Matrixrechnung - Grundlagen

Was ist eine Matrix?

 $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,m} & \cdots & a_{m,n} \end{pmatrix} \bullet \text{ Die Zahlen } a_{i,j} \text{ heißen Einträge der Matrix.}$ $\bullet \text{ Die } i\text{-te Zeile hat die Form}$ Eine $m \times n$ -Matrix ist eine rechteckige Anordnung von Zahlen in m Zeilen und nSpalten.

Der Index i, j des Eintrags $a_{i,j}$ gibt die Position innerhalb der Matrix an. $a_{i,j}$ befindet sich sich in der *i*-ten Zeile und der *j*-ten Spalte.

Anstelle von Zahlen können die Einträge einer Matrix auch andere Objekte sein.

Man schreibt oft: $A = (a_{i,j})_{\substack{i=1,\dots,m\\j=1,\dots,n}}^{i=1,\dots,m}$.

- $A_{(i)} := (a_{i,1}, a_{i,2}, \dots, a_{i,n}).$
- Die j-te Spalte hat die Form

$$A^{(j)} := \begin{pmatrix} a_{1,j} \\ a_{2,j} \\ \vdots \\ a_{m,j} \end{pmatrix}$$

Rechnen mit Matrizen

Zwei Matrizen der selben Größe $m \times n$ können mit einander addiert werden. Die Addition erfolgt eintragsweise: Die Matrix A + B hat die Einträge $a_{i,j} + b_{i,j}$.

Beispiel (mit m = 3, n = 2):

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} \\ a_{3,1} + b_{3,1} & a_{3,2} + b_{3,2} \end{pmatrix} = \begin{pmatrix} c \cdot a_{1,1} & c \cdot a_{1,2} \\ c \cdot a_{2,1} & c \cdot a_{2,2} \end{pmatrix}$$

$$c \cdot \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} c \cdot a_{1,1} & c \cdot a_{1,2} \\ c \cdot a_{2,1} & c \cdot a_{2,2} \end{pmatrix}$$

Eine beliebige $m \times n$ -Matrix kann mit einem Skalar multipliziert werden. Die Multiplikation erfolgt eintragsweise. Die Matrix $c \cdot A$ hat die

$$c \cdot \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} c \cdot a_{1,1} & c \cdot a_{1,2} \\ c \cdot a_{2,1} & c \cdot a_{2,2} \end{pmatrix}$$

Eine $m \times r$ -Matrix kann mit einer $r \times n$ -Matrix multipliziert werden. Es entsteht eine $m \times n$ -Matrix. Die Matrix $A \cdot B$ hat an der Stelle i, j den Eintrag $\sum_{k=1}^r a_{i,k} b_{k,j}$. Dies entspricht dem gewöhnlichen Skalarprodukt der i-ten Zeile von A mit der j-ten Spalte von B, d.h. der i,j-te Eintrag ist $\langle A_{(i)}, B^{(j)} \rangle$.

Beispiel (mit m = n = 2, r = 3):

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \end{pmatrix} = \begin{pmatrix} a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} & a_{1,1}b_{1,2} + a_{1,2}b_{2,2} + a_{1,3}b_{3,2} \\ a_{2,1}b_{1,1} + a_{2,2}b_{2,1} + a_{2,3}b_{3,1} & a_{2,1}b_{1,2} + a_{2,2}b_{2,2} + a_{2,3}b_{3,3} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{3} a_{1,k}b_{k,1} & \sum_{k=1}^{3} a_{1,k}b_{k,2} \\ \sum_{k=1}^{3} a_{2,k}b_{k,1} & \sum_{k=1}^{3} a_{2,k}b_{k,2} \end{pmatrix}$$

Transponieren

Beim Transponieren einer Matrix werden Zeilenindex und Das Transponieren entspricht Spaltenindex mit einander vertauscht.

Hat die Matrix A an der Stelle i, j den Eintrag $a_{i,j}$, so hat die transponierte Matrix A^T hat an der Stelle j, i den Eintrag $a_{i,j}$.

Aus einer $m \times n$ -Matrix wird so eine $n \times m$ -Matrix.

einer Spiegelung an der Hauptdiagonalen. Das ist die gedachte Diagonale, die von links oben von $a_{1,1}$ durch $a_{2,2}$ bis $a_{m,m}$ verläuft.

$$\operatorname{Aus} A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,m} & \cdots & a_{m,n} \end{pmatrix} \text{ wird } A^T = \begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,m} & a_{2,m} & \cdots & a_{m,m} \\ \vdots & \vdots & & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{m,n} \end{pmatrix}$$

Besondere Matrizen

Anhand ihrer Gestalt und der Stuktur der Einträge unterscheidet man verschiedene Typen von Matrizen. Gilt m=n, so heißt die Matrix quadratisch. Die folgenden Matrizen sind quadratisch.

Die Diagonalmatrix
$$a_{1,1} \quad 0 \quad \cdots \quad 0$$

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Die Einheitsmatrix

$$egin{pmatrix} a_{1,1} & 0 & \cdots & 0 \ 0 & a_{2,2} & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & a_{m,m} \end{pmatrix} \hspace{1.5cm} egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & 1 \end{pmatrix} \hspace{1.5cm} egin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \ 0 & a_{2,2} & \cdots & a_{2,m} \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & a_{m,m} \end{pmatrix}$$

Die obere Dreiecksmatrix

Und natürlich viele weitere mehr...

Erklärung

Aufgaben

Rechnen mit Matrizen

Aufgabe 1. Gegeben seien die folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 2 \\ 5 & 0 \end{pmatrix} \ , \ B = \begin{pmatrix} 0 & 1,2 \\ -1 & 0 \end{pmatrix} \ , \ C = \begin{pmatrix} 1 & \sqrt{3} \\ 2 & 4 \end{pmatrix} \ , D = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \ , \ E = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \end{pmatrix} \ .$$

Berechnen Sie sofern möglich die folgenden Ausdrücke:

- A + A

- f) D+D

Aufgabe 2. Gegeben seien die folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \ , \ B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \ , \ C = \begin{pmatrix} 1 & 2 \end{pmatrix} \ , D = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \ , \ E = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 0 & -1 \end{pmatrix} \ .$$

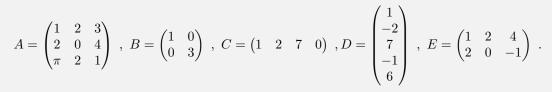
Berechnen Sie sofern möglich die folgenden Produkte:

- $A \cdot A$
- $A \cdot B$ b)
- c) $A \cdot C$
- d) $C \cdot A$ e) $C \cdot D$
- f) $D \cdot C$

- g)

Transponieren

Aufgabe 3. Gegeben seien die folgenden Matrizen:



Berechnen Sie zu diesen Matrizen jeweils die transponierte Matrix.

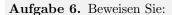
Aufgabe 4. Gegeben seien die folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & -1 \\ 0 & 2 & 1 \end{pmatrix} , B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix} .$$

Berechnen Sie $(A \cdot B)^T$, $A^T \cdot B^T$ und $B^T \cdot A^T$.

Besondere Matrizen

Aufgabe 5. Beweisen Sie: Das Produkt zweier oberen Dreiecksmatrizen ist eine obere Dreiecksmatrix.



- 1. Das Produkt zweier Diagonalmatrizen ist eine Diagonalmatrix.
- 2. Das Produkt zweier Diagonalmatrizen ist kommutativ.

Geben Sie zwei Matrizen A und B an, sodass $A \cdot B \neq B \cdot A$.

