Übungen zur Vorlesung Algebraische Geometrie III Übungsblatt 5

Dozent: Prof. Dr. A. Küronya

Übungen: M. Nickel

Übung 1

- (a) Betrachte den Polynomring $\mathbb{Q}[n_1,\ldots,n_t]$. Zeige zunächst, dass die Polynome $\binom{n_1+i_1}{i_1},\ldots,\binom{n_t+i_t}{i_t},i_k\geq 0$ eine Basis von $\mathbb{Q}[n_1,\ldots,n_t]$ als \mathbb{Q} -Vektorraum bilden. $f\in\mathbb{Q}[n_1,\ldots,n_t]$ nennt man numerisches Polynom, falls für alle $(n_1,\ldots,n_t)\in\mathbb{Z}^t$ gilt: $f(n_1,\ldots,n_t)\in\mathbb{Z}$. Zeigen Sie, dass dies dazu äquivalent ist, dass f eine \mathbb{Z} -Linearkombination von $\binom{n_1+i_1}{i_1},\ldots,\binom{n_t+i_t}{i_t}$ ist.
- (b) Sei X eine vollständige Varietät über einem algebraisch abgeschlossenen Körper k, F ein kohärenter \mathcal{O}_X -Modul und L_1, \ldots, L_t invertierbare Garben. Dann ist die Funktion

$$f_F(n_1,\ldots,n_t) \coloneqq \chi(F \otimes L_1^{n_1} \otimes \cdots \otimes L_t^{n_t})$$

ein numerisches Polynom in n_1, \ldots, n_t mit $\deg(f_F) \leq \dim(\operatorname{Supp}(F))$.