namen und Ihre Matrikelnummer mit anzugeben.