Übungen zur Vorlesung Algebraische Geometrie I Übungsblatt 3

Dozent: Prof. Dr. A. Küronya Übungen: M. Nickel

Übung 1 (Präsenz)

Schwacher HNSS.

- (a) Es sei R eine endlich erzeugte K-Algebra, $\mathfrak{m} \triangleleft R$ maximal. Dann ist R/\mathfrak{m} eine endliche Körpererweiterung von K. (Benutze den Noetherschen Normalisierungssatz)
- (b) Falls noch K algebraisch abgeschlossen ist, dann gilt $R/\mathfrak{m} = K$.

Übung 2 (Abgabe)

Sei B ein Integritätsbereich ganz über einem Unterring A. Dann gilt: A Körper dann und genau dann wenn B Körper.

Übung 3 (Präsenz)

Es sei R eine endlich erzeugte K-Algebra über einen Körper K. Dann ist die Menge von abgeschlossen Punkten in Spec(R) dicht bezüglich der Zariski-Topologie.

Übung 4 (Abgabe)

Starker HNSS. Es sei R eine endlich erzeugte K-Algebra (K nicht unbedingt algebraisch abgeschlossen!), $I \triangleleft R$. Dann is \sqrt{I} gleich dem Jacobson-Radikal von I (d.h. der Schnitt von allen maximalen Idealen, die I enthalten). Erkläre die geometrische Bedeutung des Jacobson-Radikals, und des Satzes.

Übung 5 (Übung, UFDs)

Zeige die Äquivalenz der folgenden Aussagen für einen Integritätsbereich R:

- (a) Jedes Element $0 \neq r \in R$, das keine Einheit ist, ist ein Produkt von Primelementen.
- (b) Jedes Element $0 \neq r \in R$, das keine Einheit ist, ist ein Produkt von irreduziblen Elementen und diese Zerlegung ist eindeutig bis auf Permutation und Multiplikation mit einer Einheit.
- (c) Jedes Element $0 \neq r \in R$, das keine Einheit ist, ist ein Produkt von irreduziblen Elementen und jedes irreduzible Element ist prim.

Übung 6 (Übung)

Zeige die folgende Aussage: R UFD impliziert R[x] UFD.

Übung 7 (Abgabe)

Zeige, dass die folgenden Ringe UFDs sind:

• $\mathbb{R}[x,y]/(y-x^2)$ und $\mathbb{R}[x,y]/(xy-1)$

•
$$\mathbb{C}[x,y]/(x^2+y^2-1)$$
.

Übung 8 (Abgabe)

Finde eine minimale Primärzerlegung von

(a)
$$I = (\overline{x}^2)$$
 in $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

(b)
$$I = (6)$$
 in $\mathbb{Z}[\sqrt{5}i]$.

(c)
$$I = (x, y) \cdot (y, z)$$
 in $\mathbb{R}[x, y, z]$.

Übung 9 (Übung) **

Es sei $I_{n,d}$ das ideal in $K[x_1, \ldots, x_n]$, das von allen quadratfreien Monomen vom Grad d erzeugt wird. Bestimme die Primärzerlegung von seinen symbolischen Potenzen $I_{n,d}^{(m)}$.

$\ddot{U}bung~10~(\ddot{U}bung)$

Zeige, Dass $\operatorname{Spec}(R)$ bzg der Zariski-Topologie quasi-kompakt ist.