Übungen zur Vorlesung Algebraische Geometrie I Übungsblatt 13

Dozent: Prof. Dr. A. Küronya Übungen: M. Nickel

Übung 1 (Präsenz)

Definiere den Tangentialraum einer affinen Varietät in einem Punkt, der nicht notwendigerweise der Ursprung ist.

Übung 2 (Präsenz)

Sei $f: X \to Y$ ein Morphismus von Varietäten und sei $a \in X$. Zeige, dass f eine lineare Abbildung $T_aX \to T_{f(a)}Y$ der Tangentialräume induziert.

Übung 3 (Abgabe)

Zeige das projektive Jacobi Kriterium: Sei $X \subset \mathbb{P}^n$ eine projektive Varietät mit homogenem Ideal $I(X) = (f_1, \ldots, f_r)$ und sei $a \in X$. Dann ist X glatt bei a genau dann, wenn der Rang der $r \times (n+1)$ Jacobi Matrix $(\partial f_i/\partial x_j(a))_{i,j}$ mindestens n-codim $_X\{a\}$ ist.

Übung 4 (Präsenz)

Für $k \in \mathbb{N}$ sei X_k die affine Kurve $X_k := V(x_2^2 - x_1^{2k+1}) \subset \mathbb{A}^2$. Zeige, dass X_k nicht isomorph zu X_l für $k \neq l$ ist. Hinweis: betrachte den Blow-up von X_k im Ursprung.

Übung 5 (Abgabe)

Sei $X \subset \mathbb{P}^3$ die Grad 3 Veronese Einbettung von \mathbb{P}^1 . X ist glatt, da es isomorph zu \mathbb{P}^1 ist. Man verifiziere dies direkt, indem man das projektive Jacobi Kriterium benutzt.

Übung 6 (Abgabe)

Exer 10.21 Sei X eine projektive Varietät der Dimension n. Zeige:

- (a) Es gibt einen injektiven Morphismus $X \to \mathbb{P}^{2n+1}$.
- (b) Im allgemeinen gibt es keinen solchen Morphismus, der ein Isomorphismus auf sein Bild ist.

Übung 7 (Abgabe)

Sei char $K \neq 2$ und sei $f \in K[x_0, x_1, x_2]$ ein homogenes Polynom, dessen partielle Ableitungen $\partial f/\partial x_i$ für i=0,1,2 nicht gleichzeitig an einem Punkt von $X=V_p(f)\subset \mathbb{P}^2$ verschwinden. Dann nennt man das Bild des Morphismus

$$F: X \to \mathbb{P}^2, a \mapsto (\partial_f/\partial x_0(a) : \partial f/\partial x_1(a) : \partial f/\partial x_2(a))$$

die $duale \ Kurve \ zu \ X$.

(a) Finde eine geometrische Beschreibung von F. Was bedeutet F(a) = F(b) für zwei unterschiedliche Punkte $a, b \in X$?

- (b) Ist X ein Kegelschnitt, so ist F(X) auch ein Kegelschnitt.
- (c) Zeige für fünf beliebige Geraden in \mathbb{P}^2 in allgemeiner Lage, dass es einen Kegelschnitt gibt, an dem die Geraden Tangenten sind.