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ABSTRACT. We construct a compactification PEMy (1) of the moduli spaces of
abelian differentials on Riemann surfaces with prescribed zeroes and poles. This
compactification, called the moduli space of multi-scale differentials, is a complex
orbifold with normal crossing boundary. Locally, PEM, (1) can be described as the
normalization of an explicit blowup of the incidence variety compactification, which
was defined in [BCGGM18]| as the closure of the stratum of abelian differentials in
the closure of the Hodge bundle. We also define families of projectivized multi-scale
differentials, which gives a proper smooth Deligne-Mumford stack, and PEM, (1)
is the orbifold corresponding to it. Moreover, we perform a real oriented blowup of
the unprojectivized space =M, (1) such that the GL} (R)-action in the interior of
the moduli space extends continuously to the boundary.

A multi-scale differential on a pointed stable curve is the data of an enhanced level
structure on the dual graph, prescribing the orders of poles and zeroes at the nodes,
together with a collection of meromorphic differentials on the irreducible compo-
nents satisfying certain conditions. Additionally, the multi-scale differential encodes
the data of a prong-matching at the nodes, matching the incoming and outgoing hor-
izontal trajectories in the flat structure. The construction of PEM, (1) furthermore
requires defining families of multi-scale differentials, where the underlying curve can
degenerate, and understanding the notion of equivalence of multi-scale differentials
under various rescalings.

Our construction of the compactification proceeds via first constructing an aug-
mented Teichmiiller space of flat surfaces, and then taking its suitable quotient. Along
the way, we give a complete proof of the fact that the conformal and quasiconformal
topologies on the (usual) augmented Teichmiiller space agree.
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1. INTRODUCTION

The goal of this paper is to construct a compactification of the (projectivized) mod-
uli spaces of abelian differentials PQM, (1) of type pn = (my, ..., m;,) with zeros and
poles of order m; at the marked points. Our compactification shares almost all of the
useful properties of the Deligne-Mumford compactification M, of the moduli space of
curves M. These properties include a normal crossing boundary divisor, natural coor-
dinates near the boundary, and representing a natural moduli functor. Applications of
the compactification include justification for intersection theory computations, a notion
of the tautological ring, an algorithm to compute Euler characteristics of PQM, (1),
and potentially contributions to the classification of SLa(R)-orbit closures. Throughout
this paper the zeroes and poles are labeled. The reader may quotient by a symmet-
ric group action as discussed in Section [2] to obtain the (unmarked) strata of abelian
differentials.

The description of our compactification as a moduli space of what we call multi-scale
differentials should be compared with the objects characterizing the naive compactifica-
tion, the incidence variety compactification (IVC) we studied in [BCGGM18§|. The IVC
is defined as the closure of the moduli space QMg (1) in the extension of the Hodge
bundle ng,n over ﬂg,n in the holomorphic case, and as the closure in a suitable
twist in the meromorphic case. The IVC can have bad singularities near the boundary,
e.g. they can fail to be Q-factorial (see Section and Example , and we are
not aware of a good coordinate system near the boundary. Points in the IVC can be
described by twisted differentials, whose definition we now briefly recall.
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The dual graph of a stable curve X has vertices v € V(I") corresponding to irreducible
components X, of the stable curve, and edges e € E(I") corresponding to nodes g.. A
level graph endows I' with a level function ¢: V(I') — R, and we may assume that its
image, called the set of levels L*(I'), is the set {0,—1,...,—N} for some N € Z>o.
We write X(;) for the union of all irreducible components of X that are at level i. A
twisted differential of type p compatible with a level graph is a collection (7¢;)icre(r)
of non-zero meromorphic differentials on the subcurves X(;), having order prescribed
by p at the marked points and satisfying the matching order condition, the matching
residue condition, and the global residue condition (GRC) that we restate in detail in
Section 2.4

The top level X g) is the subcurve on which, in a one-parameter family over a complex
disc with parameter ¢, the limit of differentials w; is a non-zero differential 1), while
this limit is zero on all lower levels. By rescaling with appropriate powers of t, we
obtain the non-zero limits on the lower levels. The order of the levels here reflects the
exponents of t. Note that a point in the IVC determines a twisted differential only up
to rescaling individually on each irreducible component of the limiting curve.

The notion of a multi-scale differential refines the notion of a twisted differential
in three ways. First, the equivalence relation is a rescaling level-by-level, by the level
rotation torus (defined below, see also Section instead of component-by-component.
Second, the graph records besides the level structure an enhancement prescribing the
vanishing order at the nodes, see Section Third, we additionally record in a prong-
matching (defined below, see also Section a finite amount of extra data at every
node, a matching of horizontal directions for the flat structure at the two preimages of
the node.

Definition 1.1. A multi-scale differential of type p on a stable pointed curve (X, z)
consists of

(i) an enhanced level structure on the dual graph I' of (X, z),
(ii) a twisted differential of type p compatible with the enhanced level structure,
(iii) and a prong-matching for each node of X joining components of non-equal level.

Two multi-scale differentials are considered equivalent if they differ by the action of
the level rotation torus. A

The notion of a family of multi-scale differentials requires to deal with the subtleties
of the enhanced level graph varying, with vanishing rescaling parameters, and also
with the presence of nilpotent functions on the base space. The complete definition of
a family of multi-scale differentials, the corresponding functor MS,, on the category of
complex spaces, and the groupoid MS,, will be given in Section They come with
projectivized versions, denoted by PMS,, and PMS,,.

Theorem 1.2 (Main theorem). There is a complex orbifold =M, (1), the moduli
space of multi-scale differentials, with the following properties:

(1) The moduli space QM (1) is open and dense within EMg ,(1).

(2) The boundary EM g (1) \ QM (1) is a normal crossing divisor.

(3) EMy (1) admits a C*-action, and the projectivization PEM (1) is compact.
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(4) The complex space underlying Mg, (1) is a coarse moduli space for MS,,.

(5) The complex space underlying EM (1) admits a forgetful map to the normal-
1zation of the IVC.

In fact, the codimension of a boundary stratum of multi-scale differentials compatible
with an enhanced level graph I' is equal to the number of levels below zero plus the
number of horizontal nodes, i.e., nodes joining components on the same level.

Our proof of algebraicity requires us to recast this theorem in the language of stacks.
For the next theorem note that we may view an orbifold such as PEM,,(u) as a
smooth stack glued from quotient stacks.

Theorem 1.3 (Functorial viewpoint). The groupoid PMS,, of projectivized multi-scale
differentials is a proper Deligne-Mumford stack. Moreover, there is a morphism of
proper algebraic Deligne-Mumford stacks PEMg n(p) — PMS,,, which is an isomor-
phism over the open substack PQMg ., ().

The groupoid PMS,, is thus a hybrid object, smooth non-trivial isomorphism groups
(due to automorphisms) at some places, and with finite quotient singularities at other
places. The description as orderly blowup PMS,, in Theorem @ makes this functorial
viewpoint even more natural. In fact the map in Theorem |1.3|is an isomorphism over
the the substack where the local groups K introduced in Section [6.4] are trivial. With
a similar construction one can obtain a compactification of the space of k-differentials
for all k£ > 1 with the same good properties, see [CMZ19] for details.

Other compactifications. We briefly mention the relation with other compactifica-
tions in the literature. The space constructed in [FP18] can have extra components,
hence in general it is a reducible space that contains the IVC only as one of its compo-
nents. As emphasized in that paper, the moduli spaces of meromorphic k-differentials
can be viewed as generalizations of the double ramification cycles. There are several
(partial) compactifications of the (k-twisted version of the) double ramification cycle,
see e.g. [HKP18] and [HS21], mostly with focus on extending the Abel-Jacobi maps.
Mirzakhani-Wright [MW17] considered the compactification of holomorphic strata
that simply forgets all irreducible components of the stable curve on which the limit
differential is identically zero. This is called the WYSIWYG (“what you see is what
you get”) compactification. Since this compactification reflects much of the tangent
space of an SLg(R)-orbit closure, it has proven useful to their classification. This
compactification is however not even a complex analytic space, see [CW20)].

Applications. Many applications of our compactification are based on the normal
crossing boundary divisor and a good coordinate system, given by the perturbed period
coordinates (see Section[9.2)) near the boundary. The first application in [CMZ19] shows
that the area form is a good enough metric on the tautological bundle. This is required
in [Saul8; CMS19; [Sau20| for direct computations of Masur-Veech volumes, and in
[CMSZ20| to justify the volume formula for the spin components.

A second application in [CMZ20] is the construction of an analogue of the Euler
sequence for projective spaces on Emgm(u). This allows to recursively compute all
Chern classes of the (logarithmic) cotangent bundle to =M, (1). In particular this
gives a recursive way to compute the orbifold Euler characteristic of the moduli spaces
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PQMg (). Moreover, it gives a formula for the canonical bundle. As in the case
of the moduli space of curves, this opens the gate towards determining the Kodaira
dimension of PQM, ,, (). Previously the Kodaira dimension was known only for some
series of special cases, see [F'V14; Genl8; Barl§].

A third application is towards the classification of connected components of the
strata of k-differentials in |[CG20]. Crucially, the viewpoint in that paper relies on
the smoothness of a k-differential version of =M, (1) developed later in [CMZ19).
In particular, the concept of prong matchings helps to construct certain multi-scale
k-differentials in the boundary that can provide information for generalized spin and
hyperelliptic structures after smoothing into the interior of the strata.

A fourth large circle of applications concerns the dynamics of the action of GLJ (R)
on QMg (1), in particular in the case when the type p corresponds to holomorphic
differentials. In this case the results of Eskin-Mirzakhani-Mohammadi [EM18; [ EMM15|
and Filip [Fil16] show that the closure of every orbit is an algebraic variety defined by
linear equations in period coordinates. The classification of these orbit closures is
an important goal towards which significant progress has been made recently, see e.g.
constraints found by Eskin-Filip-Wright [EFW 18| and the constructions of special orbit
closures by Eskin-McMullen-Mukamel-Wright in [EMMW20|. Using our moduli space
EM, (1) as a black box, in [CW20] the Mirzakhani-Wright formula for the tangent
space to the boundary of an orbit closure in the WYSIWYG space is generalized to the
case of multi-component surfaces. Using the details of the construction of =M, ,,(p),
it is further shown by Benirschke [Ben20a] that the boundary of any orbit closure
in EM,,(u) is again given by linear equations in generalized period coordinates of
the boundary. Besides SLa(R)-orbits, taking the closures of other moduli spaces in
EM (1) such as certain Hurwitz spaces (e.g., the double ramification loci) can provide
nice boundary structures, see [BDG20; Ben20b].

Moreover, it is also important yet challenging to explore dynamical invariants asso-
ciated to orbit closures, such as saddle connections and related counting problems. The
space =M (1) is also used as a key tool by Dozier [Doz20] to prove regularity for the
SLa(R)-invariant measure of the set of translation surfaces with multiple short saddle
connections in the strata; his results for example immediately imply the finiteness of
volume of strata of k-differentials first proven by Nguyen [Ngul9)|.

As a further evidence of potential applications towards the study of orbit closures,
we show that our compactification provides a natural bordification of QMg (1) on
which the action of GL3 (R) extends.

Theorem 1.4. There exists an orbifold with corners E//\/\lg,n(u) containing QMg (1)
as open and dense subspace with the following properties.

(1) There is a continuous map E/(/l\g,n(,u) — EMyn(p) whose fiber over a multi-
scale differential with N levels below zero is isomorphic to the real torus (S1)V.

(2) E./T/l\gm(u) admits an Rsqg-action, and the quotient E/(/l\g,n(,u)/]R>o is compact.
(3) The action of GL§ (R) extends continuously to Mg, (u).
(4) Points in =My n (1) are in bijection with real multi-scale differentials.
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These real multi-scale differentials are similar to multi-scale differentials, with a
coarser equivalence relation, see Definition This bordification will be constructed
in Section[15|as a special case of our construction of level-wise real blowup. This blowup
is an instance of the classical real oriented blowup construction, where the blowup is
triggered by the level structure underlying a family of multi-scale differentials, see
Section [[2 -

We hope that the study of orbit closures in =M, (1) will provide new insights on
the classification problem.

New notions and techniques. We next give intuitive explanations of the new objects
and techniques used to construct the moduli space of multi-scale differentials.

Prong-matchings. This is simply a choice of how to match the horizontal directions
at the pole of the differential at one preimage of a node to the horizontal directions at
the zero of the differential at the other preimage of the same node. To motivate that
recording this data is necessary to construct a space dominating the normalization of
the IVC, consider two differentials in standard form, locally given by 71 = u"(du/u)
and 79 = C' - v~ "(dv/v) in local coordinates u, v around two preimages of a node given
by uv = 0 of X, where C' € C* is some constant. Then plumbing these differentials
on the plumbing fixture uv = t is possible if and only if 17y = 7o after the change of
coordinates v = t/u, which is equivalent to t* = —C. Thus for a given C' the different
choices of t differ by multiplication by s-th roots of unity, and the prong-matching is
used to record this ambiguity, in the limit of a degenerating family. The notion of a
prong-matching will be introduced formally in Section

As the above motivation already indicates, this requires locally choosing coordinates
such that the differential takes the standard form in these coordinates. Pointwise, this
is a classical result of Strebel. These normal forms for a family of differentials are a
technical underpinning of much of the current paper. The relevant analytic results
are proven in Section [4] by solving the suitable differential equations and applying the
Implicit Function Theorem in the suitable Banach space.

Level rotation torus. This algebraic torus has one copy of C* for each level below zero.
Its action makes the intuition of rescaling level by level precise. As indicated above,
differentials on lower level in degenerating families are obtained by rescaling by a power
of t. As such a family can also be reparameterized by multiplying ¢ by a constant, such
a scaled limit on a given component is only well-defined up to multiplication by a non-
zero complex number. Suppose now that while keeping differential at one side of the
node fixed, we start multiplying the differential on the other side by €. If we start
with a given prong-matching, which is just some fixed choice of (—C)'/#, this choice of
the root is then being multiplied by e?®/%. Consequently, varying 6 from 0 to 27 ends
up with the same differential, but with a different prong-matching.

Thus the equivalence relation among multi-scale differentials that we consider records
simultaneously all possible rescalings of the differentials on the levels of the stable
curve and the action on the prong-matchings. This leads to the notion of the level
rotation torus 7T, which will be defined as a finite cover of (C*)" in Section @ See in
particular for its action on multi-scale differentials.
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Twist groups and the singularities at the boundary. The twist group Twr can be
considered as the subgroup of Tt fixing all prongs under the rotation action. The
rank of this group equals the number N of levels below zero, but the decomposition
into levels does in general not induce an isomorphism of the twist group with Z.
Instead, there is a subgroup Twi. C Twr of finite index that is generated by rotations
of one level at a time. We comment below in connection with the model domain
why this subgroup naturally appears from the toroidal aspects of our compactification.
The quotient group Kr = Twr/Twyj is responsible for the orbifold structure at the
boundary of our compactification. These groups are of course always abelian. Our
running example in Section [2.6] a triangle graph, provides a simple instance where this
group KT is non-trivial (see Section .

From the Teichmiiller space down to the moduli space. Even though the result
of our construction is an algebraic moduli space, our construction of =M, (1) starts
via Teichmiiller theory and produces intermediate results relevant for the geometry of
moduli spaces of marked meromorphic differentials.

To give the context, recall that recently Hubbard-Koch [HK14] completed a program
of Bers to provide the quotient of Abikoff’s augmented Teichmiiller space T4, by the
mapping class group with a complex structure such that this quotient is isomorphic
to the Deligne-Mumford compactification M, ,,. As an intermediate step they also
provided, for any multicurve A, the classical Dehn space Dy (which Bers in [Ber74a)
called “deformation space”), the quotient of 7,4, by Dehn twists along A, with a
complex structure. Our proof proceeds along similar lines, taking care at each step of
the extra challenges due to the degenerating differential.

As a first step, recall that there are several natural topologies on M, ,. One can
define the conformal topology where roughly a sequence X,, of pointed curves converges
to X if there exist diffeomorphisms g, : X — X,, that are conformal on compact subsets
that exhaust the complement of nodes and punctures. In the quasiconformal topology
one relaxes form conformal to quasiconformal, but requires that the quasiconformal
dilatation tends to zero. Conformal maps are convenient, since they pull back holo-
morphic differentials to holomorphic differentials. On the other hand, quasiconformal
maps are easier to glue when a surface is constructed from several subsurfaces. We
therefore need both topologies, see Section [3] for precise definitions. The following is
an abridged version of Theorem which was announced in [Mar87| and [EM12].

Theorem 1.5. If n > 1, then the conformal and quasiconformal topologies on the
augmented Teichmiiller space T 4, are equivalent.

We upgrade this result in Section [3.3]to provide also the universal bundle of one-forms
with conformal and quasiconformal topologies that coincides with the usual vector
bundle topology.

An outline for the construction of M, ,,(11) is then the following. We start with a
construction of the augmented Teichmdiller space 977’(2’3) () of flat surfaces of type p.
As a set, this is the union over all multicurves A of the moduli spaces Q7™ (1) of
marked prong-matched twisted differentials as defined in Section [5.5| This mimics
the classical case, with marked prong-matched twisted differentials taking the role of
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A-marked stable curves. We then provide QT’(E,S)(M) with a topology that makes it
a Hausdorff topological space in Theorem [7.7] For each multicurve A, the subspace
of 977’(27 s) (1) of strata less degenerate than A admits an action of the twist group Twy
and the quotient is the Dehn space =Dy. Providing ZDj with a complex structure is
the goal of the lengthy plumbing construction in Section As a topological space,
EMg (1) is the quotient of the augmented Teichmiiller space QT (s 5)(11) by the action
of the mapping class group, and its structure as complex orbifold stems from its covering
by the images of Dehn spaces for all A.
We next elaborate on two technical concepts in this construction.

Welded surfaces and asymptotically turning-number-preserving maps. In order to
provide the augmented Teichmiiller space 977’(273) (1) with a topology, we roughly de-
clare a sequence (Xy,w, ;) to be convergent if the curves converge in the conformal
topology, there exist rescaling parameters c,, (; such that the rescaled differentials pull
back to nearly the limit differential, and such that the rescaling parameters reflect the
relative sizes determined by the level graph of the limit nodal curve.

To get a Hausdorff topological space one has to rule out unbounded twisting of
the diffeomorphism near the developing node in a degenerating family. The literature
contains formulations in the conformal topology that are not convincing and notions
based on Fenchel-Nielsen coordinates (see e.g. [ACGHS85, Section 15.8]) that do not
work well conformally. Our solution is the following.

Take a nodal curve with a twisted differential and perform a real blowup of the nodes,
i.e. replacing each preimage of each node with an S'. A prong-matching uniquely
determines a way to identify the boundary circles at the two preimages of each node to
form a seam, thereby obtaining a smooth welded surface. On such a surface we have a
notion of turning number of arcs non-tangent to the seams and we require the sequence
of diffeomorphisms g, exhibiting convergence to preserve turning numbers in the limit
n — oo. This needs to be done with care, to consider only a finite collection of good
arcs; the details are given in Section |5.6

Level-wise real oriented blowups. Usually, in the definition of the classical Dehn
space Dy, markings are considered isomorphic if they agree up to twists along A. Such
a definition however loses their interaction with the marking. We are forced to mark the
welded surfaces instead. This, in turn, is not possible over the base B of a family, since
the welded surface depends on the choice of the twisted differential in its Tp-orbit. As
a consequence we define a functorial construction of a level-wise real oriented blowup
B — B and define markings using the pullback of the family to B , see Section Our
construction is similar in spirit to several blowup constructions in the literature, e.g.
the Kato-Nakayama blowup [KN99).

The model domain and toroidal aspects of the compactification. The aug-
mented Teichmiiller space of flat surfaces parameterizes (marked) multi-scale differen-
tials, and in particular admits families in which the underlying Riemann surfaces can
degenerate. In contrast, the model domain only parameterizes equisingular families,
where the topology of the underlying (nodal) Riemann surfaces remains constant, and
only the scaling of the differential on the components varies, while remaining non-zero.
Families of such objects are called model differentials, which serve as auxiliary objects
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for our construction. The open model domain M D, is a finite cover of a suitable prod-
uct of (quotients of) Teichmiiller spaces and thus automatically comes with a complex
structure and a universal family.

We define a toroidal compactification M Dy of M Dy roughly by allowing the rescal-
ings to attain the value zero. The actual definition given in Section [§]is not as simple
as locally embedding (A*)" < AN, but rather a quotient of this embedding by the
group K defined above. As a result, M D, is a smooth orbifold and the underlying
singular space is a fine moduli space for families of model differentials, called the model
domain.

The plumbing construction and perturbed period coordinates. We use the
model domain to induce a complex structure on ZDy. In order to do this, we define a
plumbing construction that starts with a family of model differentials and constructs
a family of multi-scale differentials. The point of this construction is that starting
with an equisingular family of curves with variable scales for differentials, which may
in particular be zero, the plumbing constructs a family of curves of variable topology
with a family of non-zero differentials on the smooth fibers. Whenever the scale is
non-zero, the plumbing “plumbs” the node, i.e. smoothes it in a controlled way. The
goal of our elaborate plumbing construction is to establish the local homeomorphism
of the Dehn space with the model domain. As in [BCGGM18|, to be able to plumb one
needs to match the residues of the differentials at the two preimages of every node, and
thus in particular one needs to add a small modification differential. We then argue
that the resulting map will still be a homeomorphism of moduli spaces, and to this end
we use the perturbed period coordinates introduced in Section [9}

Perturbed period coordinates are coordinates at the boundary of our compactifica-
tion. They consist of periods of the twisted differential, parameters for the level-wise
rescaling, and a classical additional plumbing parameter for each node joining com-
ponents on the same level. These periods are close, but not actually equal, to the
periods of the plumbed differential, whence the name. See for the precise amount
of perturbation.

Finally, in Section we complete this setup and define the plumbing map in full
generality and prove in Theorem that plumbing is a local diffeomorphism. This is
used in Theorem to show that 2D, is a complex orbifold.

Families and the universal properties. The functorial viewpoint and the proof of
Theorem (4) rely on showing first in Theorem that the Dehn space =D, is a
fine moduli space for a functor of marked multi-scale differentials. In order to provide
families of multi-scale differentials with a Teichmiiller marking, we need to deal with the
problem that the equivalence relation in Definition [I.I] will twist the marking around
the vertical nodes. To counterbalance this, the marking will not be defined on the
original family, but on the family of welded surfaces over a real oriented blowup of the
base, where the blowup structure is triggered by the level structure. The existence of
the appropriate level-wise real blowup is proven in Theorem [12.2

The proof of the universal property of =D, uses the (obvious) universal property of
the model domain. To make use of it, we introduce an unplumbing construction that
is roughly an inverse of the plumbing construction. This unplumbing construction is
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based on the normal form Theorem for families of differentials on plumbing fixtures
to pinch off the node and get an equisingular family, after subtracting differentials that
play the inverse role of the modification differentials above. Finally, Theorem
completes the program by taking a family of multi-scale differentials, providing it locally
with a marking, and gluing the moduli maps that universal property of ZD, gives.

Algebraicity, families, and the orderly blowup construction. To prove the al-
gebraicity in the main theorem and to prove the precise relation of EMg (1) to the
IVC we need to encounter some of the details of families of multi-scale differentials.
First, since =M, ,, (1) is normal, the forgetful map factors through the normalization
of the IVC. This corresponds to memorizing the extra datum of enhancement of the
dual graph and the prong-matching. Second, a family of multi-scale differentials admits
level-by-level rescaling, while twisted differentials a priori do not. While for twisted
differentials there exists a rescaling parameter for each irreducible component, they
might be mutually incomparable or, as we say, disorderly. We thus design in Sec-
tion locally a blowup, the orderly blowup of the base of a family such that the
rescaling parameters can be put in order, i.e. a divisibility relation according to the
level structure. However, the resulting blowup is in general not even normal. The third
step is thus geometrically the normalization of the resulting space. In families of multi-
scale differentials this is reflected by including the notion of a rescaling ensemble given
in Definition It ultimately reflects the normality of the toroidal compactifications
by AN /Kt used above. This procedure, culminating in Theorem is summarized
as follows.

Theorem 1.6. The moduli stack of projectivized multi-scale differentials PMS,, is the
normalization of the orderly blowup of the normalization of the IVC.

Algebraicity and the remaining properties of the main theorems above follow from
this result. The zoo of notations is summarized in a table at the end of the paper.
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2. NOTATION AND BACKGROUND

The purpose of this section is to recall notation and the main result from [BCGGM18].
Along the way we introduce the notion of enhanced level graphs that records the extra
data of orders of zeros and poles that compatible twisted differentials should have.
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2.1. Flat surfaces with marked points and their strata. A type of a (possibly
meromorphic) abelian differential on a Riemann surface is a tuple of integers p =

(m1,...,my) € Z™ with m; > mj41, such that Z?Zl mj = 2g — 2. We assume that
there are r positive m’s, s zeroes, and [ negative m’s, with r + s + 1 = n, i.e., that we
have m; > --- > my > Mypy1 = -+ = Myys = 0 > My > --- > my. Note that

m; = 0 is allowed, representing an ordinary marked point. We use the abbreviation
n={1,...,n}.

A (pointed) flat surface or equivalently a (pointed) abelian differential is a triple
(X, z,w), where X is a (smooth and connected) compact genus g Riemann surface, w
is a non-zero meromorphic one-form on X, and z: 7 < X is an injective function such
that ord, ;) w = m; for each j, and moreover every zero or pole of w is marked by some
z(j). We also denote by z; the marked point z(j).

The rank g Hodge bundle of holomorphic (stable) differentials on n-pointed stable
genus g curves, denoted by QM. , — M, ,, is the total space of the relative dualizing
sheaf m,w S Mg where 7: X — ﬂg,n is the universal curve. We denote the polar part
of w by . = (Myysti,--.,my). We then define the (pointed) Hodge bundle twisted by
11 to be the bundle

KMol) = 7oz, (- >0 miz))
j=r+s+1

over My ,,, where we have denoted by Z; the image of the section z; of the universal
family 7 given by the j-th marked point. The formal sums

r+s n
(2.1) 20 =) "miZ; and 2* = > m;Z;
j=1 Jj=r+s+1

are called the (prescribed) horizontal zero divisor and (prescribed) horizontal polar di-
visor respectively.

The moduli space of abelian differentials of type p is denoted (still) by QM ,, (1) C
KM, (1), and consists of those pointed flat surfaces where the divisor of w is equal
to Z;LZI mjz;. We denote by adding P to the Hodge bundle (resp. to the strata)
the projectivization, i.e., when we want to parameterize differentials up to scale. The
(ordered) incidence variety compactification (IVC for short) is then defined to be the

closure IP’QWZZ(,U,) inside PKM,, (1) of the (projectivized) moduli space of abelian
differentials of type p. A point (X, w, 21, ..., 2,) € PQM, ,,(11) is called a pointed stable
differential. The main result of [BCGGM18] is to precisely describe this closure, as we
recall below.

2.2. Removing the labeling by the Sym(u)-action. We emphasize again that
throughout the paper and in particular in the moduli space Eﬂgm(u) in our main
theorem the points are labeled. We let Sym(u) C S, be the subgroup of permuta-
tions that permutes only points with the same prescribed order m;. This group acts
on the moduli space QM ,, (1) with quotient the moduli space QM (), which gives
the usual strata of the Hodge bundle if p is the zero type of holomorphic differentials.
The reader is invited to check along the whole paper that Sym(u) acts everywhere and
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in particular on EM, (). The quotient =M, (1)/Sym(p) is a compactification of
QMg()-

2.3. Graphs, level graphs and ordered stable curves. Throughout this paper I'
will be a graph, which is allowed to have loops as well as half edges, and connected
unless explicitly stated otherwise. We denote the set of vertices by V(I'), the set of
edges by E(T'), and the set of half-edges by H(I'). . We denote by val(v) the valence
of a vertex v € V , the number of ordinary edges incident to v (a self-loop is counted
twice).

A (weak) full order = on the graph I" is an order = on the set of vertices V(I") that
is reflexive, transitive, and such that for any vy,ve € V at least one of the statements
V1 %= vy or vy = vy holds. The pair I’ = (T, =) is called a level graph. In what follows
it will be convenient to assume that the full order on T is induced by a level function
¢: V(') — Z<go such that the vertices of top level are elements of the set £71(0) # 0,
and the comparison between vertices is by comparing their /-values. Any full order can
be induced by a level function, but not by a unique one. We thus use the words level
graph and a full order on a graph interchangeably. We let L*(T') = {a € Z : £'(a) # 0}
be the set of levels and let L(T') be the set of all but the top level. We usually use the
normalized level function

(2.2) ¢:T =N = {0,-1,...,—N},

where N = |L*(T')| — 1 = |L(T)| € Z> is the number of levels strictly below 0.

For a given level i we call the subgraph of T’ that consists of all vertices v with
¢(v) > i, along with edges between them, the graph above level i of T', and denote it
by T's;. We similarly define the graph T's; above or at level i, and use F( ) to denote
the graph at level i. Note that these graphs are usually disconnected.

If I'x is the dual graph of a stable curve with pointed differential of type u, we
denote by p, for v € V(I') the subset of the type corresponding to the marked points
on the component X,. We also let n, = val(v) + |u,| be the total number of special
points (marked points and nodes) of such a component X, of a stable curve.

The dual graph I'x of a pointed stable curve (X, z) is allowed to have half-edges.
These half-edges at a vertex v correspond to the marked points z; contained in the
component X,,.

Definition 2.1. An edge e € E(T) of a level graph T is called horizontal if it connects
two vertices of the same level, and is called vertical otherwise. Given a vertical edge e,
we denote by e (resp. e”) the vertex that is its endpoint of higher (resp. lower)
order. A

We denote the sets of vertical and horizontal edges by E(I')” and by E(T)" respec-
tively. Implicit in this terminology is our convention that we draw level graphs so that
the map £ is given by the projection to the vertical axis.

We call a stable curve X equipped with a full order on its dual graph I'x an ordered
stable curve. We will write X, for the irreducible component of X associated to a ver-
tex v, and X(;) for the (possibly disconnected) union of the irreducible components X,
such that ¢(v) = i. We write ¢, for the node associated to an edge e. We call such a
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node wvertical or horizontal accordingly. The set of nodes of X is denoted by Nx, the
set of vertical nodes by N§ and the set of horizontal nodes by N ;’(

For a vertical node ¢, of X corresponding to an edge e we write ¢ € X(o(e+y) and
¢e € X(y(e—)) for the two points lying above ¢e in the normalization, and for the irre-
ducible components in which they lie, ordered so that X (y.-)) < X(y(+)). Moreover we
denote the levels of ¢ by £(e*), respectively. We use the same notation for horizontal
nodes, making an arbitrary choice of label +.

2.4. Twisted differentials and the IVC. Recall from [BCGGM18| that a twisted
differential n of type u on a stable n-pointed curve (X, z) is a collection of (possibly
meromorphic) differentials 7, on the irreducible components X, of X, such that no 7,
is identically zero, with the following properties:

(0) (Vanishing as prescribed) Each differential 7, is holomorphic and non-zero
outside of the nodes and marked points of X,. Moreover, if a marked point z;
lies on X, then ordzj Ny = M.

(1) (Matching orders) For any node of X that identifies ¢; € X,, with g2 € X,,,

ordg, ny, +ordg, Ny, = —2.

(2) (Matching residues at simple poles) If at a node of X that identifies
q1 € Xy, with ¢o € X,, the condition ordy, 7,, = ordg, 7,, = —1 holds, then
Resq, 1y, + Resg, v, = 0.

Let I' = (I'x, =) be a level graph where I'x is the dual graph of X. A twisted differ-
ential 7 of type u on X is called compatible with T if in addition it also satisfies the
following two conditions:

(3) (Partial order) If a node of X identifies ¢; € X,, with g2 € X,,,, then v = vo
if and only if ordy, n,, > —1. Moreover, v; < vy if and only if ordy, 7,, = —1.

We remark that this condition only uses the partial order induced by I" on the vertices
that are connected by an edge, while the most subtle condition, which uses the full
order, is the following.

(4) (Global residue condition) For every level i and every connected compo-
nent Y of X, that does not contain a marked point with a prescribed pole
(i.e., there is no z; € Y with m; < 0) the following condition holds. Let
a1, - --,qp denote the set of all nodes where Y intersects X ;). Then

b
ZResqi n =20,
J
j=1

where by definition ¢; € X(;).

For brevity, we write GRC for the global residue condition. We denote a twisted
differential compatible with a level < by (X, z,7, <). Moreover, we will usually group
the restrictions of the twisted differential n according to the levels of £. We will denote
the restriction of n to the subsurface X;) by 1.

We have shown in [BCGGM18, Theorem 1.5]:
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Theorem 2.2. A pointed stable differential (X,w,z) is contained in the incidence
variety compactification of PQMg (1) if and only if the following conditions hold:

(i) There exists an order = on the dual graph U'x of X such that its mazima are
the irreducible components X, of X on which w is not identically zero.
(ii) There exists a twisted differential n of type p on X, compatible with the level
graph T = (T'x, =).
(iii) On every irreducible component X, where w is not identically zero, n, = w|x,, -

2.5. Enhanced level graphs. Note that a boundary point of the IVC does not neces-
sarily determine a twisted differential uniquely, see [BCGGM18|, Examples 3.4 and 3.5].
The full combinatorics of a twisted differential is encoded by the following notion.

An enhanced level graph T'T of type u = (my,...,my) is a level graph T together
with a numbering of the half-edges by n and with an assignment of a positive number
ke € N for each vertical edge e € E(T)?. The degree of a vertex v in I'" is defined to

be
deg(v) = ij—F Z (ke — 1) — Z (ke +1),

Jjev e€E*(v) e€E~(v)

where the first sum is over all half-edges incident to v, and the remaining sums are over
the edges E™(v) and E~(v) incident to v that are going from v to a respectively lower
and upper vertex. In terms of the notation in Definition the set ET(v) is the set

of edges {e € E(T') : et = v}. We require that

(i) (Admissible degrees) the degree of each vertex is even and at least —2, and
(ii) (Stability) the valence of each vertex of degree —2 is at least three.

Our notion of enhancement is equivalent to the notion of twist used e.g. in [FP1§| or
[CMSZ20]. The main example is the enhanced level graph I'}; of a twisted differential
(X, z,n), obtained by assigning to each vertical node ¢ the weight

(2.3) kg =ordg+n+ 1.

In these terms, the above stability condition is equivalent to stability of (X, z). The
degree of a vertex v is the degree of 1,. The admissible degrees condition ensures that
such a I'" can be realized as the enhanced level graph of some twisted differential. We
also say that a twisted differential (X, n) is compatible with I'" if it is compatible with
the underlying level graph I and if the markings of I't are the weights of 7 just defined.

In order to keep notation concise, we will denote by I' the dual graph I'x of a curve X,
a level graph I’ and write for an enhanced graph I't, or simply I', as appropriate.

2.6. The running example. In order to illustrate the notions that were introduced,
we will describe an example. This example will be used throughout the text to exem-
plify the different notions that we will introduce. We will refer to it as the running
example.

The example is for the moduli space QM5 4(4,4,2,—2). We fix the curve whose
dual graph is a triangle, with the level function taking three different values 0, —1, —2
on it, so that the level graph is fixed. The irreducible components are of genus 3 (at
top level), genus 1 (at the intermediate level) and genus 0 (at the bottom level). This
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level graph admits two different enhanced structures, which we denote I'y and 'y, as
pictured in Figure

9( X)) =3

9(X(2) =0 9(X(2)) =0

FIGUure 1. Two different enhanced orders I'y and I'y on T.

We denote the twisted differentials compatible with the level graphs I'; by (X, z,7°).
The enhanced structure I'y tells us that the differential 77(172) is in QM 3(4, -2, —4), the

differential 77(171) is in QM 4(4,2,—2,—4) and 77(10) is in QM3 3(2,2,0). Similarly 77(272)
is in QMo 3(4, —2, —4), n(Q_l) is in QM1 4(4,0, -2, —2) and 77?0) is in QM33(2,2,0). The
global residue condition in both cases says that the differential né_l) has no residue at

its pole at the point ¢, . Note that it follows from [GT21, Theorem 1.1] that this locus
is not empty.

3. THE TOPOLOGY ON (CLASSICAL) AUGMENTED TEICHMULLER SPACE

The classical augmented Teichmiiller space contains the Teichmiiller space as a dense
subset such that the action of the mapping class group extends continuously and such
that the quotient by the mapping class group is the Deligne-Mumford compactification
of the moduli space of curves. In this section we compare various topologies on the
augmented Teichmiiller space, and on the related spaces of one-forms.

3.1. Augmented Teichmiiller space. To give the precise definition of the augmented
Teichmiiller space, we fix a “base” compact n-pointed oriented differentiable surface
(X, s) of genus g. We regard s as a set of n > 0 distinct labeled points {s1,...,s,} C %,
or alternatively as an injective function s: m < ¥. Let Ty, = T(x ) be the Teichmiiller
space of (X, s). Next, recall that a multicurve A on ¥\ s is a collection of disjoint simple
closed curves, such that no two curves are isotopic on X\ s, and no curve in A is isotopic
to any puncture s;. Two multicurves are equivalent if the curves they consist of are
pairwise isotopic. To ease notation, we will speak of curves of a multicurve A both
when we mean the actual curves or their isotopy equivalence classes, as should be clear
from the context.

Definition 3.1. A marked pointed stable curve (X, z, f) is a pointed stable curve (X, z)
together with a marking f: (3, s) — (X, z), where a marking of a pointed stable curve
is a continuous map f: 3 — X such that
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(i) the inverse image of every node ¢ € X is a simple closed curve on X\ s,

(ii) if we denote by A C X the set of the preimages of the set of nodes Nx of X,
which is a multicurve on ¥ that we call the pinched multicurve, then the restric-
tion of f to ¥\ A is an orientation-preserving diffeomorphism ¥\ A — X \ Ny,

(iii) the map f preserves the marked points, that is, fos = z.

Two marked pointed stable curves are equivalent if there is an isomorphism of pointed
stable curves that identifies the markings up to isotopy rel s. A

The augmented Teichmauller space 7'9,n = 77'(273) is the set of all equivalence classes

of pointed stable curves marked by (X,s). We caution the reader that 74, is not a
manifold, and is not even locally compact at the boundary, in the topology which we
define below.

The mapping class group Mod, ,, acts properly discontinuously on the classical Teich-
miiller space 7y,, and this action (by pre-composition of the marking) extends to a con-
tinuous action on the augmented Teichmiiller space (whose topology is defined below).

The augmented Teichmiiller space is stratified according to the pinched multicurve.
Given a multicurve A C X\ s, we define 7o C T, to be the stratum consisting of stable
curves where exactly the curves in A have been pinched to nodes. In particular, the
empty multicurve recovers the interior 7y = 7,,. Each T, is itself a finite unramified
cover of the product of the Teichmiiller spaces of the components of (X,s) \ A that
takes into account the identification of the branches of the nodes. In particular each Tp
is smooth.

The topology on the augmented Teichmiiller space can be described in several ways.
For us, the conformal topology (introduced by |[Mar87], see also Earle-Marden [EM12])
will be most useful. Abikoff [Abi77]| described several equivalent topologies on the
augmented Teichmiiller space. We recall the definition of his quasiconformal topology
below (somewhat confusingly, he called this the conformal topology). The equivalence
of the two topologies is claimed in [EM12, Theorem 6.1]. We include a complete proof of
this equivalence here. We mention [Mon09] for several other viewpoints of the topology,
mainly based on hyperbolic length functions.

We define an ezhaustion of a (possibly open) Riemann surface X to be a sequence
of compact subsurfaces with boundary, K,, C X, such that each K,, is a deformation
retract of X, and such that the union UY_, K, is all of X. An important example of an
exhaustion that is used throughout this article is the following. For any sequence ¢, of
positive numbers (smaller than the Margulis constant) converging to zero, the e,,-thick
parts of X \ z, denoted by (X, z),,, form an exhaustion of X \ z. Note that the fact
that the €, are smaller than the Margulis constant ensures that the thin part is a union
of annular neighborhoods of short geodesics or cusps.

Let (X, z, f) be a marked pointed stable curve in 7(273), and let X* = X\ Nx denote
the smooth part of X, that is, the complement of its nodes. A sequence of marked
pointed stable curves (X, 2m, fm) in Tgn converges quasiconformally to (X, z, f)
if for some exhaustion {K,,} of X* there exists a sequence of quasiconformal maps
Gm: Km — X, such that for each m the maps f,, o f~! and g, are homotopic on K,,,
the map g, respects the marked points (i.e. g, © 2 = z,,), and the quasiconformal
dilatations ||0gm/0gm||so tend to 0 as m — co. The sequence converges conformally if
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the K, are instead an exhaustion of X*\ z and the g,, can be taken to be conformal. We
call the topologies on 77’(2, s) induced by these notions of convergence the quasiconformal
topology and the conformal topology, respectively.

Note that for conformal convergence it no longer makes sense to require that the g,
respect the marked points, since they are not in the domain. However, each marked
point of X is contained in a unique connected component of X*\ K,,, and the hypothesis
that f,, o f~1 ~ g, forces g,, to respect these complementary components.

We will sometimes need the conformal maps g, to respect the marked points. We say
that (X, 2m, fm) converges strongly conformally to (X, z, f) if the conformal maps g,
can be defined on an exhaustion {K,,} of X* and the g,, respect the marked points
(i.e. gm oz = zp).

The idea of the proof of the equivalence of these topologies is that given a quasicon-
formal map on X with small dilatation and an open set U (generally a neighborhood
of a node or marked point), one can find a nearby quasiconformal map which pushes
all of the “quasiconformality” into U. Since strong conformal convergence requires the
maps to be conformal near the marked points, we see that it should only be equivalent
to the other types of convergence in the presence of nodes, as we will need U to be a
neighborhood of the nodes in this case.

Theorem 3.2. If n > 1, then the conformal and quasiconformal topologies on T 4.,
are equivalent. For any n, if X € T4, has any nodes, then quasiconformal, conformal,
and strong conformal convergence of a sequence to X are all equivalent.

Given a measurable subset E of a Riemann surface X, we denote by M(E) the
Banach space of measurable L°°-Beltrami differentials supported on E, and we denote
by M"(E) C M(E) the open ball of radius r.

The proof of Theorem is based on the following Lemma.

Lemma 3.3. Let (X, z) be a compact pointed Riemann surface and K C U C X
subsets such that K is compact with positive Lebesque measure and U is open. Then
there is a constant 0 < k < 1 such that for every Beltrami differential v on X \ K
with ||V]|eo < k, there exists a quasiconformal homeomorphism f,: X — X, preserving
the marked points, such that the Beltrami differential of f, restricted to X \ K agrees
with v, and f(K) C U.

Moreover, the collection of such maps f, may be regarded as a holomorphic map
MF(X\ K) = QCY%X), to the space of quasiconformal homeomorphisms of X isotopic
to the identity, equipped with the compact-open topology.

Proof. A Beltrami differential v € M!(X) induces a conformal structure on X which
we denote by X,,. This defines a holomorphic map

o: MY (X) = M (K)o MY X\K) > Ty .
Consider the derivative operator defined as
D= Dl(I)(O,O): M(K) — T(X,z)7jq,n

of @ restricted to the tangent space of the first factor of the splitting. We claim that D is
surjective. This is equivalent to show that the dual operator D*: Ty \Tgn — M(K)*
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is injective. Under the usual identification of the cotangent space to Teichmiiller space
at (X, z) with Q(X, z), the space of quadratic differentials ¢ on X with at worst simple
poles contained in z, the dual D* is given explicitly by the pairing

D (g)(v) = /K .

Taking v, to be the restriction of §/|g| to K, we obtain

D*(q) () = /K g >0,

so injectivity follows.

Since 1| x )Ty is finite-dimensional, the kernel of D is closed and of finite codimen-
sion, so it has a complementary closed subspace. Thus D is a split surjection, and the
Implicit Function Theorem applies.

By the Implicit Function Theorem, there is for some 0 < k < 1 a holomorphic map
P: MF(X \ K) - MYK) such that ®(y)(v),rv) = (X,z). In other words for each
v € MF(X \ K), there is a quasiconformal map f,: X — X with Beltrami differential
given by (v) + v.

The map v + f, can be regarded as a map ¥: M*(X\ K) — QCY(X). By holomor-
phic dependence of solutions to the Beltrami equation on parameters (see e.g. [Hub06]),
this map ¥ is holomorphic, and in particular continuous, as desired. Therefore, by the
definition of the compact-open topology, by possibly decreasing the constant k, we can
make f,(K)CU. i

Proof of Theorem [3.2. We first show that quasiconformal convergence implies confor-
mal convergence and, if nodes are present, also strong conformal convergence. Suppose
a sequence of marked pointed curves (X, zpm, fm) converges to (X, z, f) in the qua-
siconformal topology, so that there is an exhaustion of X?® by compact sets K,, and
quasiconformal maps ¢,,: K, — X, isotopic to f,, whose dilatation tends to 0. Let
U C X be an (arbitrarily small) open neighborhood of the nodes and the marked points.
To show convergence in the conformal topology, we must produce, for m sufficiently
large, a conformal map h,,: X \ U — X, isotopic to f,.

Let K C U be compact with positive Lebesgue measure. By Lemma [3.3] for m
sufficiently large, there is a quasiconformal map k,,: X — X sending K into U and
whose Beltrami differential restricted to X \ U agrees with the Beltrami differential
of gmn. The composition hy, = g © k,;l is then conformal outside U as desired.

If X has nodes, this argument works just as well to get strong conformal convergence
by taking U to be a neighborhood of the nodes only.

We now show that conformal convergence implies quasiconformal convergence. We
choose an exhaustion {K,,} of X*®\ z so that the inclusion K,, < X \ z is a homotopy
equivalence, and let ¢,,: K,, — X,, be the conformal maps which exhibit conformal
convergence. Let {Kﬂ;} be the exhaustion of X* obtained by filling in the disks con-
taining the marked points z; (in this proof, the superscript f will always mean that

we fill in the disks around the marked points). We must show that we can replace

the ¢g,, with quasiconformal maps g,}; on K,’;l in the same isotopy class which respect
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the marked points and whose dilatation tends to 0. For concreteness, we fill in the disk
containing 2.

Let Y be the component of X containing z1, and let J,,, = K,, N'Y and note that
Jm — Y is a homotopy equivalence. We first represent Y as H/T" for some Fuchsian
group I'. The fundamental group of the subsurface L, = Gm(Jm)! € X, is a subgroup
of the fundamental group of the component of X,,, containing Lf;, so it determines a
cover of X,,, which we represent as H/T';, for some Fuchsian group I';,. Let jﬂ; CH
and Eﬁ C H be the unique connected subsurfaces, invariant under the Fuchsian groups,
with jﬂ; /T = Jrfn and EL /T = Lf;. The conformal map g, then lifts to a conformal
map gm : Ji, — L, which is equivariant in the sense that

(3.1) Pm(Y) - gm(2) = Gm(y - 2)

for some isomorphism p,,: I' — [';;, and for each v € I'. Note that the Fuchsian groups
are really only defined up to conjugacy. We normalize the ', I';,, and all related objects
by requiring that 0,1, 00 belong to the limit set of I" and the extension of g,, to this
limit set fixes these three points.

We claim now that g, converges uniformly on compact sets to the identity and that
the Fuchsian groups I, converge to I' algebraically (meaning that for each v € T,
the limit of p,,(7) is 7). By Montel’s Theorem, any subsequence of g,, has a further
subsequence which converges uniformly on compact sets to some G: H — H. Since
each g, is conformal and fixes three points on the boundary of H, in fact G must
be the identity map. Since every subsequence of g, converges to the identity, we see
that g, converges uniformly on compact sets to the identity. Algebraic convergence
of 'y, to I then follows immediately from .

Now choose a conformal map p: A — j,%; whose image is an open disk U which covers
the complementary disk containing 21, which sends 0 to z1, and which maps A onto
a smooth curve v which is eventually contained in Jy,. The composition gy, o p sends
the boundary circle to a smooth curve ~,, C Lfn which bounds a disk U, containing
the marked point z1,,. Choose two points ai,a2 € 0A, and let py,: A — Ef; be the
Riemann mapping of A onto U,, which is normalized so that p,,(w) = g, o p(w) for
the points w = ay, ag, and 0. Since g, converges to the identity uniformly on compact
sets, the sets U, converge to U in the Carathéodory topology on disks (see [McM94,
Section 5.1]). In fact, they converge uniformly on A, since the closed sets H \ U,,
are uniformly locally connected (see [Pom92, Corollary 2.4]). Let ay,: A — A be
the Douady-Earle extension of p,,! o g, 0 plga. The boundary map is uniformly close
to the identity, so a;,(0) is close to 0, and we may construct a quasiconformal map
Bm: A — A which is the identity on the boundary, sends «a,,(0) back to 0, and has
small quasiconformal dilatation. Finally, we define our extension gf; of g, as before
on the complement of U, and we define it to be p, © B 0 a0 p~ ' on U. This is the
desired quasiconformal extension of g, sending z1 to 21 . pid

Another reformulation of the same idea allows to assume, for X smooth and with at
least one marked point, g,, to be conformal on an exhaustion K,, of X minus a single
marked point.
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These ideas allow a similar definition of the “universal curve” over the augmented
Teichmiiller space. While we are not interested directly in this object as it is not an
honest flat family of curves, it is useful for defining universal curves over other spaces.

Convergence of sequences in the universal curve is defined analogously to conver-
gence in 79771. Given (X, z,p, f) such that p is not a node, we say that a sequence
(Xoms Zmy P, fm) converges to (X, z,p, f) if (X, 2m, fm) — (X, z, f) as pointed sta-
ble curves; and moreover, if g,,: K,, — X,, are the (conformal or quasiconformal)
maps which exhibit this convergence, then g..!(p,,) converges to p.

This definition does not work in the case when p is a node, as then p € X \ K,,,
and thus the map g,, is never defined at p. Instead we require, for m sufficiently
large, the point p,, to lie in the end of X, \ gm(K,,) that corresponds to the end of
X \ K, containing p. This is well-defined, since g,, eventually induces a bijection of
the components of X \ K, and X, \ gm (K ), as remarked above.

3.2. The Dehn space and the Deligne-Mumford compactification. We briefly
recall the construction of the Deligne-Mumford compactification Mg,n of My, as well
as the closely related Dehn spaces Dy, which give simple models for ﬂgm near its
boundary. For more details and proofs of all of these statements, we refer the reader
to [HK14], see also [ACG11] for some of the statements.

Given a multicurve A C X\ s, the full A-twist group TW%lll C Mody,, is the free
abelian subgroup generated by Dehn twists around the curves of A. The Dehn space Dy
is the space obtained by adjoining to 7,, the stable curves where f(A’) for some
subset A’ of A has been pinched , and then taking the quotient by wa{ﬂl. That is,

Dy = |J Ta/Twi™.
ANCA

(Bers [Ber74a] called this space the “deformation space”.) Each D, is a contractible
complex manifold. It has a unique complex structure which agrees with the complex
structure induced by 7, in the interior, and such that the boundary is a normal
crossing divisor.

The universal curve m: Xy — Dp is the quotient

Xy = |J Xgamlry, /Twi",
A CA

where X, is the universal family over Ty, and where the full twist group acts trivially
on each fiber. It is a flat family of stable curves over Dy, as can be seen using the
plumbing construction of [HK14].

The Deligne-Mumford compactification M, of Mg, is the quotient T,/ Modg.,.
For each multicurve A, the natural map Dy — ﬂg,n is a local homeomorphism. The
image of Dy is the complement of the locus of stable curves with a node not arising
from pinching A. These local homeomorphisms provide an atlas of charts for M.,
which give it the structure of a compact complex orbifold such that the boundary is a
normal crossing divisor.
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One may also compactify M, ,, as a projective variety MZE (see [DM69] or [ACG11]).

Hubbard-Koch [HK14] showed that MZE >~ M, as complex orbifolds, so the natural

——al

topology of the algebraic variety M g’i gives yet another equivalent topology on M, ,.
3.3. Spaces of one-forms. We now consider topologies on various spaces of surfaces
with holomorphic one-forms. For surfaces with one-forms, the conformal topology is
sometimes more convenient than the quasiconformal topology, as pullbacks of holomor-
phic one-forms by quasiconformal maps are in general only locally L? as quasiconformal
maps have locally L? derivatives, but we will use these topologies both. On the other
hand, these spaces already have topologies coming from algebraic geometry, and we
will show that these topologies coincide.

Consider the universal curve over the Dehn space m: Xp — Dy, with its relative
cotangent sheaf wy, ;p,. The pushforward m.wy, p, is the sheaf of sections of the
Hodge bundle Q@D — Dy, a (trivial) rank g vector bundle whose fiber over a point X
is the space (X)) of stable forms on X. As QD, is a vector bundle, it comes with a
natural topology, which we call the vector bundle topology.

On the other hand, the conformal topology on Dy gives a second natural topology
on ODy. A sequence (X, Zm,wm, fm) of marked pointed stable forms converges to
(X, z,w, f) in the conformal topology if for some exhaustion K,, of X*®\ z, there is a
sequence of conformal maps g, : K, = X,, such that f,, ~ g, o f and g}, w,, converges
to w uniformly on compact sets. Again, we say that such a sequence converges strongly
conformally if the g,, are moreover defined on an exhaustion K,, of X* and respect
the marked points.

We will occasionally want to allow the maps f,,, to be only quasiconformal. We say a
sequence (X, Zm, Wi, fm) converges to (X, z,w, f) in the quasiconformal topology if for
some exhaustion K,, of X?*, there is a sequence of L,,-conformal maps g,,: K, = X
which exhibit convergence in the quasiconformal topology on D and such that g} wm,
converges to w in the topology of weak locally L? convergence.

We show below that these topologies agree.

Lemma 3.4. Suppose 3g—3+n > 0. Let (X, Zm, fm) be a sequence in Dy converging
to (X, z, f) in the quasiconformal topology, and let gn,: Ky, — X, be a sequence of
Ly, -quasiconformal maps exhibiting this convergence, where K, is an erhaustion of X.
Then the maps gm (regarded as maps into the universal curve Xy ) converge uniformly
on compact sets to the identity map on X.

Proof. First, we claim that there is a subsequence which converges uniformly on com-
pact sets. We show via the Arzeld-Ascoli Theorem that a subsequence converges uni-
formly on K = (X, z)¢,, and convergence on compact sets follows from the usual
diagonal trick. We fix also K’ = (X, z),, for some € < ¢ and assume m is large
enough that g,, is defined on K’.

Choose a Riemannian metric p’ on X3, the complement of the nodes and marked
points in X, whose restriction to the fibers is the vertical hyperbolic metric p. The
functions g, have a uniform modulus of continuity on K by |[LV73| § 3.3.3] and so are
uniformly equicontinuous.
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To apply Arzela-Ascoli, we just need that the g,, are contained in a compact subset
of XY. By Mumford’s compactness criterion, the e-thick part in the vertical hyperbolic
metric (X7} )¢ is compact, so it suffices to show that g,, maps K into (X,,, zm)e for
some uniform e. Again, since the g, have a uniform modulus of continuity, there are
small constants € < € so that if g,,,(K) intersects the e-thin part, it must be contained
in the €-thin part which is a union of annuli by the Margulis lemma. Since g,, is
compatible with the markings, g, is mi-injective on K, but K is not an annulus as
X \ z is finite type and hyperbolic, so g,,(K) cannot be contained in the €-thin part.
It follows immediately that g,,(K) is contained in (X,,, z;,)e for some uniform e.

We now show convergence to the identity. The preceding argument in fact shows
that every subsequence of g,, has a further uniformly convergent subsequence. As
the g¢,, are L,,-quasiconformal, with L,, — 1, any subsequential limit is a conformal
automorphism of X \ z. As the g,, are compatible with the markings, this map is
homotopic to the identity, so must in fact be the identity, since X \ z is finite type and
hyperbolic. Thus any subsequence of g,, has a further subsequence which converges to
the identity map, and it follows that g,, converges to the identity. pid

Proposition 3.5. The vector bundle, conformal, and quasiconformal topologies on
QODp coincide.

Proof. On the base surface (X, s), choose g disjoint homologically independent “a-
curves” o, ..., a4, such that each «; is either part of the multicurve A or disjoint from
each curve in A. As these curves are fixed by the twist group TWRHH, they are dual to a
basis of relative forms. Let o;f be smooth, compactly supported 1-forms on ¥\ s which
are dual to the a;. Then there are relative one-forms 7,...,7n, on the universal curve

X over Dy such that in each fiber,
/ nj = dij.
o

3

Now suppose a sequence (X, Zm, W, fm) converges to (X, z,w, f) in the quasiconfor-
mal topology, and let g, : K, C X — X,,, be the sequence of quasiconformal maps
exhibiting this convergence. We may write each w,, and w as a linear combination of
the n;:

g g
(3.2) Wy = Zcmmi|xm and w = Zcim\x.
=1 =1
Convergence in the vector bundle topology is then equivalent to convergence of each ¢;,;
to ¢;. Since each ¢p,; can be recovered as the integral of g}, wy, A o, this follows from

the weak convergence of gy, w., to w.

Now suppose the sequence converges in the vector bundle topology. Writing the
form wy, in the basis 7; as in , this means that c¢,,; converge to ¢; for each i. Then
(Xoms Zm, fm) converge to (X, z, f) as marked pointed surfaces, and by Theorem
there is a sequence of maps ¢gn,: K,, — X;,, defined on an exhaustion of X, which
exhibit convergence in the conformal topology. By Lemma these g,, converge
uniformly on compact sets to the identity, and so do their derivatives. It follows that
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g5.mi — mi|x uniformly on compact sets, so g wn, — w as well, and so the sequence
converges in the conformal topology.

Since conformal convergence obviously implies quasiconformal convergence, it follows
that the three topologies are equivalent. gt

These notions of convergence will appear in several similar contexts. We will often
need convergence of one-forms on part of X only. A sequence of stable differentials
(Xomy Zm,wy) converges to (X, z,w) on an irreducible component ¥ C X if there are
conformal maps ¢p,: K, — Xy, so that g)w,, converge to w uniformly on compact
sets, where K, is an exhaustion of Y. In another direction, one may allow the w,,
to have poles of prescribed order at the marked points. These notions of convergence
may be formalized similarly to the vector bundle topology described above by twisting
the relative cotangent bundle, giving a notion of convergence equivalent to conformal
convergence.

3.4. Strengthening conformal convergence. We have defined conformal conver-
gence of one-forms as uniform convergence of the pullbacks g;,wy, to w on compact
sets. A natural strengthening is to require the pullbacks to be equal to w. This is
not always possible: if w,, and w have different relative periods, then they cannot
be identified by any conformal map. It turns out that relative periods are the only
obstruction.

Theorem 3.6. Let X be a closed Riemann surface, containing open subsurfaces U
and W withU C W C X, and let Z, P C U be disjoint discrete sets. Suppose moreover
that the boundaries of U and W are smooth and that U is a deformation retract of W.
Let vy, and 1y, be two sequences of meromorphic one-forms on W' converging uniformly
on compact sets to a single non-zero meromorphic form w. Suppose moreover that

(i) all of the forms v, nm and w have the same set of poles P and the same set of
zeroes Z, and moreover
(ii) the orders ord, vy,, ord, n, and ord, w coincide for every m and z € U, and
(iii) for each m, the classes [vm] and [n,] in HY(U \ P, Z;C) are equal.
Then for m sufficiently large, there exists a conformal map h,: U — W fixing each
point of Z U P, and such that b}, (vp) = 1. Moreover one can choose hy, to converge
uniformly to the identity as m — oo.

The proof will follow from applying the Implicit Function Theorem to a suitable
holomorphic map on an open subset of H x E, where H is a space of holomorphic maps
U — X, and F is a Banach space parameterizing one-forms on W. In the next Lemma,
we give H the structure of a Banach manifold modeled on a space of vector fields on U.

Given an open set V in some Banach space, we denote by Oy the Banach space of
bounded holomorphic functions on V' equipped with the sup norm. More generally, if E
is a normed vector space, Oy (E) will denote the Banach space of bounded holomorphic
functions V' — FE, equipped with the sup norm. We use the following notation for
derivatives of maps between Banach spaces. We denote by D}'F, the n-th partial
derivative with respect to the i-th variable at z and we let D" F), denote the derivative
of F' at z. We use several times that standard results from calculus and complex analysis
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hold in the context of holomorphic maps on Banach spaces. See [Muj86; [Nac69] for
details.

Lemma 3.7. Let Y C C? be a smooth analytic curve, U C Y a relatively compact open
set, and S C U a finite subset. In the space Oy (C?)S of bounded holomorphic functions
g: U — C3 which fir S pointwise, let H be the locus of those functions sending U
into Y, and let B¢ be the e-ball centered at the identity map id. Then for some € > 0
the intersection He = B¢ N'H has the structure of a Banach manifold isomorphic to an
open ball in V(U)®, the space of bounded holomorphic tangent vector fields to U which
vanish at each point of S.

Proof. By |BF82, Corollary 1.5], every analytic curve Y in C? is an ideal-theoretic
complete intersection, meaning there are holomorphic functions Fi, Fp: C3 — C so
that Y is defined by the equations F; = F, = 0 and the derivative DF: C? — C?
(where F' = (F1, F»)) is surjective at each point of Y.

Now Oy (C3)® C Op(C?) is a finite-codimension affine subspace, which may be
identified with the Banach space Oy (C3)g of functions which vanish on S. We define
®: Oy(C3)s — Op(C?)g by ®(g) = Fo(id +g)—id, a holomorphic map with derivative
D®;4(g) = DF - g. The space H is then the fiber of ® over 0. If we could show that
D®yq is a split surjection by constructing a right-inverse to DF', it would then follow
that H, is a Banach manifold modeled on the kernel of DF, which is clearly V(U)®, as
claimed.

The derivative DF' is explicitly the 2 x 3 matrix whose 7jth entry is the entire
function gfl Let M; be the 3 x 2 matrix obtained by replacing the ith row of DFT by

zeros, and let Wi be the ith minor of DF, so that
(3.3) DF - M; = pl.

Since DF is surjective, the minors u; have no common zero on Y. In other words the
functions Fi, Fa, p1, po, 43 have no common zero in C3. Let a be the ideal generated
by these functions in the ring Ogs of entire holomorphic functions. By a version of
Forster’s analytic Nullstellensatz (see [ABF16]), the radical ideal v/a is dense in O¢s
(in the topology of normal convergence). There are then entire functions ag, S, h and
an integer n so that

K" = aqp1 + agpe + agus + f1F1 + B Fy,

with h nonzero on U. Using (3.3), we then have that h™" ), oM}, is the desired
right-inverse to DF on U. g

Remark 3.8. When this Lemma is applied below, Y is an algebraic curve. In this
case, by the Ferrand-Szpiro Theorem Y is a set-theoretic complete intersection (see
[Szp79]) which may not be an ideal-theoretic complete intersection. So even when Y is
algebraic, we are forced to use analytic equations defining Y.

Proof of Theorem [3.6, Choose Q € X \ W and fix an embedding of Y = X \ @ in C3 as
an affine space curve. By the previous Lemma, the space of holomorphic maps U — Y
which fix the subset S and are sufficiently close to the identity may be identified with
a d-ball V(U)5 .
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Let (9%, be the closed subspace of Oy consisting of those f such that fw has trivial
periods in W\ P. We can thus write vy, = (1 + fi,)w and wy, = (1 + fi, + gm)w with
fm € Ow and gy, € O%/ both converging to zero as m — oo.

Let B, denote the e-ball in V(U)* x Ow x OY, centered at (id, 0,0). Consider the
map V: B, — (’)OU defined by

o*((L+ f+ g)w) — (1+ flw

w

U(p, f,g9) =

Once we have shown that V¥ is well-defined, holomorphic and that the tangent map
D1¥(;4,0,0) is a split surjection, the Implicit Function Theorem allows to construct a
family of maps ¢(f, g), parameterized by f and g in some e-ball, so that ¢(0,0) is the
identity map and ¥(¢(f,g), f,g) = 0. We can then set h,, = ¢(fin, gm)-

To check that W is well-defined, that is, the image is contained in OOU, note first that
the numerator and denominator have the same zeros and poles, since they are fixed
by ¢. Moreover, the right hand is bounded on U for € sufficiently small, as it extends to
a holomorphic function on a neighborhood of U, so it does indeed belong to OOU. Note
that for e sufficiently small, the maps ¢ are sufficiently close to the identity map U
to W, so that the pullback in the definition of W is defined.

We claim that ¥ is holomorphic. We write X for X x B, and similarly &/ and W
for the trivial families of subsets of X over B.. We have a universal holomorphic map
®: U — X whose fiber over a point in V(U)S is the map which that point represents.
Similarly, there are universal bounded holomorphic functions F, G: W — C associated
to the factors Oy and OIQV of Be. The form w can be regarded as a relative one-form €2
on W. The function

>*(1+F+G)Q) - (1+F)Q
Q

is holomorphic on & and uniformly bounded on 0l/. Here we use the Cauchy Integral
formula to bound the “vertical” derivatives of ® on 0U/. By Lemma this induces
a holomorphic map into OOU which is none other than ¥, and moreover DV can be

computed with (3.4)).
The derivative operator D1 ¥ ;q0,0): V(U)S — 0 is

H =

D1V (i40,0)(v) = Low/w,

where L, is the Lie derivative. We now show that this map is a split surjection by
constructing a right inverse T to D1 V. We define

TS O S V), T(f) = i/zofw

and argue now that this is well-defined. The integral is over any path starting at z,
which is either an arbitrary choice of basepoint in Z, or an arbitrary basepoint if Z is
empty. The integral depends only on the endpoints of the path, since fw has trivial
absolute periods, and moreover since it has trivial relative periods, it vanishes at each
point in Z to order one larger than w. It follows that Y(f) is a holomorphic vector
field on U which vanishes at Z U P.
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This defines an operator V: OY — V(U)® which is evidently bounded. It is a left
inverse to D1 ¥ by Cartan’s equality L,w = d(w(v)) (for closed w). This completes the
verification of the hypothesis of the Implicit Function Theorem. g

To complete the proof of Theorem [3.0] it remains to verify the following universal
property.
Lemma 3.9. Let E and F be complex Banach spaces containing open sets U and V

respectively, and let f: U x V — C a bounded holomorphic function. Then the map
F:U — Oy defined by F(z)(w) = f(z,w) is a holomorphic function with
(3.4) DF,(w) = Difizw)-
Proof. Given (z,w) € U x V, suppose Bg(z) is contained in U. By the Cauchy integral
formula, we then have

M

where M is a uniform bound for |f| on U x V. Given z € U, let D,: E — Oy be the
bounded operator D, (h)(w) = D1 f(. ) (h). We claim that F' is differentiable at 2 with
first derivative D,. Since D, is complex linear, it implies that F' is holomorphic. This
follows immediately from the bound

[F(z+h) = F(z) = Dz(h)| = sup [f(z+ h,w) = f(z,w) = D1f(zu)(h)]

weV
M
< s Al
(R — |h])?
where the last inequality follows from the bound (3.5 for the second derivative and
Taylor’s Theorem. pi

3.5. Compactness for meromorphic differentials. In this subsection, we study
convergence for sequences of curves equipped with a meromorphic differential, estab-
lishing a compactness result which we later use in Section to obtain compactness
of the moduli space of multi-scale differentials. For an alternative approach to these
compactness results, see the appendix to [McM89].

Given a pointed stable curve (X, z) we denote the punctured surface X*\ z by X',
which will always be equipped with its Poincaré hyperbolic metric p. Recall that X,
denotes the e-thick part of X (with e smaller than the Margulis constant).

Consider a degenerating sequence of pointed meromorphic differentials (X, 2, wm)
in QM (@) such that the underlying pointed curves converge to some pointed stable
curve (X, z). It may happen that on some components of the thick part of X/, the flat
metric |wy,| is much smaller than on other components. As a result the limit of w,,, may
be non-zero on some components of X/ . and vanish identically on others. In order to
get non-zero limits everywhere, we allow ourselves to rescale the differential on different
components at different rates. These rescaling parameters arise from a notion of size
for the thick parts of the X/ which we now define.

Given a meromorphic differential (X,w) € QMg ,(p), for any p € X', let |w|, be
its norm at p with respect to the hyperbolic metric. If Y is a component of the thick
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part X/, we define the size of Y by

(3.6) AY) = sup|wlp.
peY

A similar notion of size is defined in [Raf07].

Theorem 3.10. Suppose (X, Zm,wm) s a sequence of meromorphic differentials in
QMg n(p) such that (Xpm, zm) converges to some (X, z) as a sequence of pointed stable
curves. LetY C X be a component and choose € small enough so that Y, is connected.
For large m, choose (Yy,)c to be the sequence of components of (X )e such that (Yy,)e
converges to Y. Let Ay = M(Yn)e). Then we may pass to a subsequence so that the
sequence of rescaled differentials wy, /Ay has a non-zero limit on Y.

Note that if we only wanted a limiting differential defined on Y, since |wy,/An| is
bounded on (Y;,),, this would be a trivial consequence of Montel’s Theorem. To get
convergence on all of Y, we establish a priori bounds (depending only on € and ) for
the size of any component of the e-thick part of X', in terms of the norm |w|, at any
point of Y.

To this end, we introduce the Poincaré distortion function of a pointed meromorphic
differential (X, z,w) as the function 7: X’ — R defined by

A(p) = |B], where S = dlog|w/p|.

This function measures how quickly the flat metric |w| varies with respect to the hy-
perbolic metric p. Note that 7 is independent of the scale of w, so can be regarded as
a function on the punctured universal curve over PQM, ,,(1).

Lemma 3.11. There is a constant C depending only on p and € so that for any
(X,z,w) € QM (1), the distortion function 71 is bounded by C' on the e-thick part
of X'.

Proof. We wish to define a compactification of PQM, (1) so that 7T extends continu-
ously to the universal curve over the compactification. To this end, let PQMIQITZC (1) be
the normalization of the Incidence Variety Compactification, with the universal curve
T X = PQM;EC(M). The universal curve is equipped with a family of one-forms w,
defined up to scale. Its divisor consists of horizontal components (whose m-image is

PQH;?EC(M)) along the marked zeros and poles, and also some vertical components

——mninc

(whose 7-image is a boundary divisor of PQM, ,"(u)).

Suppose D C X is an irreducible vertical component of the zero divisor of w lying
over D'. Since the base is normal, by Proposition below near any point p € D’
there is a regular function f defined near p so that w/f is regular on D near the fiber
over p, and moreover such an f is unique up to multiplication by the pullback of a
regular function which does not vanish at p. The family of one-forms

B = dloglw/pf|
is then a continuous extension of § which is defined in a neighborhood of the fiber
over p in the punctured universal curve X’ and depends neither on the choice of f nor
on the scale of w. Here we are using the fact that the vertical hyperbolic metric is C*
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on X’ by [Wol90]. Since we may extend /3 on a neighborhood of any such vertical zero
divisor, this gives a continuous extension of § over all of X’. The function T(p) = |8,

is then the desired continuous extension of 7 to X’. Since the e-thick part of X is
compact, we see that 7 is bounded on the e-thick part. gt

Corollary 3.12. There exists a constant L that depends only on pu and €, such that
for any pointed meromorphic differential (X, z,w) € QMg n (1), for any points p and q
in the e-thick part of X, we have

|W|q < L’W|q-

Proof. By Lemma log |w/p| is C-Lipschitz on X, for a uniform constant C. The
diameter of X, is bounded by a uniform constant E, so we can take L = Ce”. pid

Proof of Theorem[3.10. Let fp,: K — Xy, be conformal maps on an exhaustion { K, }
of Y’ that exhibit the convergence of the (X,,, z,,). By Corollary and convergence
of the Poincaré metrics of X/, to that of Y’, the differentials f;, (wy, /M) are uniformly
bounded on the (1/k)-thick part of Y for every k. By Montel’s Theorem, there is a
subsequence which converges uniformly on Y; ;. The diagonal trick gives a sequence
converging uniformly on compact subsets of Y. pid

4. NORMAL FORMS FOR DIFFERENTIALS

This section provides auxiliary statements for normal forms for differentials on Rie-
mann surfaces, and for families degenerating to a nodal Riemann surface. There are
two types of statements. The first is for a fixed Riemann surface, in fact a disk or an
annulus. If moreover the differential is fixed, this goes back to Strebel. For a varying
differential we proved such a normal form statement in [BCGGM18| Section 4.2] and
we give a slight generalization below. The second type of normal form theorem is for
differentials on a family of surfaces whose topology changes. This statement has two
subcases corresponding to the local situation at vertical nodes and horizontal nodes,
respectively.

We first recall Strebel’s standard local coordinates for meromorphic differentials in
the complex plane. A meromorphic differential w defined on a neighborhood of 0 in C
has two local conformal invariants, its order of vanishing k& = ordgw and its residue
r = Resgw. Strebel constructed a standard normal form for w, which depends only
on k and r.

Theorem 4.1 (Normal form on a disk, [Str84]). Consider a meromorphic differ-
ential w on the 6-disk As C C with k = ordgw and r = Resgw. Then for some € > 0,
there exists a conformal map ¢: (A¢,0) — (As,0) such that

2k dz if k>0,
(4.1) P'w = qr& if k= —1,

(1 +r) L ifk < 1.
The germ of ¢ is unique up to multiplication by a (k + 1)-st root of unity when k > 0,
and up to multiplication by a non-zero constant if k = —1. For k < —1 the map ¢
1s uniquely determined by and the specification of the image of some point p in
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AN\{0}. Moreover, if ¢ satisfies (4.1)) and ¢p(p) = q, then there exists a neighborhood U
of q such that for every q € U there exists a map ¢ satisfying (4.1) and with ¢(p) = q.

This statement also holds for families of differentials w; on families of disks, as
long as the order ordgw; = k is the same for all t. For families of differentials such
that the order ordgws is not constant, the situation is more complicated. This has
essentially been dealt with in [BCGGM18| Section 4.2], and we implement here two
minor generalizations. First, the differential is given a priori only over an annulus, and
second, the locus where the differential is assumed to be in standard form is an arbitrary
closed subvariety of some open ball U C CN. Let Ag, 5, == {2 : 61 < |2| < &2} C Ag,
be an annulus and let (; := e(j/(k+ 1)) be a (k+ 1)-st root of unity (where we denote
e(z) = exp(2my/—12)).

Theorem 4.2 (Normal form of a deformation on an annulus). Let w; be a
holomorphic family of nowhere vanishing holomorphic differentials on U x As, 5, such
that its restriction over a closed complex subspace Y C U is in standard form .
Choose a basepoint p € As, 5, and a holomorphic map <: U — A, 5, such that ¢(Y) =
Gp-

’ Then there exists a neighborhood Ug C U of Y, together with §1 < €1 < €2 < do and
a holomorphic map ¢: Ug X Ae, e, — A5, 5, such that ¢f(wy) is in standard form ,
and such that ¢|YXA51,52 is the inclusion of annuli composed with multiplication by (j,

and such that ¢¢(p) = s(t) for all t € Up.

We now pass to families where the topology of the underlying Riemann surfaces
changes. We establish below a normal form in a neighborhood of a node, which will be
used in the unplumbing construction of Proposition [13.6] Fix some arbitrary complex
(base) space B, possibly singular and possibly non-reduced, with a base point p € B.
Any family of Riemann surfaces over B with at worst nodal singularities can be locally
embedded in V = V5 = A% x B, for some radius §, where the family is given by
V(f,8) = {uv = f}, where f is a holomorphic function on B and where u and v are
the two coordinates on the disk (see [ACG11} Proposition X.2.2.1]). For simplicity we
sometimes write V(f) or V for V(f,0) when there is no confusion. We denote the
“upper” component of the nodal fibers by X* = {f = 0,v = 0}, and the “lower”
component by X~ = {f = 0,u = 0} respectively. The next statement gives a local
normal form for a family of differentials on V near the nodal locus X N X ™.

Theorem 4.3 (Normal form near vertical nodes). Let w be a family of holomor-
phic differentials on V', not identically zero on every irreducible component of V', which
does not vanish at a generic point of X and vanishes to order exactlyk =k —1>0
at the nodal locus X N X~. Suppose that f* is not identically zero and that there
exists an adjusting function h on B such that w = hn for some family of meromorphic
differentials n on V, which is holomorphic away from X+ and nowhere zero.

Then for some € > 0, after restricting B to a sufficiently small neighborhood of p,
there exists an v € Op, divisible by f", and a change of coordinates ¢: V(f,e) —
V(f,0), which lifts the identity map of B to itself, such that

(4.2) P'w = (U + T)d—: .
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Moreover, given a section ¢g: B — V and an (initial) section < that both map to
X~ along f = 0 and with < sufficiently close to ¢y, there exists a unique change of
coordinates ¢ as above that further satisfies ¢ o ¢ = .

The notion of adjusting function will be formally defined and used later, see Defini-
tion [I11.11 We split the proof in several steps.

Lemma 4.4. Under the assumption of Theorem[{.3, the following statements hold:
du

(i) There exists a holomorphic function g on' V' such that we can write w = u"g(u,v)%*.
Moreover, g can be taken with constant term 1 after rescaling u by a unit.
(ii) Up to multiplying n by a unit, we can assume that h = f".

(iii) We have f* | r.

Proof. We will see that the second and third statements follow from the proof of the
first one. Using the defining equation of V and the fact that w is holomorphic, we can
expand w in series as

4.3 — ( gt ' 1) _
(4.3) w Z ciu' + Z v’ ) —

i>0 >0
for some local functions ¢;, c_; on B. An arbitrary holomorphic function g on V' can be
uniquely written, possibly after shrinking the neighborhood to guarantee convergence,
as a series g = ) ;g a;u’ + ;oo b—iv", so that our goal is to write w as

K du i K—i, i ki) du
(44) w=wu g(u,v); = (Z Gi—pu" + Z bi_w [ u —I-Zb_,{_zf v);
1>k 0<i<k >0

Since 71 is holomorphic outside the locus v = 0, we can also expand it as

(4.5) n = ( ev "+ e_ivl) —.
The hypothesis on the vanishing order of w implies that ¢;(p) = 0 for 0 < i < &,
but c.(p) # 0. We consider the equation w = hn near X~ and write u’ = fiv~*
in the defining power series of w. Comparing the v™" terms gives ¢, f* = hey,
hence h | f®. On the other hand, the winding number argument as in the proof of
[BCGGM18, Theorem 1.3] implies that e,(p) # 0, so that f* | h. (If B is topologically
just a point, we can take any lift of the family to a polydisk, run the argument there
and the conclusion persists after reduction.) Changing 7 by a unit in Op,, we can
assume that h = f* from now on, thus verifying (ii). Coefficient comparison of the
terms v° for ¢ > 0 in the equality w = hn now implies that c_; = f*e_;. It also implies
that fic; = f"e; for i > 0. Since f! is a non-zero function on B for those 0 < i < &
by the non-vanishing hypothesis of w, this implies the remaining divisibility condition
74| ¢; for 0 < i < k needed for making equal to (4.3).

The form of w we derived so far implies that the residue of w is equal to r = b_ f*,
which is in particular divisible by f*, hence proving (iii).

Finally we can multiply u by a unit and v by the inverse of the unit to make the
constant term ag = 1 in g, thus completing the entire proof. gt

We write r = o f" from now on.
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Lemma 4.5. We may assume that B is a polydisk.

Proof. Any (possibly reducible and non-reduced) analytic space can be embedded lo-
cally into a polydisk. We thus replace f by any of its lifts to such a polydisk. To put g
into the form we may assume that B is a polydisk with coordinates b and zero is
the base point. The coordinate change ¢ that puts the node in the required standard
form over the polydisk then restricts to a coordinate change over B with the desired

properties. pu
Proof of Theorem [{.3. We look for a solution of the form
(4.6) boxy) () = (ueX@HYE) ye=X@=Y@)

where X (u) = 322, ¢;(b)u’ is a holomorphic function of u and b with no constant term,
and similarly for Y (v). (In the sequel, for a holomorphic function of w,v, and b, the
dependence on b will be left implicit.)

We first remark that the uniqueness of ¢ follows from the observation that any two
holomorphic maps with the same pullback of a differential and that agree at a marked
point in the regular locus of the differentials agree everywhere. This marked point is
given by the section ¢ over f # 0. Consequently, if ¢1 and ¢ both satisfy the hypothesis
of the theorem, then ¢ o ¢ ! is identity on the locus in the family where f # 0, and
hence ¢1 = ¢2 everywhere.

By Lemma [1.4] we may write the relative form w as

du
w = u"(1+ 70" + go(u) + hg(v)); ,
where g is a function of v and b with no constant term, and hg is a function of v and b
with no constant term or v"-term.
We first make a preliminary change of coordinate v so that ¥*w = wg, where

d
wo = w*(L+ 700" + fg(w) + Fh(v) .
This may be done by taking functions a(u) = ue*™ and B(v) = ve B such that
(possibly after shrinking €) on A, x B,

du du

o*u (1+9(U)); = v and
d d
(1 +r0f”+h(v))7v - U_R(l—kro‘fﬁ)%}’

using Strebel’s normal form, Theorem Then it is straightforward to check that
bx,v)(u,v) = (ueX(W+Y (V) =X @)=Y ()} i5 of the desired form.
We now wish to find functions X (u) and Y'(v) so that Pix Y)u”(l + rouR) & =y,

u
and ¢y y) o = ¢. Explicitly this means that on A? x B, the functions X and Y
satisfy the equations,

(en(X-i—Y)_i_TOv/i) <1+u?§_vg>—(1—|—’1)N+fg—|—fh)+<u1)—f)w = 0,

Toe—X(f/To)—Y(To)_T = 0,
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where W (u,v) is a holomorphic function on A2, and where the sections ¢ and ¢y are
written as
s = (f/r,7) and < = (f/70,70)
for some nowhere zero functions 7 and 7y on B. Our approach to solving these equations
will be by perturbing the trivial solution X =Y = 0 when ¢ = h = 0 and f = 0 via the
Implicit Function Theorem. To do this, we introduce an auxiliary complex parameter s
and the rescaling maps ps(b) = sb on B and ps(u,v,b) = (u,v, sb), so that we have the
commutative diagram:
P(X,Y)

V() ————= V()

A .|
V(fops) 5 Vfors)

Solving the original equations is then equivalent to solving on the polydisk A? x B the
equations

BL(W,X,Y,78) = (KOO 4 (100 0% (1 LS
u

— (L+ v+ (fg) 0 ps + (fh) 0 ps) + (uv — fops)W = 0,
(I>2(VV7 Xv)/aTa 8) = 7'0€_X(f/7—0)_y(7—0) —7=0

for any nonzero s. (Note that only the first equation has been rescaled.)

We fix some notation for the Banach spaces we need. Let O(M),, denote the Banach
space of holomorphic functions on M whose first m derivatives are uniformly bounded,
equipped with the C""-norm [|F|l,, = > sup.cp |FU)(2)]. We let Ug = A x B,

Vg =A.xB,and V = A2 x B be polydisks with coordinates (u,b), (v,b), and (u, v, b)
respectively. An upper index nc will refer to functions without constant term (in u resp.
in v) and an upper index nr (“no residue”) will refer to functions without v*-term.

In this notation we can view ® = (®1, P2) as a map

3: O(V)o® OUp)I @ O(Vp)i @ O(B)y ®C — O(V)i“™ @ O(B)y,
where the domain summand parameterize W, X,Y, 7, and s respectively. In order to
apply the Implicit Function Theorem, we need to show that

D1®: O(V)g @ O(Up)i® O(VE)1¢ — OV )™ @ O(B)o
is an isomorphism. Here D;® refers to the derivative at (0,0,0,79,0) with respect to

W, X, and Y. This derivative is given explicitly by

(4.7)
0X

Dl(I)l(I/V, X, Y) =W -uv + <K,X _|_u(]_ +T0(0)’Uﬁ)8u> + (RY _ 'U(l -i-’l”o(O)vI{)g};) 7
D1®s(W, X,)Y) = —710X(f/70) — 70Y (70) -

We will show that D;® is an isomorphism by constructing an explicit inverse,

S: O(Ug)y" @ O(Ve)y™™ ®@ O(V)o & O(B)o = O(V)o & O(Up)1* & O(VB)1*,
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identifying O(V)“™ with O(Up)§¢ @ O(Vg)y™™ ® O(V)y by decomposing any holo-
morphic function in O(V)g™™ uniquely as R(u) + 3(v) + T(u, v)uv.
We define bounded operators Sy: O(Up)i¢ — O(Up)¥° and Sy: O(Vp)y“™ —

O(Vp)j€ to be the solutions to the differential equations
0X

(4.9) rY —o(l+ TO(O)UH)?;; = 3,

obtained from the X- and Y-components of (4.7) by deleting terms containing uv.
Solving these equations explicitly using the method of integrating factors (see |[Eul32])
yields
1
Sx(R) = — [ u" Ndu,

uﬁ

—o" 3
D = e / ot

where each antiderivative is chosen to have no constant term. The second antiderivative
exists because 3 was assumed to have no v* term. The differential operator,

0X
T(X)=rX+u(l+ 7“0(0)”&)% ;
which is the X-component of (4.7]), then satisfies
N
TSx(N) = ro(O)uvkaSgJ) ~ B,

where
ER) = —krp(0)v"Sx(R),
which is divisible by wv. Finally, we define S by

S(N,3,7,7) = (‘i— L BMY, Sx(N), Sy (3)+ (.3, T)u(v)> ,

uv

where
v K

M(v) 1 + ro(0)vr
is the kernel of the left-hand side of , and
T+ 10Sx(R)(f/70) + 105y (3)(70)
Top(70)
is chosen so that D1® 0 S(X, 3,71, 7) = 7. Note that since 79(0) # 0, we may assume
that the denominator 7ou(7y) of is nonzero by possibly shrinking B.

We then know that D;® is surjective, since it has a right inverse. Injectivity of D;®
is easily checked, using that the solutions to and are unique up to the kernel
of , which is of the form Cpu(v), and once X and Y are fixed, there is a unique
function C such that D;®5 = 0.

We can now apply the Implicit Function Theorem in a neighborhood of (s,7) =
(0,79) to obtain functions Xgr, Ysr, W, with ®(Xsr, Ysr, Wsr, 7,8) = 0. Since ¢y is the

(4.10) oM7) =




34 BAINBRIDGE, CHEN, GENDRON, GRUSHEVSKY, AND MOLLER

identity, thus mapping V' (f, €) into V(f, d), this inclusion still holds for (s, 7) sufficiently
small. Consequently the map ¢ we constructed maps into V(f, €) as required. g

Remark 4.6. The change of coordinates ¢ may also be represented as an explicit
formal power series via the following Ansatz, as a function of the form

(4.11) d(u,v) = (u(l_i_Z)eX(u)—i—Y(v)’v(l_{_Z)—le—X(u)—Y(v))’

where X (u) and Y'(v) are holomorphic functions as before, with expressions X (u) =
Yiso v’ and Y(v) = Y.y d;jv' respectively. Here the ¢;, d;, and Z are holomorphic
functions on B.left-hand side Equation (4.2)) is then equivalent to

(4.12) (u(1 + Z)"efXWHYO) L)1 4 uX(u) — oY (v)) = ug.

A formal solution of this differential equation can be constructed recursively. We
begin with solving the equation mod f. The v'-terms and the w/-terms for j < &
are zero mod f on both sides. The u"-term implies Z = 0 mod f. The u**/-term
involves a linear equation for ¢; mod f with leading coefficient x + j for j > 0. Next
we solve mod f2, where the u"~!-term gives a linear equation for b; mod f. The
coefficient Z mod f? is linearly determined by the u"-term mod f? and the u"**/-term
mod f? linearly determine ¢; mod f. In the third round, considering terms mod f3, we
start with the u*~2-term, which determines b, mod f, then consider the u*~!-term to
determine by mod f2. The u”-term and higher terms to compute Z mod f3 and then
the ¢; mod f2. This clearly determines an algorithm, starting at the u*~"-term at the
step “mod f™”, where the consideration of a term u~¢ should be read as the v'-term.
The u’-term determines there residue, but imposes no condition on b, (since it appears
with coefficient k — k). Making an arbitrary choice for that coefficient, the algorithm
can be continued as indicated. This choice can be used to adjust the section .

The corresponding statement for horizontal nodes is a direct adaptation of [BHM16,
Lemma 7.4]. In fact, the proof given there uses no geometry of the base, and the
convergence of the given formal solution follows from straightforward estimates.

Proposition 4.7 (Normal form near horizontal nodes). Let w be a family of
holomorphic differentials on V, whose restriction to the components X and X~ of
the central fiber both have a simple pole at the nodal locus X N X .

Then for some € > 0 there exists, after restricting B to a sufficiently small neigh-
borhood of p, a change of coordinates ¢: V(f,e) — V(f,d) such that it is the identity
on B and such that

(4.13) w=r—.

Moreover, given a section ¢o: B — V and an (initial) section ¢ that both map to X~
along f = 0 and with < sufficiently close to ¢y, there is a unique change of coordinates ¢
as above that further satisfies ¢ o ¢ = .

5. PRONG-MATCHED DIFFERENTIALS

In this section we construct the Teichmiiller space Q7" (1) of prong-matched twisted
differentials, as a topological space. Subsequently the augmented Teichmiiller space of
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flat surfaces will be constructed as a union of quotients of such spaces Q7™ (1). Along
the way, we introduce the key notions of degenerations of multicurves, prong-matchings
and weldings, as well as several auxiliary Teichmiiller spaces.

To avoid overloading this section, we define in this section the points in the moduli
spaces by specifying the objects they represent. All these objects have a natural notion
of deformation that endows those spaces with a topology that we address in Section [7}
as well as modular interpretations that we address in Section

5.1. Ordered and enhanced multicurves and their degenerations. We continue
to fix an m-pointed topological surface (¥, s), as in Section To every multicurve
A C ¥\ s, we can associate the dual graph I'(A) whose vertices correspond to connected
components of ¥ \ A, whose edges correspond to curves in A, and whose half-edges
correspond to the marked points. In the setting of multicurves, we will generally
imitate the standard notation for level graphs from Section We call A = (A, /) an
ordered multicurve and specify the ordering relation between the components of ¥\ A
by <. The notions horizontal and vertical are defined similarly. A multicurve is purely
vertical (resp. purely horizontal) if all of its curves are vertical (resp. horizontal) edges
of T'(A).

An enhanced multicurve AT is a multicurve A such that the associated graph T'(A)
has been provided with the extra structure of an enhanced level graph. In order to
keep the notation simple, we will mostly denote an enhanced multicurve simply by A.
Moreover, by an abuse of notation, the enhanced level graph I'"(A) associated to A
will be denoted by I', and often simply by T.

We adapt many notions for graphs to the context of multicurves. We denote by L®(A)
the set of all levels of the level graph associated to the multicurve, and call this set
normalized if L*(A) = {0,...,—N}. We denote by L(A) = L*(A) \ {0} the set of all
levels except the top one. We denote 7, the curve of A corresponding to an edge e
of T'(A), and for i € L*(A) call the union of the connected components of ¥\ A at
level i the level i subsurface ;) C X. Denote 3, C 3 the subsurface corresponding to
the vertex v. We write X and Zfi) for the corresponding compact surfaces where the

boundary curves have been collapsed to points.

Definition 5.1. Suppose (A, ¢;) and (Ag,¢2) are ordered multicurves on a fixed
pointed topological surface. We say that (Aq,¢1) is a degeneration of (Ag, f3) (or Ag is
an undegeneration of A1), and we denote it by dg: (Ag, f2) ~ (A1, ¢1), if the following
conditions hold:

e As a set of isotopy classes of curves Ao C Ay. Let then 6: T'(A1) — I'(A2) be
the simplicial homomorphism induced by the inclusion ¥\ A — X\ As. More
concretely, the map ¢ is defined by collapsing every edge of I'(A1) corresponding
to a curve in A \ As.

e The map 9§ is compatible with the orders /; in the sense that if v < vp then
0(v1) < 6(vg). It follows that if v; < vy then §(v1) < d(v2), so § induces a
surjective, order non-decreasing map, still denoted by 4, on the (normalized)
sets of levels : L*(Ay) — L*(As).

e The map ¢ respects the labeling of the half-edges.
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The notion of degeneration of ordered multicurves extends to a notion of degeneration of
enhanced multicurves by requiring that moreover the map dg preserves the weights ke
of the edges e that are not contracted. A

As these constraints are all phrased only in terms of the dual graphs of these multi-
curves, there is an analogous notion of a degeneration of enhanced level graphs.

We alert the reader that there are nontrivial degenerations that increase the number
of levels without changing the underlying multicurve, see Figure

/!\WM

ly = —1 l=-1
0 =2
6=-3

FIGURE 2. A degeneration that does not change the underlying multicurve.

There are two kinds of undegenerations of A;. First, for any subset D" C A% of
the set of horizontal curves we can define a horizontal undegeneration of Ay by As =
A; \ D" and 6 = id. Geometrically this undegeneration smoothes out the horizontal
nodes corresponding to D". Second, suppose that A; has N + 1 levels. Then any
surjective, order non-decreasing map 0: N — M defines a wvertical undegeneration
As ~» Ay of Ay as follows. Let Ao C Ay be the multicurve obtained by deleting all
curves that lie in the boundaries of X(;) and X;) for i # j such that §(i) = 6(j). The
level structure on As is obtained by collapsing to a point every edge joining levels ¢ and j
such that §(i) = §(j). Note that every ordered multicurve as an undegeneration of A;
is obtained uniquely as the composition of a vertical undegeneration and a horizontal
undegeneration. Consequently, we refer to an undegeneration by the symbol (5, D") or
simply by 6.

There is another way to encode vertical degenerations. Consider a decreasing se-
quence J = {0 > j_1 > --->j_py > —N}. Wedefine jo=0and j_p;—1 = —-N—1
(though they are not part of J). The subset J induces a map d;: N — M which
maps integers (i.e. levels) in each interval (ji_1,jx] to k. We denote the associated
degeneration by dg;: Ay ~» A. The two-level degenerations given by J = {i}, and
denoted by dg;, will be particularly useful (see Section . In the example of Fig-
ure [2) we have J = {—1}. The level (j_1,jo] = (—1,0] is mapped to 0 and the levels
(j—2,7-1] = (=4, —1] are mapped to —1.

5.2. The Teichmiiller space of twisted differentials. For a reference surface (¥, s)
let Q75 5)(1) be the Teichmiiller space of (3, s)-marked flat surfaces of type p and let
PQT (5,6 (1) = QT (5,6 (1) /C* be its projectivization. We define the subsets Ps and Z
of s to be the marked points such that their images under f in X are respectively poles
and zeros of w. The complex structure on Q75 5) () is induced by the global period
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map
Per: QﬁE,s)(N) — Hl(z \ Ps, Zs; C)

which is locally biholomorphic (see e.g [Vee86], [HM79], [BCGGM19)|).

The (classical) mapping class group Mod(s; 5) of (¥, s) acts properly discontinu-
ously on 7(x s and on the twisted Hodge bundle over it, preserving the submani-
fold Qﬁz,s)(ﬂ)- The spaces Q’ﬁg,s)(,u) are highly disconnected and we do not address
here the question of classifying the connected components. Moreover, we do not claim
that PQ7(5; ¢y(p) is simply connected.

We next define similarly strata of flat surfaces over the boundary components of
the augmented Teichmiiller space. We start with an auxiliary object that will play no
major role further on. The upper index “no” indicates that no GRC and no matching
residue condition at the horizontal nodes is imposed here. This is mainly introduced
to contrast with the space defined later, where the residue conditions are required.
Moreover, recall that we denote an enhanced multicurve AT simply by A.

Definition 5.2. The Teichmiiller space Q" Ta(p) of flat surfaces of type (u, A) is the
space of tuples (X, f, z,n) where (X, f, z) is a marked (in the sense of Definition
pointed stable curve with enhanced pinched multicurve A and where 1 = {nv}vev(A)
is a collection of not identically zero meromorphic one-forms of type p that have order
+r. — 1 at e™ and e, respectively, for any edge e € T'(A). A

To construct Q2"°Tx (1) as an analytic space, we take a finite unramified cover of the
product of the twisted Hodge bundles over the Teichmiiller spaces for the components
of ¥\ A that encodes the identification of the marked points that are paired to form
nodes. Then the subset defined by the vanishing conditions of 7 along z and at the
nodes is the moduli space Q"7 (u).

The group (C*)VM) acts on QT4 (1) with quotient Ta(u), since the one-forms 7,
are uniquely determined up to scale by the required vanishing conditions encoded in
an enhanced multicurve.

Definition 5.3. The Teichmiiller space QTa (1) of twisted differentials of type (u, A)
is the subset of Q"Tx(u) consisting of (X, f,z,n) where 7 is a twisted differential
compatible with I'(A). A

Said differently, Q7 (1) is the subset of Q™7 (u) cut out by the condition of match-
ing residues at the horizontal nodes and the global residue condition. There is an
action of (C*)X™) on Q7 (k) preserving the fibers of the map to 7a(x), but the full
group (C*)VM) no longer acts on Q74 (x) because it does not necessarily preserve the
matching residues or the GRC.

We recall that as a consequence of Proposition two natural topologies on Q7 (1)
agree. The first topology is the one used above to define the complex structure, as a
subset of a finite cover of the product of the twisted Hodge bundles over a product of
Teichmiiller spaces. The second topology is the product of the conformal topologies on
the components of X \ f(A). By definition, this topology is the same as the conformal
topology on Q7 (1), where a sequence (X, fn, Zn, ) of marked pointed twisted dif-
ferentials converges to (X, f, z,n) if for some exhaustion K, of X, there is a sequence of
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conformal maps g, : K,, = X,, such that f, ~ g, o f and g}, converges to n uniformly
on compact sets.

5.3. Welded surfaces. Teichmiiller markings of nodal surfaces are by definition in-
sensitive to the precomposition by Dehn twists around the vanishing cycles. Here we
introduce the concept of a welded surface to define a refined concept of markings.

Let X be a stable nodal curve with dual graph I', and let 7: X* — X be the
normalization. Given a node ¢ of X, with preimage 7~ 1(q) = {x,y}, a welding of X
at ¢ is an antilinear isomorphism o,: T, X* — T, X*, modulo scaling by positive real
numbers. We alternatively think of the welding as an orientation-reversing metric
isomorphism og: S, X* — S, X*, where S, X* = (T, X* \ {0})/R>( denotes the real
tangent circle to X* at p. As we will explain below, this viewpoint is natural from
the perspective of real oriented blowups, which will be discussed in full generality in
Section[I2] The ordering of the fiber over g is not part of the structure, and we consider
oy L. T,X* — T, X* to be the same welding as 4. The space of all weldings of a given
node ¢ is a circle S*.

A welding can otherwise be described in terms of a real blowup of X that we now
recall, see e.g. [ACG11}, Section X.9 and XV.8] and Section Given the unit disk
A C C, the real oriented blowup p: Blg A — A is the locus

BlgA = {(z,7) € Ax S': 2 = |2|7},

with the projection p given by p(z,7) = z. It is a real manifold with a single boundary
circle {0} x S'. The projection p collapses the boundary circle to the origin and is
otherwise a diffeomorphism.

More generally, if X is a Riemann surface and D C X is a finite set of points,
performing the above construction at each point ¢ € D yields the real oriented blowup
p: Blp X — X, which is a real manifold such that its boundary maps to D, and
consists of a circle over each point ¢ € D. Then p restricts to a diffeomorphism
int(Blp X) — X \ D, and for each ¢ € D the boundary circle 9, Blp X = p~(q) is
naturally identified with the real tangent circle S;X = (T,X \ {0})/Rso of X at q.
The conformal structure of X gives d; Blp X the structure of a metric circle of arc
length 27r.

Given a subset D C Nx of the set Ny of nodes of X, the real oriented blowup
p: Blp X — X is the real oriented blowup of the partial normalization X™* of X at D,
at the set of preimages of D on this partial normalization. In other words, for each
node ¢ € D the fiber p~!(q) is a pair of metric circles S’; US, C 9Blp X. In these
terms, a welding of X at D is a choice for each node g € D of an orientation-reversing
isometry og: Sf — S, .

A global welding o of X is a choice of a welding at each node of X. If the dual graph
is endowed with a level structure I, then a vertical welding o of X is a choice of a
welding at each vertical node (horizontal nodes will never be welded in this paper).

Given a vertical welding o of X, we define the associated welded surface X o to be the
surface obtained by gluing the boundary components of Blyy X via o. The associated
welded surface has the following extra structures:
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(1) a multicurve AV on X, containing for each node q € N% the simple closed
curve that is the image of S;7 ~ S, called the (multicurve of) seams of X;

(2) a conformal structure on X \ (AY UN%); and
(3) a metric on each component of A¥, of arc length 2.

By a slight abuse of terminology, we call A = AYUN ;} the pinched multicurve of X .
Note that the surface X, can have horizontal nodes and is smooth elsewhere.

These notions obviously extend locally to equisingular families (m: X — B, z) of
stable curves, also called families of constant topological type. These are families where
all the nodes are persistent, i.e. for each node ¢ in each fiber of 7 there is a section of 7
passing though ¢ and mapping to the nodal locus of X'. We briefly digress on these
notions, aiming for the definition of the topology in Section [5.5] and the comparison in
Proposition We will return to these notions in detail in Section

For an equisingular family, a family of weldings o over an open set U C B is a
continuous choice of weldings for each fiber over U. Here we use the fact that =7 is
locally trivial in the C'*°-category to compare the tangent spaces T}, in nearby fibers.
Equivalently, we can perform the real oriented blowup in families over U (see e.g.
[ACG11], Section XV.9] and Section [12)), and then a family of weldings is a continuous
section of the S'-bundle at each vertical node. For each family of weldings o the family
of welded surfaces X is obtained by identifying the family of real oriented blowups
of X along the identifications provided by o. A marked family of welded surfaces is
defined by requiring that the fiberwise markings vary continuously.

5.4. Prongs and prong-matchings. Any point p of a meromorphic differential (X, w)
which is not a simple pole has a set of horizontal directions which we call the prongs
of (X,w) at p. Intuitively speaking, the prongs at p are the directions in the unit circle
SpX =T, X /R which are tangent to horizontal geodesics limiting to p under the flat
structure induced by w. In fact, the prongs can be naturally defined as vectors rather
than just directions:

Definition 5.4. Suppose the meromorphic differential w on X has order k # —1 at
some point p. A complex prong v € T, X of w at p is one of the 2|k + 1| vectors gb*(:lz%),
where ¢ is a choice of the standard coordinates of Theorem We say that a prong
is outgoing if it is of the form gb*(%) and otherwise it is incoming.

The 2|k + 1| vectors in S, X obtained by projectivizing the complex prongs are the
real prongs of w at p. A

When p is a (non-simple) pole, while there are infinitely many choices of standard
coordinates, there are still only 2|k + 1| prongs, as the prongs are determined only by
the first derivative of ¢ at p. Explicitly in local coordinates, if w = 2*f(2)dz with
f(0) # 0, then the prongs at 0 are the vectors :l:(%, where ¢t = £(0).

Since complex and real prongs are in natural bijection, we will simply refer to them
as prongs when we do not need to make the distinction.

We denote the set of incoming prongs at z by P® and the set of outgoing prongs
by P2". Each has cardinality x, = |1+k| = [1+ord, w|. Each set of prongs is equipped
with the counterclockwise cyclic ordering when embedded in the complex plane with
coordinate z.
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Now suppose ¢ is a vertical node of a twisted differential (X, n). The matching orders
condition (1) of a twisted differential equivalently says that the zero at ¢* and the pole
at ¢~ have the same number of prongs (equal to k).

Definition 5.5. A local prong-matching of (X,n) at ¢ is a cyclic-order-reversing bijec-
tion og: P — PO,

A (global) prong-matching o for a twisted differential is a choice of a local prong-
matching o, at each vertical node ¢ of X. A

Note that prong-matchings at horizontal nodes are not defined. The following equiv-
alent definition of a local prong-matching will be useful for studying families in Sec-

tion [Tk

Definition 5.6. A local prong-matching of (X,n) at a node ¢ is an element o, of
TqﬂX ® T;,X such that for any pair (v4,v_) of an outgoing and an incoming prong,

the equality o4(v4 ® v_)" =1 holds. A

To see the equivalence of these definitions, any such o, corresponds to an order-
preserving bijection thl — P;}:t by assigning to an incoming prong v_ the unique
outgoing prong vy such that og(v- ® v4) = 1.

A prong-matching o, at the node ¢ determines a welding of X at ¢ by identifying a
prong v € S,- X with the prong o,4(v) € S+ X, and extending this to an orientation-
reversing isometry of these tangent circles. We denote by X or simply by X the asso-
ciated welded surface constructed using the welding defined by the prong-matching o .

Definition 5.7. A prong-matched twisted differential of type u compatible with T', or
just prong-matched twisted differential for short, is the datum (X, z,7, o) consisting
of a twisted differential (X, z,n) of type u, compatible with T" and a global prong-
matching o. A

An isomorphism between prong-matched twisted differentials is an isomorphism of
stable curves which identifies the forms on each component and is additionally required
to commute with all of the local prong-matchings.

We will occasionally need to consider non-holomorphic maps between prong-matched
twisted differentials, which we define as follows.

Definition 5.8. Given two prong-matched twisted differentials X; and X5 with as-
sociated welded surfaces X; and Xo, an almost-diffeomorphism f: X1 — Xo is a
continuous map which satisfies:

(1) The preimage of each horizontal node is either a horizontal node or a simple
closed curve disjoint from the nodes of X, and the restriction of f to each
component of X1\ f~H(N )}‘(2) is a diffeomorphism onto a component of Xo\ N )h(Q.

(2) The map I'(X;) — I'(X2) induces a degeneration of enhanced level graphs.

If f contracts no simple closed curves, we call it a diffeomorphism. A
For an equisingular family (7: X — B, Z,n) of twisted differentials we define a

family of prong-matchings to be a family of global weldings that is a prong-matching
in each fiber of 7.
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The prong rotation group associated with an enhanced level graph I' is the finite
group

(5.1) Pr= [] z/k.2.
ecAv

The number of prong-matchings for a given twisted differential is then equal to |Pp].
Moreover, for any given twisted differential (X,7n) the prong rotation group acts on
the set of prong-matchings as follows. An element (je)eepa» € Pr acts by composing
the local prong-matching at the node ¢ = g. with the bijection P;E — P;i defined by
turning counterclockwise j. times. Here, and for other similar notions depending on
graphs, we also write Py or Pr as shorthand for Pp,).

5.5. The Teichmiiller space of prong-matched twisted differentials. We now
define the notion of a marking of a prong-matched twisted differential and construct
the Teichmiiller space Q7™ (1) of marked prong-matched twisted differentials of type
(1, A) as a complex manifold. The notion of a marking is modeled on the definition
of a marked stable curve, except the target of the marking is the associated welded
surface.

Definition 5.9. A marking of a prong-matched twisted differential (X,z,m,0) is a
continuous map f: (3,s) = (X4, z) which satisfies:

(1) The preimage of every horizontal node is a simple closed curve on .

(2) If we denote by A" C ¥ the “horizontal” multicurve consisting of the preimage
of the set of horizontal nodes N% of X, then the restriction of f to ¥\ A" is an
orientation-preserving diffeomorphism X\ A" — X, \ NZ.

(3) The map f preserves the marked points, that is, fos = z.

We say that a marked prong-matched twisted differential (X, f,z,n,0) is of type A if A
is the enhanced multicurve obtained by pulling back the seams of X .

Two marked prong-matched twisted differentials are equivalent if there is an iso-
morphism of prong-matched twisted differentials that identifies the marking of their
associated welded surfaces up to isotopy rel s. A

Definition 5.10. The Teichmiiller space QTY™ (1) of marked prong-matched twisted
differentials of type (u,A) is the set of isomorphism classes of marked prong-matched
twisted differentials of type p with marking of type A. A

Given any contractible open set U C Q7 (u) together with a prong-matching o and
a marking f: ¥ — X, for some basepoint (X,n) € U, we may uniquely extend o to
a continuous family of prong-matchings over U. The corresponding family of welded
surfaces is then topologically trivial over U, so the marking f may be extended uniquely
(up to isotopy) to a continuous family of markings over the base U. This defines a lift
U — QTP (). We give QT (1) the structure of a complex manifold such that these
lifts are holomorphic local homeomorphisms. The forgetful map Q7™ (1) — QTa (1)
is then a holomorphic covering map of infinite degree.

Once we define families of marked prong-matched twisted differentials, in Proposi-
tion we will observe that Q77" (1) is the fine moduli space for families of marked
prong-matched twisted differentials, i.e. that every family of marked prong-matched
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twisted differentials can be obtained as a pullback from the family X — Q7™ () of
prong-matched twisted differentials over Q77" ().

5.6. Turning numbers on prong-matched twisted differentials. Given a prong-
matched twisted differential (X, z,w, ), we call a good arc on X, an arc v which is
transverse to the seams, disjoint from the horizontal nodes, and whose endpoints are
disjoint from the seams. More generally, given an extension o’ of the vertical welding o
to a global welding, the image of an arc « (satisfying the above constraints) on X
under the projection to X, will be called a generalized good arc.

The Gauss map G: S(X \ (zU Ny)) — S!, where SX denotes the tangent circle
bundle TX /R, is defined by

w(v)
= er
Given any welding o’ of X whose restriction to the vertical nodes is a prong-matching,
the Gauss map naturally extends to the tangent circle bundle of the blowup of X at
the welded nodes. This extension is compatible with the weldings and descends to a
Gauss map G from the tangent circle bundle of X,/ to S?.

We define the turning number 7(y) of any generalized good arc as 7(y) = g(b) —g(a),
where g: [a,b] — R is a continuous lift of G o, that is €2™9 = G o 7.

A good arc can alternatively thought of as a chain of arcs which may begin or
end vertical nodes, subject to the constraint that at any vertical node, incoming and
outgoing tangent vectors are identified by the prong matching. In these terms, the
turning number of a good arc is simply the sum of the turning numbers of its pieces.

Turning numbers are invariant under regular isotopies (meaning isotopies through
immersed curves) preserving the endpoints of v as well as the tangent vectors at these
endpoints.

Definition 5.11. Consider a prong-matched twisted differential X, a sequence of
prong-matched twisted differentials { X,, }.nen, and a sequence of almost-diffeomorphisms
hm: Xm — X. We say that the sequence {h,,} is asymptotically turning number pre-

serving if for any good arc v on X,, we have 7(h_ (7)) — 7(7) as m — oo. A

Proposition 5.12. Consider a twisted differential X with a prong-matching o and a
sequence of prong-matchings o,. Let hy, be an asymptotically turning number preserving
sequence of diffeomorphisms of prong-matched twisted differentials hp: Xo, — Xe-
Suppose that the h, ! converge Ct-uniformly on compact sets of X*\ z to the identity
map. Then for n sufficiently large, o = o, and moreover hy, is isotopic to the identity
map on X .

Proof. Fix a compact subsurface K which is a deformation retract of X*\ z, and let ~
be a curve joining two boundary components and crossing a single seam corresponding
to a node p. For n large, h,,;! is C'-close to the identity on K, so the endpoints of ~
and h,, () are close, as well as their corresponding tangent vectors. Since the turning
number of a curve is determined (mod Z) by its endpoints and tangent vectors, we
have 7(h,;*(y)) — 7(7) ~ 6, (mod Z), where the prong-matchings at p are related by
e?™%ng = ,. Since the h, are asymptotically turning number preserving, we have
0, — 0, so o, = o eventually, as the set of prong-matchings is discrete.
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Now take n large enough that o = o, and moreover, h, ! moves each point g of K
by a distance smaller than the injectivity radius of X*®\ z at ¢. We may then on K take
the nearest-point isotopy from h, ! to the identity, and extend it to an isotopy on X
from h,! to a map k which is the identity on K. Each seam is contained in an annular
component A of X, \ K, and to show that k is isotopic to the identity on A (rel 9A)
it suffices to show that k() is isotopic to v (rel dA), with ~ as before joining the two
boundary components. But the isotopy class of v (through immersed curves with the
endpoints and vectors fixed) is determined by the turning number of +, since the core
curve of A has nonzero turning number. As 7(h~'(y)) — 7(y) — 0, and this difference
of turning numbers is integral, the difference is eventually zero, so these curves are
isotopic. pis

Using these notions we can now give an alternative definition for the topology on
Q7™ (), closer to what we will use later for the augmented Teichmiiller space of flat
surfaces.

Definition 5.13. We say that a sequence X,, = (X, Zm, m, <X, Om, fm) of marked
prong-matched twisted differentials in Q77" (1) converges in the conformal topology to
X = (X,z,n,%,0,f) if and only if for any sufficiently large m there exists a diffeo-

morphism g,,: X,, — X and a sequence of positive numbers ¢,, converging to 0, such
that the following conditions hold:

(i) The function g,, is compatible with the markings in the sense that f is isotopic
t0 gm © fm rel marked points.
(ii) The function g,,! is conformal on the €,,-thick part (X, z),, .
(iii) The differentials (g, )«nm converge to n uniformly on compact sets of the €,,-thick
part of X.
(iv) The functions g, are asymptotically turning-number-preserving. A

Here (and in the sequel) we use the pushforward notation g, = (¢~!)* for the action
on differentials.

Remark 5.14. In order to verify that the g,, are asymptotically turning-number-
preserving, it suffices to choose a collection of arcs that contains, for every seam, an arc
that crosses only this seam and no others, and does so exactly once. Indeed, if turning
numbers converge for these arcs, then together with (ii) this forces the convergence of
the other turning numbers as well.

Proposition 5.15. The conformal topology on QT (1) and the topology defined in
Section as the covering space of QTx(u) agree.

Proof. Consider a sequence X,, — X as in the above definition. Let U C Q7x(u)
be a contractible neighborhood of the point corresponding to X, and let X — U be
the restriction of the universal curve over Q7 (u) to U. The prong-matching o of X
extends uniquely to a continuous family of prong-matchings over U. Choose a smooth
(in the sense of Definition trivialization h: X x U — X of this family whose
restriction to the fiber over X is the identity. This defines a lift U — Q7™ (p), and
our goal is to show that X,, is eventually in U.
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Restricting the marking maps to the complement of the seams defines a projection
m: QT (1) — QTa(p). Items (i)—(iii) above, together with Proposition ensures
that this projection is continuous, so that 7(X,,) — 7(X) in Q7a(n). The trivializa-

tion h then defines smooth maps hy,: Xo — (Xm) o, - The maps E;nl o g then satisfy
the hypotheses of Proposition which ensures g,, eventually lies in the lift of U.
Conversely, consider a sequence X, so that 7(X,,) — m(X) in QTx(n), with the
points corresponding to X, eventually in the lift of U constructed above. The desired
maps g, may be constructed by modifying (as in the proof of Theorem the maps h,,
constructed above so that they are conformal on an exhaustion. g

Using a continuous trivialization is obviously impossible for a degenerating family of
stable curves with varying topological types. For this reason, the conformal topology
on the augmented Teichmiiller space of flat surfaces defined in Section [7] will be more
involved.

6. TWIST GROUPS AND LEVEL ROTATION TORI

The goal of this section is to define the twist group Twp and the level rotation
torus T associated with an enhanced multicurve A. The twist group is generated by
appropriate combinations of Dehn twists, such that the quotient of some augmented
Teichmiiller space by the twist group is the flat geometric counterpart of the classical
Dehn space introduced in Section [3.2 This augmented Teichmiiller space of flat sur-
faces, to be defined in Section [7] requires a level-wise projectivization of the space of
prong-matched differentials, and we define here the appropriate actions of multiplica-
tive groups, the level rotation tori, for this projectivization. We will provide various
viewpoints on the level rotation torus that will be used in the definition of families of
model differentials and multi-scale differentials in the later sections.

6.1. The action of CX*(™ on the space of prong-matched differentials. Recall
from Section [5.2] that (C*)X*(Y) acts on QT () by simultaneously scaling forms at the
same level and preserving the fibers of the projection to 7x(u). However, the group
(C*)E*(™) does not act naturally on QTF"™ (), since a loop around the origin in C* in
general returns to the same differential with a different prong-matching and a different
marking. To get a continuous action on Q77" (u), we have to pass to the universal
cover CE*(N) of (C*)L*(MN) | which acts continuously on QTF™ (1) by level rotations, as
we now describe.

(1) On the level of forms, the tuple d = (d;)icre(n) € CL*(Y) acts through the

quotient (C*)E*(A) by multiplying the form at level i by e(d;) (recall that we
denote e(z) = exp(2my/—12)).

(2) On a prong-matching o we act by shifting the angles by the real parts of the d;,
i.e. for a twisted differential (X,7), a prong-matching o, and for d = (d;);cre(n)
we define

(6.1) d-(X,m,0) = (X{e(d)nlx, biersry {d- o)),
where for each vertical node ¢ we let

(6.2) d-og: thl — qu}rlt
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be the map o, precomposed and post-composed with rotations by the angle
—2m Re(dy(g-y/kq) and 27 Re(dy(q+)/kq), so that d - o4 remains to be a prong-
matching.
Alternatively, following Definition o4 can be regarded as an element of
T; X ®T; X in which case d - 04 = e((dyqt) — duq—))/kq)oq-
(3) On the marking f, the element d € CE*(A) acts by composition with a fractional
Dehn twist

(6.3) Fd: YU — Yd.g
which is the identity map outside a union of annular neighborhoods A, of the

corresponding seams.

6.2. Twist groups. The restriction of the action of CX*™) on Q7™ (1) to the sub-
group ZL'M) < CE*(M) acts by modifying the prong-matchings and markings, while
preserving the underlying differentials. The group ZX*(1) is called the level rotation
group. Considering only the action on prongs defines a homomorphism from the level

rotation group ZX"™ to the prong rotation group Py defined in (5.1)):
(6.4) o%: 2N 5 py n — (ng(e+) — Ny(e-y mod /ﬁ;e)eem .

This map allows us to introduce an important equivalence relation.

Definition 6.1. Two prong-matchings are called equivalent if there exists an element
of the level rotation group that transforms one into the other. A

The homomorphism ¢} fits into the following commutative diagram of group homo-
morphisms

Tw} e ker(¢}) —— ZL"®)
_ _ %
[ 3| 5|
Mods; ) — ker (1)) < - 7N — Py
P

that we now describe. The group ZA" acts on the space QTK’m(u) via edge rotations
by the fractional Dehn twists, i.e. the tuple (ne)ecar twists the prong-matching of the
edge e by Ke{ne/ke} (the remainder of n. mod ke) and precomposes the marking by
|ne/kKe| left Dehn twists around the curve corresponding to e. Taking the quotient
by the subgroup of full Dehn twists at such an edge e gives a map Z — Z/k.Z, and
doing this for all vertical edges induces a map t¢: ZA”" — P, onto the prong rotation

group. The kernel ker(3) is thus generated by (full) Dehn twists around A® and is
thus a subgroup of the mapping class group. We denote by ¢: ker(¢)) < Mod s, 4 this
inclusion.

There is a natural homomorphism 5;\ ZE* (D) 5 7ZAY defined by
(6.5) PA(n) = (eer) = Me(e)) pepo -

The composition of 57‘ followed by v recovers the homomorphism o ZE* () 5 Py de-
fined in (6.4). The kernel ker(4%) is in other words the subgroup of Z=*) whose action
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on Q7™ () fixes the underlying prong-matched twisted differentials, only changing the
markings. This defines a homomorphism 73 = ¢ 0 ¢} : ker(¢}) — Mod s, 4) sending n
to the product of Dehn twists,

(6.6) mh(n) = ] twie, with m, defined by @} (n) = (mekc)eenr

ecAv
where . is the seam corresponding to e, and tw,, is the Dehn twist around it. The
image of 73 is called the vertical A-twist group Twj C Mod(y4). Tracking the above
definitions, we conclude the following.

Proposition 6.2. The vertical A-twist group Tw} is a free abelian group of rank N.
Moreover, ker(ry) C ker(¢}) is isomorphic to Z, generated by 1 = (1,...,1), and
ker(¢}) = Twi @ ker(7}) = Tw} @ Z.

Proof. Since P, is a torsion group, the rank of ker(¢%) is equal to the rank of the
level rotation group ZX*™) which is N + 1. A tuple n lies in ker(7x) if and only if
Ny(e+) = My(e-) for every vertical edge e. Since the dual graph is connected, n is a
multiple of 1, so 1 generates ker(7y). The vector 1 is primitive in the level rotation
group, so it is also primitive in ker(¢}). Hence there is a splitting of the short exact
sequence

0 — Z — ker(¢}) — Twj — 0. i

We define the horizontal A-twist group to be the subgroup Tw?\ C Mod s s) generated
by Dehn twists around the horizontal curves A". We then define the A-twist group to
be the direct sum

Tway = Tw§ @ Twh.

Let (f;);—0..._n be the standard basis of C**(Y) = CN¥1 where f; = (077, 1,0V ).
In order to describe the above groups in simpler terms, we will also use the lower-
triangular basis (b;); 0. N defined as

bi= 3 fi= (07N,
k=—N

Then for v; € C, the element v;b; acts by simultaneously multiplying the forms on
all levels j < i by e(v;). In particular, voby simultaneously scales the form on every
irreducible component of X by e(vp).

Recall from Section that for every level ¢ € L(A) there is a two-level undegen-
eration dg;: A; ~ A that contracts the (vertical) edges of I'(A) strictly above level i
and the edges below or at level i. We denote by Twy’; = (dg;)«(Twjy,) C Twy the
corresponding subgroup of the vertical A-twist group. Note that Twj is the cyclic
group generated by the element (0,a;) with a; = lem, ke over all edges e connecting
the graph I's; to T'<;. Moreover, (dg;)«(0,a;) = (07%, a1 € ZE*(N) Tt follows that
Tw}’; is the cyclic subgroup of Twj generated by

(6.7) Tr(a;b;) = ||tw22€’i, with a; = lemke and me; = a;/ke,
e
e
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where the product and the lcm are taken for the set of vertical edges e connecting I's;
to I'<;. The collection of Tw}’; for all i € L(A) generates a subgroup of the twist group,
which we call the simple vertical A-twist group Twy’.

Lemma 6.3. The simple vertical A-twist group is a finite index subgroup of the vertical
twist group that can be written as the direct sum

(6.8) Twi = Twy; € Twy.
i€ L(A)

Proof. The vectors b; are linearly independent in the level rotation group ZL"®), and
moreover, by = (1,...,1) generates ker(7}). Combining with Proposition[6.2} it follows
immediately that the N simple twists 78 (a;b;) for i < 0 generate a rank N subgroup
of the vertical twist group TwY = ZV. wi

We denote by K, the finite quotient Ky = Twj/Tw}’. In general, the inclusion
in is strict; see Example We will see that this phenomenon is responsible
for the quotient singularities of our moduli space at the boundary; see also Section
Finally, we denote by Tw} = Tw?’ @ Twh the simple A-twist group.

The CE*(M_action restricts to the CEM)-action, which acts by scaling all but the top
level. All of the above objects have analogues using this restricted action, which we
denote by dropping the superscript o. For example, the restriction of ¢} to ZED) g
denoted by ¢p.

The homomorphisms ¢} and ¢, have the same image in the prong rotation group Ph.
Similarly 73 and 75 have the same image Twj in Mod s 5. Intuitively, the actions both

of CLW) and CL*() yield the same subgroups of the prong rotation group and of the
mapping class group, because the top-level factor C of CE*(Y) acts (in terms of the
lower-triangular basis) by simultaneously scaling the differentials at all levels by the
same factor, which has no effect on the markings or prong-matchings.

the full twist group wa{ﬂl. Recall that the full twist group was defined in Section|3.2|as
the group generated by Dehn twists around all curves of A, and is isomorphic to ZZ().

To prove the following proposition one checks that the quotient of Tvvf/{111 by Twy and

rot

by the group Twy" defined implicitly in the proposition are torsion free, and that Twy
and Tw'" have the same rank.

We remark that there is another characterization of the twist group as a subgr of

Proposition 6.4. Let (X,n,0,f) € QT{™(n). The twist group Twy is the subgroup
of TWE{lll that fizes the turning number of every good arc in X, that starts and ends at
the same level.

6.3. Level rotation tori. We define the level rotation torus Th to be the quotient
Ty = CFW /Twy =2 CEMN /ker(¢y). Similarly, the simple level rotation torus is the
quotient T'{ = cL)y Tw}". They will play a prominent role in defining families of
multi-scale differentials. The level rotation tori depend obviously only on the enhanced
level graph I'(A) rather than on the multicurves and we will thus write Tr and Ty
interchangeably.
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The following is an alternative characterization of the level rotation torus. Similarly
to the twist groups, the ambient CX®) and also (C*)X(Y) can be parameterized using
the standard and the triangular basis.

Proposition 6.5. The level rotation torus Tx s the connected component containing
the identity of the subgroup of

(6.9) (C)MY x (€PN = ((7is Pe))icr(n) ec B(A)

cut out by the set of equations

(6.10) Toe=) - Te(et)-1 = p:e

for all edges e, where the r; are the coordinates in the triangular basis.
There is an identification T = (CHN such that the quotient map TR — Ty 1s given
in coordinates by

Llet)—1
(6.11) (@) — (r5,pe) = q?i’ H q?i/ﬁe
i=L(e™)
with the numbers a; defined in ,

Proof. Consider first the projection of the subgroup of (C*)) x (C*)E(M) cut out by
Equations (not just its identity component) onto the (C*)“() factor. Since
each p. is determined by the r;’s up to roots of unity, this projection is an un-
ramified (possibly disconnected) cover with fiber equal to the prong rotation group
Pr=1],Z/kcZL.

Next we determine the connected component of the identity within this subgroup.
The fundamental group of (C*)) is equal to Z*™ | and an element n € Z*®) acts
by multiplying each coordinate p. by e((nge+) — nye-))/ke). Recalling Equation (6.4)
that defines ¢, we see that ker(¢, ) is precisely the set of elements n € ZE@) that act
by trivial monodromy. Thus the connected component of the identity is an unrami-
fied cover of (C*)XY) with deck transformation group being the image of monodromy,
i.e. ZMM) /ker(¢p). As by definition the level rotation torus T is a Galois cover of
((C*)L(A) with the same Galois group, it is equal to the connected component of the
identity. This shows the first statement of the claim, from which follows, since we
exhibit a map of tori of the same dimension and the right-hand side satisfies . gid

These constructions can also be regarded as covariant functors on the category of
ordered enhanced multicurves on (3, s). More precisely, a degeneration of enhanced
multicurves dg: A1 ~> As induces a monomorphism d/g\*: CAv — C»2. Using Proposi-
tion to think of twist groups as kernels of the map to the prong rotation group, up
to a Z-summand, we obtain a monomorphism dg, : Twa, < Twa,.

Lemma 6.6. A degeneration of enhanced multicurves dg: Ay ~ Ao induces an injective
homomorphism dg,: Tn, — Th,. In the coordinates the image s cut out by
equations p, = 1 for every edge e of As that is contracted in Ay, and respectively r; = 1
for every level i € L(Ag) such that the images of i and i + 1 are the same in L(A1).



THE MODULI SPACE OF MULTI-SCALE DIFFERENTIALS 49

Proof. The description of the image is obvious. For injectivity we have to show that
an element in Tw,, in the image of dg, already belongs to Twp,. This is obvious from
the description of the twist group in Proposition (6.2 pi

We will also need the rank N+1 extended level rotation torus Ty = CE* W) /(Tw{ ©Z),
as well as its simple variant T* = CE*N) /(Tw @ Z).

The level rotation torus T acts on a prong-matched twisted differential (X, 7, o),
where o is a prong-matching, via

(6.12) (ri, pe) * (X, (@), (o)) = <X, (ri.m-1m0)) 5 (Pe *%))

where p, * o, is the prong-matching P;ri — P;}jt at the node ¢ corresponding to e given
by oe post-composed with the rotation by arg(p.). Note that this is the exponential
version of the action described in item (2) of Section If X is moreover marked
by f we define (p.) * f to be the marking of (r;,pe) * (X, (n)), (0c)) obtained by
post-composing f with a fractional Dehn twist of angle arg(p.) on each vertical edge e.
This marking is well-defined up to an element in Twy only.

Analogously, the simple level rotation torus acts on the set of prong-matched twisted
differentials. We can also assume that these differentials are marked by f, defined
modulo the action of the simple twist group. Using the map T\ — T given in Propo-
sition the action * defined in Equation is given in the triangular basis by

(613) t*(X> (n(i))?(ae)vf) = (Xv (tfl tci_lln(i))v(fe*o—e)7(f€)*f)a
_ yrlleT)—1 ,ai/Kke . . .
where fo =[] t. with the integers a; defined in (6.7)). For later use, we recast

i=l(e”) "t
Proposition [6.5] in terms of this action.

Corollary 6.7. FEquivalence classes of prong-matched twisted differentials up to the
action (6.12)) of the level rotation torus are in bijection with connected components of
the subgroup of (C*)XM) x (C*EW) cut out by Equation (6.10).

6.4. The covering viewpoint. So far we have analyzed the group CX®) acting on
Q7™ (p) and defined twist groups as finite index subgroups of ZXW) . In what fol-
lows we will use compactifications of quotients of Q7™ (1) by twist groups. We can
alternatively construct them as finite covers of Q7 (u), as we explain now.

The triangular basis provides an identification of T§ with (C*)*(A) and we denote
by T3 ; the i-th factor of this torus. Recall the direct sum expression of Tw}’ in .
We define the level-wise ramification groups to be H; = Zi/TWf{‘ji, where Z; is the i-th
factor of ZXA) < CLMN, By definition, we have the cardinality |H;| = a; (defined
in (6.7)) and the identification H := @cpa)Hi = Ker(Ty — (C*)EN)), On the other
hand, we may define the (full) ramification group associated with an enhanced level
graph A to be G := Ker(T) — (C*)XY). By definition we have an exact sequence of
finite abelian groups

(6.14) 0— Kp=Twi/Twy’ - H—G — 0.
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Note that the map H; — G is injective for every i € L(A), since an element in H;
and its image in G act by the same fractional Dehn twists the seams. The situation is
summarized by the following diagram:

O/ TR g

/H QT (1) /Twa

QTA (1) /G

Of course, all the maps in the diagram are unramified covers, but they will become
ramified with local ramification groups H; at the appropriate boundary divisors, once
we consider the compactifications.

Example 6.8. (The twist group quotient Kx can be non-trivial.) Consider the en-
hanced level graphs I'1 and I's of our running example in Section In both cases,
the level-wise undegenerations dg_; and dg_, as introduced in Section are both
equal to the graph with two vertices connected by two edges, labeled by 1 and 3 re-
spectively.

First consider the enhanced level graph I'; on the left of Figure [I Then the map

¢, ZFWN =73 P 2 Z/3Z X L/3L < Z)Z

is given by
(no,n—1,n-2) = (ng —n—1,M-1 —nN_2,M0 — N_2)
in the standard basis. Then ker(¢} ) is the subgroup of 73 consisting of elements of
the form (m,m + 3ki, m + 3kg) for m, k1, ko € Z, and hence Tw} = Tw, is generated
by the vectors (0,3,0) and (0,0, 3). The simple Aj-twist group Tw7y" is the direct sum
Twy, —1 ® Twi| _, where Tw}] ; = (dg;)«(Twj, ,). In this case Tw}] _; is generated
by (0,3,3) and Tw}’ _, is generated by (0,0, 3), hence Tw}) coincides with Twj . The
level rotation torus T}, is an unramified cover of (C*)? of degree 9 with Galois group
equal to the prong rotation group Pr,. The action of the level rotation group by ¢},
has a unique orbit, hence the nine prong-matchings are all equivalent.
Next consider the enhanced level graph I's on the right of Figure [II Then we have

PR, ZF M) =73 P > 77 % )7 x 737

given by
(TL(), n_i, n_g) — (n() —MN_1,N—_1 —N_2,N09 — TL_Q)

in the standard basis. Then ker(¢3},) is the subgroup of Z3 consisting of elements of
the form (m,m + k1, m + 3kz) for m, ki, ko € Z, and hence Tw}, = Twy, is generated
by the vectors (0,1,0) and (0,0, 3). The simple Ap-twist group Tw7y’, is the direct sum
Twy, 1 ®Twy, _5 where Twy, _; is generated by (0,3, 3) and Tw}’, _, is generated by
(0,0,3), hence Tw}’, is a subgroup of index 3 in Twj,. The level rotation torus T}, is
an unramified cover of (C*)3 of degree 3 with Galois group equal to the prong rotation
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group Pr,. The action of the level rotation group has a unique orbit, hence the three
prong-matchings are all equivalent.

In both cases the local ramification groups are H; = Z/3Z for i = —1,—2, and the
group G coincides with the prong rotation group in each case. However, in the first
case H = @, while in the second case H — G has kernel K), = Z/3. In particular,
in the second case the quotient map of a smooth space by Ky, will produce quotient
singularities in our compactification, which will be illustrated in Example

In order to conclude this section we give a cautionary example.

Example 6.9. (The number of non-equivalent prong-matchings may decrease under
degenerations.) We consider the degeneration of enhanced level graphs as shown in
Figure 3l The first graph is a two-level graph with two edges e; and es between two
vertices. Moreover we set k1 = ko = 2. We degenerate this graph to a three-level
triangle with three edges e, es and eg labeled as in Figure [l The edges are labeled
by k1 = ko =2 and k3 = 1.

dg_4
€1
€3

F1GURE 3. A degeneration that decreases the number of prong-matchings.

Clearly the action of the level rotation group of Equation has two orbits in the
first case. On the other hand one can check that in the second case it has only one orbit.
Hence this degeneration decreases the number of non-equivalent prong-matchings from
two to one.

6.5. The level rotation torus closure. The partial closures of tori we define here
will give local models of the toroidal part of our compactification. Recall that the level
rotation torus T is by Proposition naturally embedded in (C*)N) x (C*)EW) | where
it is the connected component of the identity of the torus cut out by Equation .
We define the level rotation torus closure T  to be the closure of this identity component
in CEW) x CcPW),

On the other hand, the simple level rotation torus 7} is naturally identified with
(CEW) | with closure Th = CHY). The group K) = Twy/Twj introduced in the
previous section acts on Ty = CL®) /Twij. Since each element in K acts diagonally
by a tuple of roots of unity, this action extends to an action of K on Tf\. The
quotient will be the local model for the toroidal part of the compactification that we
will construct. Our goal here is to relate this viewpoint with the closure of the level
rotation torus.

Proposition 6.10. The projection map p: T — Ty given by Equation (6.11) extends
to T'\ and descends to an isomorphism p: T\/Kx — Tx to the normalization of the
level rotation torus closure.
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Proof. The map p extends to a map ps: Ti — T'5 since it is given explicitly by mono-
mials, in the coordinates used for taking the closure. Since K acts on Tf\ and since p is
the quotient by K, the map po factors through the quotient to give ps: Ti JKp — Ty
Since a quotient of CLM) by a finite group is normal, the map ps factors through the nor-
malization map p. The map p is finite and birational since on the open set T{ /K = T}.
Since the target is normal, it follows that the map p is an isomorphism (see [Stal§,
Lemma 28.52.8]). it

Example 6.11. (In general, Ty is not normal.) This can be seen from the example of
a graph I' with two vertices on two levels, connected by two edges e; and e with k1 = 2
and k2 = 3. Then T has a cusp, locally modeled on C[f1, fa,s]/{(f? — s, f3 — s). Its
normalization is C[t], with the normalization map given by f; = 3 and fo = 2. This
change of coordinates also describes D here, since Twy = Twj} in this example.

7. AUGMENTED TEICHMULLER SPACE OF MARKED MULTI-SCALE DIFFERENTIALS

In this section, we formally introduce the notion of a multi-scale differential, as well
as markings. We introduce the augmented Teichmiiller space, parameterizing equiva-
lence classes of marked multi-scale differentials, define its topology, and establish basic
topological properties. The main results are the Hausdorff property of quotients of aug-
mented Teichmiiller space by any subgroup of the mapping class group in Theorem [7.7]
and the compactness of the moduli space in Theorem [7.12]

7.1. Multi-scale differentials and markings. The notation we developed so far
enables us to make the Definition [I.I] of multi-scale differentials precise. The notion
of general families of multi-scale differentials is not needed for the construction of
augmented Teichmiiller space and Dehn space and will be given in Section

Definition 7.1. Given an enhanced level graph I', a multi-scale differential of type
(1, T') consists of the following data:

(1) A pointed stable curve (X, z),
(2) an identification of the dual graph I'x with T,
(3) a collection of differentials w = (w(;))icre(r) that give (X, z) the structure of a
twisted differential of type (u, ') compatible with I', and
(4) a global prong matching o = (0¢)cep(r);
where (w, o) is defined to be equivalent to (w’, o) if and only if there exists an element
of the level rotation torus Tt that sends (w, o) to (w’, o’) under the action (6.12). A

Given an enhanced multicurve A C ¥\ s, a marked multi-scale differential of type
(1, A) is the data of (w, o, f), where f is a marking (in the sense of Definition of
the prong-matched twisted differential defined by (w, o), considered up to the action
of C¥M) | as in Section

Note that, since the vertical twist group Tw4 € CE) fixes (w, o), a marked multi-
scale differential may alternatively be defined as a Tp-equivalence class of the data
(w,o,[f]), where [f] is the equivalence class of markings up to the action of Twy.
More generally, we will call this a G-marked multi-scale differential if the marking is
taken up to the action of a subgroup G of the mapping class group.
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Projectivized multi-scale differentials and their marked analogues are defined simi-
larly, replacing 1t with 7.

7.2. Augmented Teichmiiller space of multi-scale differentials as a set. As a
first step towards defining the augmented Teichmiiller space of multi-scale differentials
of type u, we introduce it as a set.

Definition 7.2. The (projectivized) augmented Teichmiiller space of multi-scale differ-
entials of type p is the set of equivalence classes of (projec‘ilvized)marked multi-scale
differentials of type i, which we denote by Q7 (5, 5)(1) or PQT (5 5)(11) respectively. A

Given an enhanced multicurve A C ¥\ s, we define the (projectivized) A-boundary
stratum to be the set By C QT (x5 (1) or PQBy C PQT (5 5)(1) of (projectivized)
marked multi-scale differentials of type (u,A). Note that the special case QBy =
Q%pm(,u) = QT(x6)(p) is the Teichmiiller space of marked flat surfaces of type p.
These strata have the structure of complex manifolds, as they are naturally identified
with the quotients Q7™ (u)/CHM) or QTP () /CE* ™) of the Teichmiiller spaces of
prong-matched twisted differentials of the corresponding type. The augmented Teich-
miiller spaces are the disjoint union of these strata over the set of enhanced multi-
curves A C X\ s:

(7.1) OT (so(w) = [[OBr  and POT (55(u) = [[POBs.
A A

The mapping class group Mod,,,, acts on QT (s 5)(11) and PQT (s, 5)(1) by pre-compo-
sition of the marking, that is, given g € Mod,,, an equivalence class of markings
f: ¥ — X, is replaced with [f o g™ !]

Proposition 7.3. The subgroup of Modg ,, fizing the boundary stratum QBy pointwise
is exactly the twist group Twy. Moreover, if A is a degeneration of A, then the twist
group Twp fizes the boundary stratum QBx: pointwise. Both statements hold as well
for the projectivizations.

Proof. The first statement follows directly from the definition of the equivalence relation
on markings. For the second statement, if A’ is a degeneration of A, then Twp C Twy;.
Hence Twy fixes Q2B pointwise. pid

7.3. Augmented Teichmiiller space as a topological space. We now give both
augmented Teichmiiller spaces QT (s (1) and PQT (5 4 (1) a topology. We give a
sequential definition of the topology first (see e.g. [BJ06| Section 1.8.9] for a precise
discussion of defining a topology in this way). In the proofs below we also give a
definition by specifying a basis of the topology. Unless stated otherwise, w in the tuple
(X,z,w, <%, 0, f) refers to a chosen representative of the equivalence class. We also
write X, as shorthand for (X,,)s,,.

Definition 7.4. A sequence (Xn, Zn,Wn, <n, On, fn) € PQB,, converges to a point
(X, z,w,%,0, f) € PABy CPQT (5 5)(11), if there exist representatives (that we denote
with the same symbols) in QT (u) and QT (1), a sequence of positive numbers e,

converging to 0, and a sequence of vectors d,, = {dy,i}icre(n) € CL*(Y) such that the
following conditions hold, where we denote ¢, ; = e(d,;):
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(1) For sufficiently large n there is an undegeneration of enhanced multicurves (8,,, D?)
with d,,: L*(A) — L*(A,) (see Definition [5.1)).

(2) For sufficiently large n there exists an almost-diffeomorphism g,: X4, .0, — Xo
that is compatible with the markings (in the sense that g, o (d, - f,) is isotopic to f
rel marked points) and such that g, ! is conformal on the e,-thick part (X, z).,.

(3) The restriction of ¢y i(gn)«(wn) to the e,-thick part of the level ¢ subsurface of
(X, z) converges uniformly on compact sets to W)

(4) For any i,j € L*(A) with ¢ > j, and any subsequence along which 6, (i) = d,(j),
we have

im 1%l

n—0o0 |C’I'L,j| B

(5) The almost-diffeomorphisms g,, are asymptotically turning number preserving.

For convergence in Q'T(g’s)(,u), we require moreover that ¢, o = 1 for the rescaling
function corresponding to the top level of A. A

Note that the notion of convergence does not depend on the choice of representative
of X in Q7™ () since if X' = d’ - X is another representative, then using d' + d
certifies convergence to X’. Note moreover, that in item (5) we could as well require
the difference of turning numbers to tend to 0 for a fixed collection of arcs dual to the
collection of seams, since for any fixed arc « disjoint from the seams, 7(g, *(7)) — 7(7),
as g, converges uniformly C! to the identity on .

This topology can be given equivalently by a basis of open sets which we now describe.
For a given marked multi-scale differential X, let V¢(X) be the set of marked multi-scale
differentials (Xo, 20, wo, <0, @0, fo) such that there exists d = {d;};cre(n) € CL*®) and

(i) a degeneration (Ag, <o) ~ (A, <) given by a map d: L(A) — L(Ao) and a subset

of Nk

(ii) an almost-diffeomorphism g: X 4.5, — X with g~
of X and compatible with the markings,

(iii) letting ¢; = e(d;), the bound |[|e;g.wy (i) — W(iylloo < € holds on the e-thick part
of X,

(iv) for any 4,5 € L(A) with ¢ > j and 0(i) = (j), we have |¢;/c;| <€,

(v) for each good arc vy on X,

I conformal on the e-thick part

IT(g7 o) —T(V)| < e

Proposition 7.5. The sets Ve(X) are a basis for a topology on (277’(2,3)(#), and the
convergent sequences in this topology agree with the notion of convergence of Defini-

tion [74).

Note that the topology defined by this basis is apparently stronger than that defined
by Definition because (v) requires uniform control on turning numbers of all good
arcs. In the next lemma we show that one can uniformly control the change in turning
numbers of all good arcs by restricting to a finite collection of arcs dual to the seams.
For this, fix a collection {71, ..., } of good arcs on a multi-scale differential X which
are dual to the seams of X, meaning that to each seam corresponds exactly one ~;
which crosses that seam once and is disjoint from the others. We define V/(X) to be
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the set of marked multi-scale differentials which satisfy conditions (i)-(iv) above as well
as

(vi) for each arc v;, we have |7(g7 o) — 7(%)| < e

Lemma 7.6. Consider X € Q'T'(g,s) (1) with a collection of arcs dual to its vertical
seams as above. Then for any € > 0, there is a 6 > 0 such that V§(X) C V(X).

Proof. We first claim that there is a 0; > 0 such that for any g € Vs, (X) for closed
immersed loop 7 in (X, z). (where € is small enough that (X, z)¢ is the complement of
neighborhoods of the punctures and nodes), g preserves the turning number of . To see
this, choose a finite set of immersed curves {«;} which form a basis of Hy (T} (X, 2); Z).
Choose §; small enough that ¢ is C'-close-enough to the identity that it changes the
turning number of each a; by at most 1/2. Since closed curves have integral turning
numbers, they must be fixed. Since the «; are a basis of homology, it follows that all
closed curves must be fixed.

Now let v be any good arc which crosses exactly one seam, and let v; be the chosen
arc which crosses the same seam. We may take arcs (1,2 in (X, z). which have
bounded length (in terms of the genus of X) and join the endpoints of v to those
of 7, so that v = 1 + v + B2 is a good arc which has the same endpoints as ;.
They then differ by closed curves in the thick part, so have the same turning number.
Take o small enough that g changes the turning number of the 5; by at most €/2.
Taking 0 < max(e/2,d1,0d2) then ensures that g changes the turning number of v by at
most e. pid

Proof of Proposition 7.5 Suppose that Xy € V.(X). To check that the sets defined
above are a basis of topology we want to find p such that V,(Xy) C Ve(X). Suppose
that X7 € V,(Xo). Let go: Xodyoo — Xo and g1: X1.d,.0, — Xo0,00 Pe the almost-
diffeomorphisms given by the definitions of V(X)) and V,(Xy). We define d = d; + dy,
denote the rescaling function by ¢y = e(dy) and ¢; = e(d;), and set ¢ = e(dy + d).

First we remark that item (i) is automatically satisfied in V¢(X). For item (ii),
choose p small enough such that the p-thick part of Xy contains the gg-image of the
e-thick part of X, and let g = gopo Fg, 0 g1 © Fgolz X1dy0, = Xo. Then g clearly
satisfies (ii).

For (iii), to simplify notation and illustrate the main idea, we treat the case that X;
is smooth and that X and Xy have the same level graph with two levels. Moreover,
we assume that all rescaling function on top level are equal to one and we denote the
rescaling function on lower level by c¢g, ¢1 and ¢ = ¢pc;. The general case follows by the
same idea. Under these assumptions, let w™ and w, be differentials on the lower level
of X and Xy respectively. By assumption, the norm € = ||co(go)«wy — w™ ||« satisfies
¢ < e. We estimate the sup-norms on the lower level subsurface of the e-thick part
of X as follows:

l[cgswn — w ™ [|oo < [le(go)«(91)xw1 — co(go)wy lloo + l[co(g0)swy — W™ [|oo;
co|l(90)+(c1(g1)sw1 — wy )|loo + €
< ¢gCyp+¢€.

VAN
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Here C,, is the supremum of the norm of the derivative Dgg, with respect to the
hyperbolic metrics, on the e-thick part. We now take p small enough so that cy Cyyp +
¢/ < e. This shows that item (iii) holds for X; € V.(X).

Item (iv) follows if we moreover choose p such that p < ecy. Finally, item (v) follows
from the triangle inequality. Consequently, the V;(X) are indeed a basis of a topology.

It is obvious that a sequence which converges in the topology defined by this basis
also converges in the sense of Definition Conversely, given any V.(X) choose
curves {7;} and ¢ such that Vj(X) C V.(X). Any sequence converging to X in the
sense of Definition [7.4]is then eventually in Vi(X) C V(X). i

Theorem 7.7. For any subgroup G < Modg ,, the quotient Q’T(Z,s)(/i)/G and its
projectivized version ]P’Q?(gs) (1)/G are Hausdorff topological spaces.

Proof. Suppose that (Xy, zn, Wn, <n, On, fn) is a sequence of marked multi-scale dif-
ferentials which converges to (X, z,w, <, 0, f), and suppose moreover we have a se-
quence {7, } in G so that (X, Zn, Wn, <n, On, faY, L) converges to (X', 2/, ', </, o', f').
Let g,, and ¢/, be the respective sequences of maps exhibiting this convergence, and let
hp=ghogt: Xo — Yﬁ,, (strictly speaking, h,, may be only defined on an exhaustion
of the complement of the horizontal nodes).

Forgetting all but the underlying pointed stable curves, our topology gives the
conformal topology on the Deligne-Mumford compactification, which is a Hausdorff
space, so the maps h, must converge uniformly on compact sets to an isomorphism
h: (X,z) — (X', 2') of pointed stable curves. We next show that < and <’ are the
same (weak) full order. Suppose, for contradiction, that there exist irreducible compo-
nents X, and X, of X such that X, = X, but X, <’ X,. Since <, for n sufficiently
large, is an undegeneration of both < and <’, this is possible only if X, <, X,. We
denote ¢ and ¢ some level functions inducing the full orders < and =<', respectively.
The specific choices of these level functions are not important, as we will only use
them to match notation. Then condition (3) of convergence of sequences implies that
l[en,e(u) (gn)swn — Wulloo < €n and ||c%yg,(u)(gg)*wn — wl|loo < €n, where w, is the re-
striction of w to the ¢,-thick part of X,. Pulling back the second inequality by h
and choosing €, small enough, these conditions imply that the ratios ¢, o) /e ()
are bounded away from zero and infinity. Similarly, the same holds for ¢, /¢, o)
However, condition (4) of convergence implies that [c, ¢(.)/Cpew)| — 0, while on the
other hand the hypothesis X, <’ X, implies that (after possibly passing to a subse-
quence) ¢/, () /e () is bounded away from zero. Combining these inequalities yields
a contradiction.

To verify that the form w is equal to h*w’, we use that for every level ¢ both inequal-
ities [|cn,i(gn)«(wn) — Wi lloo < €n and [le;, ;(gn)«(wn) — h*wzi)Hoo < Cep, hold for some
constant C' that depends on the map h but not on n. We multiply the second inequality
by ¢ni/ c;m, use that this quantity is bounded away from zero and infinity, and thus
deduce that ||cn,i/c], ; - h*wzi) — w(i)lloo tends to zero on the €,-thick part of X(;. This
implies the convergence of the sequence ¢, ;/ c;w- for each 7, and also the equivalence as
projectivized differentials, as desired.
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sition h*e' = o, and moreover the induced map h: Xy, — X :,/ is eventually
isotopic to hy,. We have hy, f ~ f’v, for each n, so eventually hf ~ f’v,, so h exhibits
a G-equivalence of X and X', as desired. pi

Finallil the maps h,, are asymptotically turning number preserving, so by Propo-

Our next goal is to show that 97(273) (1) is a second countable topological space
with countable basis {V¢(X,,)}, where € € Q and {X,,} is a dense sequence.

Lemma 7.8. Let X,, — X be a convergent sequence in a single stratum of 97-(273) ().
For any € > 0, the neighborhoods V.(X,,) eventually contain X, and V(X)) C Vi (X).

Proof. Let g,: X, — X, be a sequence of maps which exhibit convergence of this
sequence as in Deﬁnition We wish to show that eventually g, ! exhibits X € V.(X,,).
Since X and X, lie in the same stratum, it suffices to check items (ii), (iii), and (v) in
the definition of V,(X).

Let N be large enough so that ey < e. By Lemma the g, ! converge uniformly
to the identity as maps to the universal curve. Since the vertical hyperbolic metric
is continuous, the image of (X, 2), under g, ' of eventually contains (X, z,), and
moreover .

Cin < HDQ;IHEN,OO < Cyn
(meaning the sup-norm on the ey-thick part) for C,, \, 1, where the norm is defined
via the Poincaré metrics.

As a consequence the map g, is eventually defined on (X, z,)., and moreover on
(Xn7 zn)e

|wn = grwlle,c0 < Cnll(gn)swn — wlley,00 = 0,
80 ||wn — grwlleo < € eventually.

Finally, g, changes turning numbers of good arcs as much as g, ! does, so eventu-
ally g, changes turning numbers of good arcs by at most €, so X € V.(X,,).

Now, suppose X’ € Vi(X,,) is exhibited by ¢/,: X., — Xn. We wish to show that
gn © g, eventually exhibits X’ € V4.(X). The composition (g, o ¢/,)~! is eventually

conformal on (X, 2z).,, and moreover

1(gn © gn)sw" = @lley 00 < Cnll(gn)sw’ — grw
< Call(gn)+w" — walle,oo + Cnllwn — grwlle,0c
< 2CHe < 4e. pi

€,00

Proposition 7.9. The augmented Teichmiiller space 977‘(2’3) () is second countable.

Proof. Each stratum B, is a complex manifold and thus separable, so 977'(27 s) (1) is
separable as well as it is a countable union of these strata. Let {X,} be a sequence
whose intersection with each stratum is dense. We claim that the family F = {V.(X,,) :
e € Q}, is a basis of the topology on 97'(2,3) ().

Consider any X € Q2Bj and € > 0. Take any subsequence X,,, — X within Q2B and
rational € < ¢/4. By the previous Lemma, eventually X € Vo (X,,) C Ve(X), so F is
a countable basis, as desired. pit
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We finish this section with the following Proposition which allows us to relax some
of the conditions of Definition [7.4l

Proposition 7.10. For convergence in Definition it suffices that the maps gm
satisfy all of the conditions listed, with the following modifications:

(2°) The g, are conformal on an open set U which intersects each irreducible com-
ponent of X, but may be only K,-quasiconformal on the rest of the e,-thick
part, where K, — 1.

(3°) These forms converge in the weak locally L? topology.

(5°) Convergence of turning numbers is only required for simple arcs whose endpoints

lie in U.

Proof. Apply Lemma to produce a sequence k,: X — X of K,-quasiconformal
maps, converging uniformly to the identity, such that g, = g, o k! is conformal and
the restriction of k, to U is holomorphic. We claim that these maps g, satisfy all of
the requirements of Definition [7.4

The uniform convergence of forms required by (3) follows from Proposition
For (6), note that Lemma allows us to consider only turning numbers of simple
arcs whose endpoints are contained in U. Since the maps k,, converge uniformly, their
derivatives converge as well on U. The turning number of a simple arc can be computed
using only its homotopy class (rel endpoints) and its tangent vectors at the endpoints. It
follows that (5’) implies that the g, are asymptotically turning number preserving.

7.4. The moduli space of multi-scale differentials as a topological space. We
are now in a position to define our central moduli space as a topological space and
establish its main topological properties.

Definition 7.11. The moduli space of multi-scale differentials is the quotient space
EMygn(p) = QT (x,5)(11)/ Mody ,, and its projectivization is the quotient PEM (1) =
PQT (5.5 (1r)/ Mody , = EMg (1) /C*. A

It follows immediately from Theorem [7.7] and Proposition [7.9] that these spaces are
Hausdorff and second countable.

Theorem 7.12. The moduli space PEMg,,(11) of projectivized multi-scale differentials
of type w is compact.

Proof. In a second countable space, compactness is equivalent to sequential compact-
ness (see [BB02, Proposition 1.6.23]), so it suffices to establish sequential compactness.

Let {(Xn, 2n, Wn, <n, 0n, fn)} be a sequence in IF’Q’T’(ES) (). We wish to exhibit a
convergent subsequence, after pre-composing the markings f,, by a sequence in Modg .

Since ﬂgyn is compact, after pre-composing the markings, we can pass to a subse-
quence so that {(Xy, zn, fn)} converges in T4, to a marked surface (X, z, f). Since
there are finitely many enhanced multicurves up to the action of Mod, ,, we may pass
to a subsequence so that these surfaces lie in a single stratum QB .

By definition of convergence in T, ., there exists an exhaustion K, of X*\ z, and
conformal maps h,: K,, — X,, compatible with the markings. Transporting the orders
on X,, to X by h,, induces a full order on X that we denote by <.
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Now we use the sizes of the forms w,, to refine the order <. Choose ¢ small enough
that for each irreducible component Y of X, the e-thick part of ¥ minus the marked
points is connected. Let A,(Y) be the size of the corresponding component of X,,, in
the sense of Equation . Passing to a subsequence, we may assume for any pair
of components, the ratios A, (Y)/A,(Y’) converge in the extended real line. We then
define an order < on the components of X so that Y <Y’ when Y <y Y, and moreover
if Y <o Y, we define Y < Y if A, (Y)/Au(Y’) 4 o0o. Theorem then implies that
we may pass to a subsequence so that on each component Y of X the rescaled forms
{h}w, /A (Y)} converges to some form w.

For each level ¢ of < we pick a component Y; at that level and define ¢, ; = A(Y;)~ L
Then the sequence of differentials {c, ;h;wy} converges to some differential w(;) on the
i-th level X;) of X with respect to <. We define w on X to be the collection of those
differentials w(;). We have to prove that w is a twisted differential compatible with the
order <. The crucial conditions (matching orders, matching residues and GRC) can be
verified by w-path integrals or turning numbers (compare Section 4 in [BCGGM18]).
Hence these conditions carry over from the corresponding integrals on the sequence of
surfaces X,,, using the convergence of one-forms and using (for the GRC) the fact that
the rescaling functions ¢, ; depend on the levels only.

For each vertical node ¢ choose a preliminary prong-matching o,, forming together a
global prong-matching &, and choose a preliminary almost-diffeomorphism ¢,,: X g5 —
X,, which is isotopic to h,' on the complement of the seams. Conditions (1)—(4)
of Definition are clearly satisfied for these g, and d,,; = %m.cn,i, and it remains to
show that the prong-matchings and g may be modified so that the g, are asymptotically
turning number preserving.

Now choose a collection of good arcs 7;, dual to the seams of Xz as in the Re-
mark . By convergence of the forms, 7(g, (Vi) — 7(7:) (mod Z). We first modify
each prong-matching so that these turning numbers converge mod k;, and then mod-
ify g by an appropriate twist around each seam so that the turning numbers converge.
By Remark convergence of the turning numbers of these arcs ensure the g, are
asymptotically turning number preserving. g

8. THE MODEL DOMAIN

In this section, we construct the model domain MD,, an orbifold which will serve
as a local model for the boundary of the moduli space M, ,,(11). The model domain
is constructed as the finite quotient orbifold of the simple model domain Wi, a
complex manifold which is in turn constructed as a bundle over a product of Teich-
miiller spaces. We moreover construct a family of differentials over the model domain
we will call the universal family of model differentials. These objects will be used
in Section where we provide Emg,n(,u) with an atlas of “plumbing maps”, which
are defined on open subsets of the model domain by a plumbing construction on the
universal family. The families of model differentials over arbitrary bases will be defined
by combining the definition of families of multi-scale differentials in Section [11jand the
families of markings in Section We establish that the family over the model domain
is indeed universal in Section 3.1l
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8.1. Construction of the model domain. As a first step in the construction, we
define

(8.1) MDY = PQTY"(n)/Twy and MDp = PQTP™(u)/Twi,

whose points represent prong-matched twisted differentials defined up to rescaling all
components simultaneously, together with a marking defined up to the action of Tw}’
or Twj, respectively. Recall from Lemma that Tw}” is a finite index subgroup of
Twj. The finite quotient group Ky = Tw} /Tw}’ defined in Equation thus acts
on MD?j} with quotient MDjy.

The model domains M D, and M D), are constructed informally by adding a bound-
ary consisting of differentials which are allowed to be identically zero on some set of
levels below the top level.

More precisely, the simple level rotation torus 75 = CHY /Tw? = (C*)LM) acts
freely on MD?, via the action defined in (6.13). Recall from Section that the
projectivized A-boundary stratum PQB, is the quotient M D3 /TR, so MD3 is a prin-
cipal (C*)XM)-bundle over PQBy. We define MDY} as the associated C*M-bundle
over PQB,, where (C*)L®) acts on CEM by coordinate-wise multiplication in the
usual way.

As the K-action on M D7} commutes with the T'5-action, K acts on Wi and we
define (as a complex orbifold)

MDy = MDZ/KA.

We now provide notation to describe the boundary OM D% = MDj \ MD% of the
simple model domain. The boundary OMD?} is a normal crossing divisor given by
D = Uera)Di in MDD, where D is fiber-wise defined by {t; = 0} € CXN). There is
a stratification

(8.2) MD, = [[ MDY

JCL(A)
indexed by the vertical undegenerations of the multicurve A or, equivalently, by the
subsets J = {j1,...,Jm} of L(A) (see Section for the correspondence), where we
define Dy = D;, N---ND;,,, and ./\/lDf\’AJ is defined by

MDY = Dy\ | Dy
J2J

In these terms, the space M D7 corresponds to the subset J = (), or equivalently to the
degeneration dg: e ~» A from the trivial graph to A. Moreover, D; corresponds to the
subset J = {i}, or equivalently to the two-level (un)degeneration dg;: A; ~ A of A.

The model domain has an obvious non-projectivized variant. The quotient QM D} =
QTP™ () /Tw is a (C)XM-bundle over 2By. We define QMD]}, as the associated
CLM_bundle, and let QMDy = QMD} /K.

The smoothness of PQ2B, and this description imply immediately the following result.

Proposition 8.1. The simple model domain MDf\ 1s smooth, while M Dy has only
finite quotient singularities.
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Example 8.2. (A model domain with finite quotient singularities) To see that finite
quotient singularities can actually occur in this way, we analyze the second case of
our running example in Section There, WZQ is locally the product of PQB,,
with C2, and the two boundary divisors are the coordinate axes. The generators of
the level-wise ramification groups Hy and Hs (see Section and Example act
on the C? factor by (21, 22) +— ({321, 22) and (21, 22) + (21, (322) respectively, where (3
is a third root of unity. Consequently, the generator of Ky, = Ker(H — G) acts
by (21,22) = (C321,C3 '22). The ring of invariant polynomials under this action is
generated by u = 2}, v = 25 and z = 2129, hence the quotient has a singularity locally
given by the equation uv — 23 = 0.

8.2. The universal family. We now construct the universal family of model differen-
tials over the model domain. Once we formally define the notion of families of model
differentials over arbitrary bases, we will see in Proposition that this family is in
fact the universal family of model differentials.

Over the open part QMD7}, this universal family of model differentials is simply
given by the Twj’-quotient of the equisingular family (7: X — Q77" (n),n, z, 0, f)
over Q77" (), where w is a universal relative one-form, o is a family of prong-
matchings, z are sections marking the zeros and poles, and f is a family of markings
(to be defined precisely in Section up to the group Twy’.

As the action of T} on Q7™ (p) is trivial on the level of underlying curves, the
universal curve over QMDY is the pullback of the universal curve over the quotient
PQBA. It follows that the universal curve over QMD} extends to a universal curve
X — QMDY as the pullback of this bundle.

Consider an open set V C QB together with a section .: V — QMDj of the
T3-bundle. Let W C QWX be the preimage of V and Xy — W its universal
curve. Informally, a point in V represents a T3-orbit of forms and compatible prong-
matchings, and . represents a holomorphic choice of representative “rescaled forms” n
and compatible prong-matchings o. The section .# determines a trivialization W —
V x CLA) x C*, and composing with the projection to CL() x C* determines a tuple of
holomorphic functions ¢: W — CLA) x C* which we call simple rescaling parameters.

The rescaled differentials 17 can be regarded as a tuple of relative one-forms on Xy
which do not vanish on any vertical component of the universal curve, and which
satisfy txm = w, where w is the universal relative one-form over QMDZ, and we recall
from the definition of the action

(8.3) txm = (tgﬂ '”(")>7;GL(A) = () e

= (8—1 Teee S 'n(i))ieL(A) ’

where we define the rescaling parameters s to be the powers (s;) = (t{*). The prong-
matchings o can be regarded as a continuously varying family of prong-matchings
for p. Together 1, o, and the markings give each fiber of X))y the structure of a
marked multi-scale differential.

To summarize, we have defined locally, depending on a choice of section .%/:V —
QMD7}, which we will in the sequel call a local trivialization of QMDY over V, a
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collection of rescaled differentials 1, compatible prong-matchings o, holomorphic func-
tions t, and rescaling parameters s such that the product txn agrees with the universal
one-form w on the universal curve over QMD} .

The product of ¢ with the projection to 2Bj determines an isomorphism W —
Y x CLA) % C*. In working with model differentials, we will often implicitly assume
we have chosen such a local trivialization. In the sequel, the functions t together with
local coordinates on V will give a convenient system of local coordinates on QMDj.
In Section the equivalence class of (n,0,t) will be part of the data describing a
general family of model differentials.

8.3. Topology of QMD,. The topology on the model domain may also be expressed
in the language of conformal maps. The following proposition follows immediately from
the definition of the conformal topology in Section and the topology on the CE(A)-
bundle associated with a (C*)X(Y)-bundle. Given t € (C)*YN)| we define J(t) C L(A)
to be the subset of indices i such that t; = 0.

Proposition 8.3. A sequence (X, Zm, My by 5 Omsy ) of (simple) model differen-
tials in QMDY converges to (X, z,m,t,<,0,f) if and only if, taking representatives
with tyi,t; € {0,1} for X, and X, there exist a sequence of positive numbers €p,
converging to 0 and a sequence of vectors d,, = {de}jEJ(t) e C/® such that the
following conditions hold for sufficiently large m, where we let dy,o = 0 and denote
Cm,j = €(dmj):
(i) There is an inclusion ty,: J(ty,) = J(t).
(ii) For sufficiently large m there exists an almost-diffeomorphism gm: Xa,,.o,, — Xo
that is compatible with the markings (in the sense that g, ody, - fim is isotopic to f
rel marked points) and such that g} is conformal on the €y, -thick part (X, z).,, .
(111) The restriction of (gm)«(cm,iwm) to the ey -thick part of the level i subsurface of
(X, 2z) converges uniformly to w;.
(iv) For anyi,j € J(t) withi > j and any subsequence along which [j,i Nim(i,,) = 0,
we have
lim [Cmal _ 0.

m—0o0

|Cm ;] a
(v) The almost-diffeomorphisms gn, are asymptotically turning number preserving.

9. MODIFYING DIFFERENTIALS AND PERTURBED PERIOD COORDINATES

The first goal of this section is to define modifying differentials & as a preparation
for the plumbing construction in Section which will enable us to give complex
charts on =M, (1). The second goal is to define local coordinates, which we will call
perturbed period coordinates, on the simple model domain. Once we define the plumbing
construction and define families of multi-scale differentials, the universal property of
the family of model differentials over the model domain will allow us to prove the
universal property of EM, ,, (1) in Section

For defining perturbed period coordinates, in this section we restrict to the case with
only vertical nodes. In Section we will define extended perturbed period coor-
dinates, to also account for the periods through horizontal nodes. This extension will
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require the plumbing setup introduced in Section[I0} The perturbed period coordinates
are similar to the usual period coordinates, with the following modifications that will
allow us to transition from stable curves with many nodes to curves with fewer nodes.

First, they are coordinates for the universal differential 1, but perturbed by the
modifying differentials €, and rescaled by t as defined in (8.3]). The reason for this is
that the perturbed differential lives on the universal family over the Dehn space =D,
which will be defined after plumbing. Consequently, once the plumbing construction is
completed, perturbed period coordinates will turn out to be coordinates on =Dy.

Second, the plumbing construction cuts out the zero that used to be at the top end
of any vertical node. Thus to keep track of the relative period corresponding to such
a zero, we compute a period not to this zero, but to a suitably chosen nearby point.
The choice of this nearby point will be made in such a way that under degeneration to
the boundary of QMDZ the difference between the perturbed period and the original
period tends to zero.

Third, the perturbed period coordinate system contains for each level one entry
which measures the scale of degeneration. This is not actually a period, but rather an
a;-th root of a period of n.

In the whole of this section we work in the preimage W C Qmi of an open set
VY C QBj where we have chosen a local trivialization as in Section

9.1. Modifying differentials and the global residue condition revisited. In
order to construct the plumbing map, we need modifying differentials as in [BCGGM1§],
but now defined on the universal family over an open subset of the model domain.
In this section, we prove the existence of such families of modifying differentials, for
families that may have both horizontal and vertical nodes.

Definition 9.1. A family of modifying differentials over W C QWX is a family of
meromorphic differentials & on 7: X — W, such that:
(i) &€ is holomorphic, except for possible simple poles along both horizontal and ver-
tical nodal sections as well as marked poles;
(ii) & vanishes identically on the components of lowest level of X', and §(s) 1s divisible
by t;7" for each i € L*(A) \ {-N};
(iii) t % (n + &) has opposite residues at the two preimages of every node. A

In other words, denote X — X the partial normalization at the vertical nodes and
denote 7: X — W its composition with 7. Recall that ¢&: W — X denote the sections
corresponding to the top and bottom preimages of the vertical node e, with images Q.
Moreover, let P be the reduced divisor associated to Z°°. Then t x £ is a holomorphic

section of

. (z @ +0:)+ 7») ,
which is divisible by tl[li—ﬂ at level zezfrii chosen so that as functions on W
(9.1) Res +t*(n+§&) +Res-tx(n+& =0

for every vertical node e € E(I")".
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We start the construction of families of modifying differentials by recalling from
[BCGGM19| a topological restatement of the global residue condition. Consider the
subspace V' C H; (X \ Ps; Q) spanned by the vertical curves AY, where Py is the set of
marked poles. The order on A determines a filtration

(9.2) 0=VN 1CVNC...CV, =1V,

where V; is generated by the image in V' of all those vertical curves in A such that
¢(e”) <. Note that this convention differs slightly from the one of [BCGGM19]: we
allow horizontal nodes, our V; corresponds to V_; there, and our NV corresponds to N —1
there.

Suppose we are given a marked differential (X, 7) on a pointed stable curve that sat-
isfies the axioms (0)-(3) of a twisted differential. Fixing an orientation of the individual
curves of AV, the differential n defines a residue assignment p: AV — C. With the help
of these maps we give an alternative statement of the global residue condition.

Proposition 9.2 ([BCGGM19, Proposition 6.3]). A residue assignment p: AV — C
satisfies the global residue condition if and only if there exist period homomorphisms

pi: Vi/Vici = C  for any i € L(A),
such that p;(X) = p(X\) for all simple closed curves X in AV, where i = £(A7).

In what follows it will be convenient for us to lift the period homomorphisms to maps
pi: Vi = C such that p;(Vi—1) = 0 for all : € L(A). We are now ready to construct
the family of modifying differentials, and we will then demonstrate the constructions
in the proof by an example.

Proposition 9.3. The family m: X — W equipped with the universal differential t *+n
has a family of modifying differentials .

Proof. Choose a maximal multicurve Apax 2 A decomposing ¥\ Ps into pants. Let
V' C H1(X\ Ps; Q) be the subspace of homology generated by the classes of all curves
in Apax. Note that V7 contains V', and projects to a Lagrangian subspace of Hy(X; Q).
The restriction of ¢ * 1 to levels ¢ or below determines a holomorphic period map
(extending p; above to families)

pi: W — Homg(V;,C),

such that p; restricts to zero on V;_1. In period coordinates, p; is simply a linear
projection. By (6.13), the map p; is T§-equivariant, i.e.

(9:3) pilg* (X, txm) = [[a7 - pi(X,txm) forany qeTj.
Jj=u
For each i € L(A) we choose a sub-multicurve B; C Ayax whose image in V' is a basis
of V'/V;, such that for any ¢ € L(A) the inclusion B; C B;_1 holds. We then define the
extension p;: W — Homg(V’, C) of p; by the requirement p;(b;) = 0 for all b; € B;.
Since Apax is a maximal multicurve on X\ Pg, a meromorphic form on X', holomorphic
except for at worst simple poles at the nodes and at the marked poles Pk, is specified
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uniquely by its periods on V’. We define ¢ * € on X so that its V/-periods for v € Apax
are

(9.4) / §o(w) = Y pi(u)(y) forall wew.
v j<i
By the equivariance (9.3]), we see that p; is divisible by tl[lz'—ﬂ? and hence t x £ is also
divisible by t‘ﬁ.iﬂ.
Given a curve v € AY joining level i to level j < i, we verify the opposite residue
condition (iii) for a modifying differential, which is given by (9.1)), and states that

/((t*(n+€))<j> = )+ m0) = S = /((t*<n+s>>@.
Y vy

k<j k<i

In the above the first equality follows from the fact that p; is the period map determined
by (t*n)(;), and from the definition of ;). The second equality follows from the global
residue condition of ¢ x 1 as restated in Proposition which implies that pg(v) =0
for all j < k <. The last equality again follows from the definition of §(;) and the fact
that p;(y) = 0. it

This proof shows in particular the following.

Corollary 9.4. The modifying differential € is uniquely determined by the choice of
the subspace V' C H1(2\ Ps; Q) and the multicurves B;. Its level-wise components 30)
depend only on t; and n; for j < 1.

Example 9.5. We illustrate the objects introduced in the proof of Proposition [9.3] in
the context of a slight simplification of our running example, as pictured in Figure
with one pole denoted by p (so the level graph is still a triangle, but the irreducible
components are simpler). The family of modifying differentials & depends on the pa-
rameters t = (to,t_1,t_2).

The vertical multicurve AY (in blue in Figure {4 consists of curves A1, A2 and A,
which are all homologous to each other. The filtration of the V; induced by the multi-
curve A is then given by

0 =Vs3CV,y = <)\1> =V, =V,

where (-) denotes the linear span. Hence the maps p; are given by p_o(t)(\1) = t*3*a €
C and p_1(t)(\1) = 0, where a is 2my/—1 times the residue of 1 at the corresponding
node. We choose the maximal multicurve Apax D A by adding the curves {4, ..., Ag},
shown in red. Then we have in homology the equalities

AM =X = XM+ = A3 = M+ = A7+ g,

and thus V' = (A, \g, A7). We choose the sets B; to be By = {A\;,\;} = B_1.
Then the extension p_o of the map p_o defined on V_o = (A1) is given by requiring
ﬁfg(t)(B,Q) = 0. That iS,

_ (7 a, WA= A,
p‘“””‘{ 0, ifA = Ay,
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(X(0)»M(0))

q2

A (X(—1),n(-1))

q3

(X(=2),M(-2))

) (X,n)
FIGURE 4. The marked surface together with the multicurves A and Apax.

Similarly, the extension p_; of p_; from V_; = (A1) to V' is defined by requiring
p—1(t)(B-1) =0, hence p_; is simply identically zero.

We can now define the modifying differentials ;). Following the construction in
the proof, we see that the differential {_,) = 0 identically. The differential _) is
supported on the component on the right, which is at level —1. It has simple poles
at g and g3 with residues j:tci’; -a/2m\/—1, is holomorphic at p, has period zero over
A4, and has periods t*3> - a over A5 and Ag. Finally, the differential §(0) has simple
poles at ¢; and ¢y, with residues :I:t‘i‘llti_; - a/2m/—1, has period zero over A7, and
period t*7't*5” - a over \g. To see these, consider for example the period of §(0) at As.
By definition it is given by

§o) = P-2(Xs) +P-1(0s) = pa(M) +p-1(M) = t557a+0 = %) -a,
As
since A1 is homologous to A7 + Ag, and since p_2(A7) = p_1(A7) =0 for A\; € B_9, B_;.
The other cases can be computed similarly.

9.2. Perturbed period coordinates. We will now perturb the usual notion of pe-
riod coordinates, to avoid using marked points and zeros that are at the nodes, and
choosing different basepoints instead. We first introduce the preparatory material in
full generality, and then define the perturbed period coordinates under the simplifying
assumption that there are no horizontal nodes. We extend these coordinates to the
case with horizontal nodes in Section [[0.10l

To define the perturbed period map we need to specify additional marked points
near the vertical zeros of n and we need to recall various spaces defined by residue
conditions, together with the dimension estimates from [BCGGM19].
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Recall that Efi) was defined in the paragraph preceding Definition as the sub-
surface of ¥ at level ¢ where the boundary curves have been collapsed to points. The
Teichmiiller markings up to twist group of the welded surfaces in the model domain
induce markings f;: E‘(:i) — X(;) of the families of connected components of the sub-
surfaces at level ¢. Denote by Ps; and Z,; those marked poles and zeros that lie on
the compact level i subsurface Efi). We denote by QEZ- the set of those zero and pole
sections on 2((31‘) mapping to the preimages of the nodes E. We define the sets of points

(9.5) Pi=Ps; UQp,; and Z;j=Zs;U QJEE‘,Z’
for each level i.

The perturbed period coordinates are roughly the product of the coordinates ¢; and
coordinates of the projectivization of certain subspaces Rf' of H 1(2@ \ P, Z;; C).
Coordinates on the latter are as usual given by all but one of the periods.

To define R¥"™ we start with the map Hl(Zfi)\Pi, Z;;C) — CIPl given by taking
the integrals over small loops around the points P;. Note that the image of this map
is contained in the subspace cut out by the residue theorems on each component. Let
R C CIPil be the subspace cut out further by the matching residue condition at the
horizontal nodes, and the global residue condition, as stated in Section The GRC
space R¥C C H 1(2@\]—%, Z;; C) is then defined as the preimage of R¥°. If we denote
by H the number of horizontal nodes of A, then [BCGGM19, Theorem 6.1] can be
restated as follows.

Proposition 9.6. The (open) simple model domain QMDY is locally modeled on the
sum of the GRC spaces ®;RE. This space has dimension

> dim(REC) = dim QMg n(p) — H.
ieL®(A)

For each half-edge h of T'(A) with non-negative my, i.e. for each non-polar marked
point in the smooth part of X', we denote by z(h) the corresponding section of X — W.
We choose nearby sections o : W — X and oj,: W — X so that

od (w) on(w)
(9.6) / NG = const and / n@) = const,
qt(e) z(h)

where i = {(e™) and j = ¢(h) are the corresponding levels that contain the (short
fiber-wise) integration paths respectively.

As the final preparation step, note that the form ¢ * (n 4+ &) on X may no longer
have a zero of the prescribed order at z(h) because of the modifying differential &.
In the process of plumbing in Section [10.4] we will describe a local surgery of X in
a neighborhood of the sections z(h) corresponding to the half-edges h, such that the
images of the sections z(h) are untouched by the surgery, and the extension of t*(n+&)
to the resulting family again has a zero of order ord, ;) n along a section that we still
denote by z(h): W — X.

Finally, we can now define the perturbed period map at level i under the hypothesis
that there are no horizontal nodes. We fix homology classes 71, ..., v,(;) such that their



68 BAINBRIDGE, CHEN, GENDRON, GRUSHEVSKY, AND MOLLER

periods f,yj Ny form a basis of RE. Stability of the curve X implies that for each 4
at least one of the periods f,y, Ny is non-zero, say for j = n(i). We thus denote by
J

R} C RE the codimension one subspace generated by the periods of vi,... s V()1

for all levels ¢ < 0, and we let Rf, = Rgrc, as the differential on the top level is not

considered up to scale. We denote by n/(i) the dimension of the space R} for all i.
The perturbed period map is then built with the help of

w — R,
n’ (%)
(X,n,t)] — <f%. M) + §(¢)> :

j=1

(9.7) PPer;:

Here the integrals are over the f;-images of the cycles, but we integrate from the
points b} defined to be o (w) for cycles starting or ending at a point in le, where
w = [(X,n,t)], rather than from the nearby zeros of ;).

Proposition 9.7. The perturbed period map

(9.8)  PPe: W —CFWx @ R, [(X.mb) (t;@ie L.(A)PPerZ)
ieL*(A)

is open and locally injective on a neighborhood of the most degenerate stratum Wy =

Niera)Di inside of W.

Proof. We need to show that the derivative of PPer is surjective along the boundary
stratum W,, since surjectivity is an open condition, and since this surjectivity implies
openness. At a point of Wy the i-th summand PPer; consists of the usual period co-
ordinates for 7;), shifted by a constant since we integrate from a nearby point (using
the absence of horizontal nodes by our assumption). Here along the most degenerate
stratum Wi, the integral of ;) is identically zero, because by definition &;) is divisible
by t;*;', and W, is defined by the equations t; = 0 for all j € L(A). In the comple-
mentary directions, surjectivity is obvious since the t; are coordinates on the domain
and are included in the target of PPer.

Since W is smooth and of the same dimension as @;cre( A)R; by Proposition
(under the assumption of no horizontal nodes), surjectivity of the derivative of PPer
implies injectivity of the derivative map at any boundary point in Wy, and hence local
injectivity in some neighborhood. g

Example 9.8. We give the description of the perturbed period coordinates in the
setting of our running example of Section 2.6l Hence the differentials that we consider
are in the closure of the meromorphic stratum QM5 4(4,4,2,—2). More precisely,
we consider the enhanced dual graph I's on the right of Figure In this case the
differential n_y) is in QMo 3(4, =2, —4), n_1) is in QM 4(0,4,-2,-2) and 5 is
in QM3 3(2,2,0). Since the global residue condition imposes precisely the condition
that the residue of n_y) at g, is zero, the GRC space is the product of the top and
bottom H'! with the hyperplane of the middle H! given by this residue condition.

We will consider the deformations over a disc A2 = A; |, x A;_, which parameter-
izes the smoothing of the levels of (X, 7). Note that the residues at the poles of the
differential 7_y) are non-zero (see [BCGGM18, Lemma 3.6]). The family of modifying
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(X, n) (Y,w)

FIGURE 5. A basis of homology of our running example and of a nearby
smooth differential.

differentials £ consists of {) on Xy and §_1) on X (_1), where §(g) is divisible by 3,
and §_y) is divisible by t3 5. Moreover, & vanishes identically on X9 In Figure
we show a basis of the cycles of integration before and after the plumbing construction
described later in Section In this basis, the map PPerg is given by the map which
associates the integrals of 1) + £ along the cycles belonging to X (. The maps
PPer_; and PPer_5 are defined analogously.

We now describe how the perturbed period coordinates behave over the base AZ2.
Note that since our construction is local, we can identify the circles «; and 3; for
j =1,...,4 with the circles oz? and Bjo On the subsurface X g the restriction of the
differential 7o) +&(o) on oz? and of the plumbed differential to o clearly coincide (where
all the t; are non-zero) under this identification. The case of the subsurface X(_;) is
similar. Note that if the modifying differentials vanish, then the period of each cycle
on X(g) would be a constant and the period of each cycle on X(_;y would be of a
constant times ¢3 ;.

We now consider the relative cycles v, which degenerate to the relative cycles 72.
The period for 71 is equal to the period for 4 plus a function of t_; and t_ which is
zero on {t_1t_o = 0}. This function depends on the choice of the points near zj, near
the node, and the way that we glue the plumbing fixture in the nodal differential. The
case of the cycles v, for k = 2,3 is similar.

Finally, note that the period of ¢ xm at the homotopic cycles §; and §] is a function
27ir that is divisible by (t_1t_2)3, where 7 is the residue at the corresponding node.
This is consistent with the GRC.
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10. THE DEHN SPACE AND THE COMPLEX STRUCTURE

In order to understand the structure of =M, (1) at the boundary, we introduce an
auxiliary space =D}, the simple Dehn space, which is a direct analogue of the classical
Dehn space. The goal of this section is to give, for each A, the topological space =D} the
structure of a complex manifold, which will then be used to give EM, (1) its complex
structure. This complex structure is induced by plumbing maps QPl: U — EDj},
defined by a local plumbing construction on the universal family of model differentials,
which we will show give an atlas of complex coordinate charts on the simple Dehn
space.

There is a natural open forgetful map ED§ — =M, (1), and EM, () is covered
by the images of these maps as A ranges over all enhanced multicurves. The conclusion
of this section is summarized in Theorem [10.3] where we use the complex structures
on the ZD} to give ZM (1) the structure of a smooth complex orbifold.

Throughout this section, we fix an enhanced multicurve A with dual graph I" having
N +1=|L*(A)| levels and H horizontal nodes.

10.1. The Dehn space. Informally, 2D, is the moduli space of Twy-marked multi-
scale differentials of type (u,A’), where A’ is any undegeneration of A. The simple
Dehn space ZD7 is the analogous space of Twj-marked differentials.

More formally, the Dehn space associated with A is the topological space

(10.1) =Dy = ( I1 QBA/)/TWX ,

AN ~~A
where we endow this disjoint union with the subspace topology induced from the topol-
ogy of the augmented Teichmiiller space of flat surfaces Q7 (5; 4)(1t) and recall from (7.1)
that By, are boundary strata in Q7 (5, 4)(1)). We can write the space equivalently as

(10.2) =Dy = [[ DY where EDY = QB /Tw}.
AN~ A
The simple Dehn space is defined by
(10.3) =D5 = (]_[ QBA/> /Twi = [] =04,
AN~ A A~ A

where ED/X’S = QBp/Tw}’. The simple vertical Dehn space ZD3’ C ZD3 is the locus
consisting of surfaces where every horizontal edge of A corresponds to a horizontal node.
In other words,
=py = [] =py”.
A~ A

where the union is over all vertical undegenerations A’ ~ A.

The finite group Ky = Twj/Tw}’ acts on =D} with topological quotient ZDy. We
will see that ZDj is in fact a smooth manifold with quotient orbifold =D, .

We write similarly P=Dj and P=D] for the corresponding spaces where the top level
is projectivized, that is, P=D, is the quotient of =D, under the C*-action.

We refer to a point in the Dehn space (resp. simple Dehn space) as (the moduli
point of the equivalence class of) a marked multi-scale differential (Y, z,w, o, f) where
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the marking is up to the action of Twy (resp. Twf). Pointwise this is justified by
definition.

We now outline the plumbing construction. We divide the construction into two
steps, vertical plumbing and horizontal plumbing. The vertical plumbing construction
starts with the universal curve X — QMDY which we restrict to a neighborhood W,
of a point P in the deepest boundary stratum. By cutting out neighborhoods of the
vertical nodes and gluing in standard plumbing fixtures, we construct a new family of
curves V¥ — W, whose generic fiber has only horizontal nodes.

The horizontal plumbing construction requires an extra complex parameter for each
horizontal node, parameterizing the modulus and a twist parameter for the annulus
that is glued in. We consider ) as a family over the product W, x A” (which does not
depend on the second factor). By cutting out a neighborhood of each horizontal node
and gluing in a standard plumbing fixture, with parameter given by the second factor,
we then construct a new generically smooth family of curves Y — W, x AH.

We equip our standard plumbing fixtures with families of one-forms and choose our
gluing maps to identify these forms with those on the target, so that the family )
comes with a degenerating family of one-forms w. In fact, with more care we give the
fibers of ) the structure of Twj-marked multi-scale differentials.

This horizontal plumbing construction is essentially the standard plumbing con-
struction used to construct coordinates near the boundary of M, ,, dating back at
least to Bers [Ber74b|). We emphasize that the vertical construction differs from the
usual plumbing in that it does not require extra parameters to describe opening up the
nodes—this is rather prescribed by the relative size of the differentials, so that they
would glue on the plumbed surface. These plumbing constructions are not canonical
and depend on choices made at several points in the construction.

If the universal property for =D} were available, the plumbed family ) — W, x AT
would give a holomorphic map W, x AH — =D} . Unfortunately, the universal property
is not available yet, as we wish to give =D} its complex structure, and then use it in
establishing the universal property. Instead, we define a plumbing map QPl: W, x
AH =D} stratum-by-stratum, using the universal property for the boundary strata
QB parameterizing equisingular loci in the augmented Teichmiiller space. Similarly,
the family Y” — W, will give rise to a vertical plumbing map QP1": W, — ED3". As
the plumbing constructions are not canonical, neither are these plumbing maps, as they
depend on several choices.

In Section below, we use the normal forms from Section [] to construct the
gluing maps used in the vertical plumbing construction. In Section we define a
vertical plumbing construction and a vertical plumbing map. In Sections and
we show that this map is a local homeomorphism. In Section [10.8] we introduce the
horizontal plumbing construction and the full plumbing map, and show that it is a
local homeomorphism, which yields the following main results of this section.

Theorem 10.1. For any point P in the deepest stratum QMDQ’S of the model domain
Qmi, there exists a neighborhood Wex A" of Px0 € QW; x A and a plumbing
map

QPL: W, x A - =D3 ,
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which is a local homeomorphisms. This map preserves the stratifications (8.2)) and (10.3)),
18 holomorphic on each stratum, and is Kp-equivariant. Moreover, the plumbing map
QPI can be chosen to be C*-equivariant, and thus to descend to a plumbing map

QPl: (W, x Af)/C* — PED;
which is also holomorphic, stratum-preserving, and Kx-equivariant.

Note that the deepest stratum of the model domain QMD} can be canonically
identified with the deepest stratum of the corresponding Dehn space (and we implicitly
do so throughout this section).

Theorem 10.2. The collection of all plumbing maps gives an atlas of charts which
makes =D} and the projectivized version PEDY a complex manifold. Moreover, for
each point of these spaces the plumbing construction provides a corresponding multi-
scale differential.

The spaces EDp and PEDp have the structure of complex analytic spaces (or orb-
ifolds) with at worst abelian quotient singularities.

We will discuss the universal properties of the Dehn spaces in Section

We now collect some of the properties already proved, which proves the first of our
main results, Theorem except for item (4). Recall that a divisor in an orbifold is
said to be normal crossing if it is the image of a normal crossing divisor in orbifold
chart.

Theorem 10.3. The moduli space of multi-scale differentials is a complex orbifold
Emgm(u) containing QMg as an open dense suborbifold with complement a normal
crossing boundary divisor. The quotient PEM (1) = EMyn(p)/C* is compact.

The connected components of Eﬂg,n(,u) are in bijection with the connected compo-
nents of QM (p).

Proof. The statement combines Theorem and Theorem The orbifold struc-
ture and the normal crossing boundary carry over from the model domain, as defined
in Proposition and along with . The statement about components follows from
the smoothness of the orbifold charts. gl

10.2. The setup and notation for vertical plumbing. We now set up the notation
for the neighborhoods in which the vertical plumbing construction is performed, as
well as for the plumbing fixtures we need. We fix for the remainder of the plumbing
construction a base surface (Xo,n,) € 2B, and a local chart ¥: AM — QB,, where
M = dim QB,, parameterizing a neighborhood V of ¥(0) = (X0, 7). As in Section[3.2]
we let W C QMDY be the neighborhood of (Xo,1,) that is the preimage of V. We
fix for the rest of this section a local trivialization of the model domain over W, which
determines holomorphic functions t: W — C x C*, rescaled forms 1, and prong-
matchings o so that the tautological one-form is ¢ * n.

The product ¥ x ¢ identifies W with AM x CV x C*. We will subsequently work on

We = AM x AN xCcr cw,

for e = €(Xo,ny) sufficiently small and to be determined (first by Theorem and
then to be reduced a finite number of times in the course of the construction).
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In the remainder of the section, we will make the above identification implicit and
simply write X — W, for the restriction of the universal curve to the domain of the
chart. We will denote points in W, as (w,t) with w € AM, or by ([X,n],t). The

€
boundary stratification of the model domain induces a stratification of W,. Given a

subset J C L(A), we define W/ = W, N MDZ’AJ. In other words, W/ is the locus
where t; = 0 if and only if ¢ € J.

We now introduce the notation for our standard annuli and plumbing fixtures, and
families of such. We define the standard round annulus

A51752 = {Z ceC:0 < ’Z‘ < (52}

and use the base point p = /0162 € Aj, 5, unless specified differently. For 6 = 6(Xo, 1)
to be determined below, and s € C, we define the standard plumbing fixture

(10.4) V(s) = {(u,v) € A2 :uv = s}
together with the top plumbing annulus and bottom plumbing annulus
(10.5) At = {§/R<|u| <4} and A~ = {§/R<|v|<d}
for some R still to be specified. Unless specified otherwise, we will use the basepoints
(10.6) pt = §/VRec AT
respectively. For s = 0 the plumbing fixture is simply
V(0) = AfUA;,

i.e., two disks joined at a node, with u being the coordinate on A; and v on Ajy.
For each vertical edge e of I' = T'(A), we define the plumbing fizture V. — W, to be
the standard model family of nodal curves over W,:

£leT)—1
(10.7) Ve = {(w,t,u, v) EWe x A2: uw = H t;ne”},

i=l(e™)
where the integers m,; are defined in (6.7)). Note that the fiber of V., — W, is an
annulus if each t; in the product in ([10.7)) is non-zero, and a pair of disks meeting at a

node otherwise.
We denote by 7¢,7.: W, — C the residue functions

re = Res - txmn and 71, = Resq;t*(n+£)’

where € denotes the modifying differential, satisfying conditions of Definition [9.1] con-
structed in Proposition [9.3
We equip V., with the relative one-form 2., given in coordinates by

o du ke dv
(108) Qe == <t¢ﬁ€(€+)—| -UC — T/e) ; and Qe = — <tlﬁ€(€_ﬂ v — T‘é) 7,
where the notation t?@(eﬂ} was introduced in (8.3)). The two expressions agree if uv # 0.
In what follows we will carefully choose the sizes of é and € for the plumbing fixtures
in (10.7)), so that the moduli of the annuli are sufficiently large, as required by some

later parts of the plumbing construction. We start by fixing a constant R > 1, and
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denote § = §(R) and € = €(R) the corresponding constants that will be provided by
Theorem [10.4] below.
We define families of disjoint annuli A}, A; C V, by

AT = {(w,t,u,v) : |wyl, |t;] < e forall 4,7, and §/R < |u| < §} and
A; = {(w,t,u,v) : |w;,|t;] <eforalli,j, and 6/R < |v| < d}.

We will refer to A} and A_ as the top and bottom plumbing annuli corresponding to
the vertical edge e.

10.3. Standard coordinates. We now apply the normal form theorems of Section
to the family X — W,. Several of these normal forms are not unique, in which case we
simply make an arbitrary choice.

By an application of Strebel’s original result (Theorem in families, we know that
for some §7 > 0 and for each node there exist local coordinates

qb;_: We x As, — Xg(e+) and ¢, We x As, — Xé(e—)

(to keep the notation manageable, we write simply AXj.+) instead of X(y+))) whose
restrictions to W, x {0} correspond to the loci QF and Q_ respectively, and which put
the form ¢ x 1 in the standard form. For a vertical node ¢, this standard form is

du
+\ * — Re
(9e)"(t*xm) = ?g(eﬂ]u o and

_ _ dv

(60) (txm) = —tyey (7 —re(t) =

As these standard coordinates are not unique, we use the prong-matching o, to
restrict their choice as follows. Given a choice of ¢, in these coordinates the prong-
matching must be of the form o, = (du ® dv, where ( is some k’th root of unity. We

require that our choice of ¢ makes this root equal to 1, so that
(10.9) e = du® dv.

In general, the modified differential ¢+ (14 &) does not admit such a simple standard
form in a neighborhood of a vertical node. Consider a vertical node with top section
W — Xy(e+), which is a zero of order re — 1 of ¢ * 7. Then this zero breaks up
into a simple pole and k. nearby zeros of the differential ¢ * (n + &). These extraneous
nearby zeros should not belong to our plumbed family, so we will construct a family
of disks & containing these nearby zeros, which we will then cut out of X. These
disks will be bounded by a family of annuli B} and come with a family of gluing
maps T : AT — BF putting ¢ * (n + £) into a standard form on a family of annuli
over W,.. These objects are constructed in Theorem below. This is the basic
analytic ingredient in our plumbing construction. In Section we will use these
gluing maps to glue in the standard plumbing fixture V. defined above.

Adding the modifying differential € creates a similar problem at the zero sections z(h)
of X. When the modifying differential is added, a zero of order mj breaks into my,
nearby zeros, but we wish to construct a family where the order of the zero remains
constant. The solution is similar, that is, we construct below a family of disks &,
around z(h), and gluing maps that put ¢« (n + &) into the standard form on a family
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of annuli surrounding &,. In Section we will then cut out these disks and glue in
a standard family of disks Dy,.

Theorem 10.4. There exists a constant § > 0 such that for any R > 0 there exists a
constant € > 0 such that for each vertical edge e and for each half-edge h of I there are
families of conformal maps of annuli

vl We x As/rs = Xy(ety s

Vet We X As/rs — Xoe—), and

Up: We X As/rs — X -
These maps commute with the projections of the source and target to W, and have the
following properties:

(i) The images of v}, vo, vy, are families of annuli BY,B. , By, that do not contain
any zeros or poles of (X,t*m). The families of annuli BS,B. , and By bound

families of disks EF,E;, and &y, respectively, where
Q: C 5: C Xg(e+) , Q. C& C Xg(e—) , and z(h)C &, C Xo(n) -

(ii) The pullback of tx(n+E&) under each of the maps v}, v
form on the annulus, that is

-, and vy, has the standard

dz

) x +€) = (e -2 —11) =

d
(V) (tx(n+ &) = (_t?e(efﬂ sz e+ 7"6)) 72, and

vp(tx(n+8&)) = 4y - 2""dz.
-, and vy, agree with the corresponding maps ¢F, ¢, and ¢ of
Theorem on the subset of We x As/ps where tr,y = --- = t_n = 0 with
L = l(e*) or L = £(h) respectively.

Moreover, we may take § sufficiently small that the maps vE and vy, are injective and
have mutually disjoint images.

(iii) The maps v}, v,

We need to allow the constant R to be arbitrarily large to facilitate the proof that
QP1Y is locally injective. See Lemma where the choice of R is made.

The location of these annuli is illustrated in the left part of Figure[6] The images of
the marked points p and pj, in X are denoted by b € B* and by, € By, respectively,
for each vertical edge or half-edge.

Proof. In the ¢} -coordinates, the modifying differential ¢ * £ becomes
du
(¢ =t Qe —
(9c)*(t*8) [f(et)] " & e

where o is a holomorphic function on the product W, x AN x A, satisfying tl[lé(e+)1 .
ae(w, t,0) = —rl(w,t) and a.(w,0,z) = 0. (Using Corollary [9.4] we see that in fact &
depends only on the t; with ¢ < L).
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Fix a basepoint b € As/g 5. By Theorem after possibly decreasing e, there is a
family of conformal maps

Ye: We X Asps — We X Ag,

which cover the identity on W, fix the section W, x {b}, and put (¢1)*(t* (n+¢)) in
the desired standard form as follows:

* % Ke dZ
(@ oe)*(tx(n+€&) = ¥ (t‘(le(em F 2+ ey - ae(w, 8, Z)) ~

= (#ery = 1) %'

Since a, is holomorphic, we may in particular choose € small enough so that the zeros of
the rightmost form belong to the disk of radius §/R. Over the locus where t;,_; = -+ =
t_n = 0, the modifying differential £ vanishes on level L, which means . preserves
the form z"“edz—z and fixes the point b, and thus 1. is the identity over this locus. We
then define v} = ¢F 0 ¢).. The desired family of disks £ is then ¢ (V.), where V, is
the bounded component of the complement of the family of annuli .(We X As/ g s)-

The construction of v_ is much simpler at a pole, as then we need only to apply
Theorem {4.1|to construct a map v, putting ¢t (n+&) in its standard form. This works
in a neighborhood of the node, and we may of course restrict to a family of annuli.

In the case of a half-edge, the construction of the map v follows from the same
technique. In this case, the modifying differential & is holomorphic along the zero
section zjp, so the resulting standard form of v} (¢ * (9 + £)) has no residue. it

10.4. The vertical plumbing construction. We now present the basic plumbing
construction. The plumbing starts from a family X — W, equipped with the family of
differentials t * 1 (as defined in Section together with a modifying differential &,
and builds a family of meromorphic stable differentials ()¥ — W,, w, z) which vanishes
identically on the lower level components over the boundary divisor and is elsewhere
holomorphic and nonzero, except for the prescribed zeros and poles z(h).

We define conformal isomorphisms Y : AX — Bf ¢ X by

THw,t,u,v) = vf(w,t,u) and T, (w,t,u,v) = v, (w,t,v),

where B and v are defined in Theorem m These maps identify each . with
t* (n+ &) as desired. By abuse of notation, we will refer to both AT and its image B
as the top plumbing annuli, and to both A_ and B_ as the bottom plumbing annuli
corresponding to the edge e.

For each half-edge h, we denote the family of conformal isomorphisms provided in
Theorem by

YTy, = vp: Ap > B C X

We let V¥ — W, be the family of curves obtained by removing from X the families
of disks £F and &, and attaching each family V. and Dy, by identifying the A-annuli
to the B-annuli via the T-gluing maps. As the gluing maps respect the one-forms, the
family YV inherits a relative one-form w.

We denote the plumbing annuli as subsurfaces of Y by CF and Cj,, denote the middle
annuli bounded by the CF as F,, and denote ¢ the image of the points p* in CF.
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These points are defined near the corresponding vertical and horizontal nodes, but for
the latter the sign is an arbitrary auxiliary choice. The final result of plumbing is
illustrated on the right of Figure [6]

p

(V,w)

FIGURE 6. The general plumbing construction for our running example

of Section

We will later use the following consequence of the construction and the fact that the
modifying differential £ on level i depends only on the levels below ¢ and the topological
data, see Corollary

Proposition 10.5. For each edge e the location of the family of annuli Bf C Xy(e+)
depends only on the subsurfaces (X(),1(;)) and on the values of t; for i < £(e%).

10.5. The vertical plumbing map. We now construct the vertical plumbing map
QPI": W, — ED}’. Over the generic stratum Wg) , as w does not vanish identically
on any fiber, this map follows immediately from the obvious universal property for the
Teichmiiller space Q7 (1) of (twisted) differentials.

Now consider a boundary stratum W/, with J C L(A) a nonempty set of levels,
and let ¥/ — W7 be the restriction of }V, which is then an equisingular family
whose dual graph is the enhanced multicurve Ay ~» A. To define the plumbing map on
this stratum, we restrict appropriate rescalings w” of w to the irreducible components
of Y"7/ construct prong-matchings o/ along the vertical nodes of YV, and define a
marking of the welding of V¥ along these prong-matchings.

For each level i € L*(A), define on X{;) the rescaled form

(10.10) the +éa) = 11 6" wa,
ki, ke
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where we defined t¢ = [[;c;t" and set [i] = {j : j > i}, extending the definition
in (8.3). For each vertical edge e that does not persist in A, define on V. the form
du dv

Qf = @y u™ —re)— = [ty 0" — o)

u v

The gluing maps for such edges identify these rescaled forms, which defines on YV’ a
collection of rescaled forms w” that do not vanish identically on any fiber.
For each vertical edge e of Ay, we define

m 1
(1011) tﬁ(€7)7€(e+))ﬂj = H tk ek and O'é] = ta—d'u@d'l),
t(em)<k<L(e') [b(e™),(et))NT
kaJ

which is easily checked to be a prong-matching for w”. Note that this agrees with
(10.9) when J = L(A).

We now wish to define markings for the fibers of }**/ by transporting the markings
of the fibers of X by almost-diffeomorphisms f;: Y — X; between the corresponding
welded surfaces. Given a vertical edge e of A that does not persist in Ay, there is an
annulus £, C X¢, obtained by welding the fibers over ¢ in £f, and a corresponding
annulus F, C Yy, the fiber over t in . = V. \ (AT U AZ). We will refer to these
F, as infinite if they contain a seam and finite otherwise. We denote by X; C X4
and Y{ C Y} the complement of these annuli. The plumbing construction defines a
canonical conformal map f;: Y] — X, which we wish to extend to Y.

Let 4. C E. be the continuous curve joining the two boundary components of the
annulus F. obtained by concatenating the two radial curves

Ve (s) = ¢(s) and . (s) = ¢ (sT) for 0<s<J/R,
where T' = tfz(e*),é(e+))ﬂJ/|t§(e*),£(e+))ﬁj|' Note that 7. lifts to a continuous curve on

X by the choice of prong-matching given by . Let d. C F, be the curve joining
the point w = §/R in the upper boundary component to the point v = T'§/R in the
lower boundary component, along which argu and argv are constant. We extend fi to
a homeomorphism f;: Y — X; sending each 7, to d.. We then mark Y by composing
fe ! with the marking of Xy.

Proposition 10.6. The almost-diffeomorphisms fi: Y — X have the following prop-
erties:

e f; identifies w’ on Y/ with the rescaled forms (10.10) on X,.
e For any sequence t, — 0, the maps f, are asymptotically turning number
preserving.

Proof. The first statement follows immediately from the definition of the maps and the
plumbing construction. For the second statement, it suffices to check that the turning
numbers of the 7, converge to those of the J., and this follows immediately from the
fact that the modifying differentials converge to 0 on each component as t — 0. gid

These forms, prong-matchings, and markings give each fiber of YV the structure
of a marked multiscale differential. Applying the standard universal property of the
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boundary stratum QB,, to the family (Y7 — W/ w’ a”) defines a plumbing map
QPIY on W/.

10.6. Continuity of the plumbing map. Our next goal is to establish the continuity
of the vertical plumbing map. We start with a construction which will be used to extend
conformal maps across annuli here and in the discussion of the horizontal plumbing
construction.

Consider the round annulus A = {r; < |z| <72} in C* (for 0 < r; < rg < 00), which
we equip with the flat metric |du|/u, together with a C* map a: 9A — C*. We define
the straight line extension of a to be the map F': A — C* sending the radial geodesic
from 71€® to rae? to the geodesic joining a*(rleie) to oﬁ(rgew), where a~ and at
denote the restrictions of « to the respective inner and outer boundary components.

Similarly, given the punctured unit disk A* and a C! map a: S' — C*, we define
its straight line extension as the map F': A* — C* sending the radial segment from 0
to €/ to the radial segment from 0 to a(e').

Lemma 10.7. Suppose an: 0A — C* is a sequence of C' maps converging C-
uniformly to the identity map, and let F,: A — C* be their straight line extensions.
Then the F,, also converge C'-uniformly to the identity and are eventually C' diffeo-
morphisms onto their image.

The analogous statement holds for the straight line extension of a sequence of maps
on St.

Proof. We work in logarithmic coordinates z identifying A with the annulus B = {0 <
Imz < h} C C/Z. In these coordinates,

Fo(z 4 iy) = oy, (2)(1 = y/h) + o5 (z + ih)y/h,
and we have
F(z +iy) — (z +1iy) = (ay, (x) — 2)(1 = y/h) + (og (x + ih) — (x +ih))y/h,

which easily implies the second claim. It follows that if «,, is sufficiently close to the
identity, the Jacobian determinant of F}, is nowhere vanishing, so F, is a C'* diffeomor-
phism onto its image.

The second case is handled similarly. pid

Proposition 10.8. The vertical plumbing map QPI": W, — ED3" constructed above
18 continuous.

Proof. We fix a sequence (X,,n,,t,) in MD) that converges to (X,n,t), and let
(Y, wn) and (Y,w) denote the corresponding plumbed surfaces.

Passing to a subsequence, we may assume this sequence belongs to a fixed stratum
of Wf\ We denote by g,: X, — X the maps exhibiting this convergence as in
Proposition This means that there are subsurfaces J, C X, \ z, such that g,
is conformal on J,, and the images K, = g,(J,) exhaust X \ z. Moreover, the J,
eventually contain the plumbing annuli Bf because these annuli vary continuously in
the universal curve, and g, converges to the identity by Lemma

As defined above, we have almost-diffeomorphisms f,: Y, — X, and f: Y — X
which are conformal on the complements Y,, and Y’ of the plumbing annuli. We define
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hy = fogno fit:Y, — Y. These maps satisfy all of the requirements to exhibit
convergence from Definition except that h.! is conformal only on Y’. We define
hn to be the inverse of the straight line extension of the restriction of h! to the
boundary of Y,/. To be precise, E; I may not be continuous at the seams of Y, but we
can modify it on a shrinking neighborhood of each seam, so that it becomes continuous
and remains homotopic to h, .

These h, ! are Ly-quasiconformal on an exhaustion of Y with L,, — 1 and satisfy
all of the requirements (as modified by Proposition [7.10) to exhibit convergence of
(Y,,wn) to (Y,w), where on the annuli F,, we apply Lemma to get the necessary
weak convergence of forms. pi

10.7. Plumbing is a local homeomorphism. We first show that the plumbing map
is open. The plan is to first show it for the most degenerate boundary strata with dual
graph A in the range, then prove it for the interior points with a dual graph having
only horizontal nodes, and finally combine the two approaches to obtain the result for
the intermediate points.

Proposition 10.9. The vertical plumbing map QP1Y : W, — EDY" is open in a neigh-
borhood of any point in the deepest stratum QMDﬁ’S.

For a surface X that corresponds to a point in the subset W, of the model domain
we denote by X (_<Z.) the subsurface consisting of the levels < 4, including the plumbing

annuli B, for all e with £(e™) < i and By, for h with £(h) < i, but excluding the discs
& for all e with £(e™) > i and &, for h with £(h) = i. We let X(+<Z.) be the subsurface
consisting of the levels < i, including all the plumbing fixtures connecting to higher

levels all the way up to the top plumbing annuli B} for £(e™) > i.

Proof. Choose a model differential (X,n) in the deepest stratum QMDQ’S (which
we continue to implicitly identify with the deepest stratum of ZD3") and a sequence
(Yo, wn) = (X,n) in ZD3’. We deal only with the case that Y;, is smooth, the general
case being easier (since some edges are already nodal and require no unplumbing) but
notationally more involved.

We can choose representatives of (X,n) in Q7" (1) and (Y, wy) in QT (s ¢ (1) so
that convergence still holds. By the definition of convergence in Q7 (5 (1) as given
in Section 7| there is a sequence d,, = {d,;} € CL*(A) and a sequence of almost-
diffeomorphisms ¢, : Y, — X, defined up to isotopy, which are compatible with the
markings, asymptotically turning-number-preserving and whose inverses are conformal
on an exhaustion K, ;) of each level X(;). More precisely, this is an exhaustion of the
complement of the nodes and marked points zp in X(;).

We start by choosing the sequence of coordinates ¢,, defined in terms of these d,, ; by

Ao —d
(10.12) thi = e <’”“’”> .
a;
Similarly to t([l@'] defined in Equation (8.3), we denote t = szl- tfj ;- Since we are
not rescaling the top level, dy, 0 = 0 and it follows that t% = e(—dy ;). By definition

i
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of convergence,

. 1
(10.13) €(dni)(gn,(i))sn —— @), Le. tT(gn,(i))*wn — )
n, [4]

We will now construct inductively the (X,,,n,,) such that QP1"(X,,, n,,, tn) = (Ya, wn).
Recall that by Proposition it makes sense to consider the effect of plumbing only on
the bottom part of a surface and to write Q P1" (erf ( <Z.)), suppressing the dependence on

(n,,, tn) for notational convenience. Note also that the set of connected components of
the €,-thick part of Y;, is eventually the disjoint union of sets of level i components Y, (;),
where Y;, (;y are those components that g, maps to X, (;).

The base case of induction is to pick appropriately the surfaces with the correct
bottom level piece (X;(i Ny Ty (— N)) among all surfaces parameterized by W, and to

construct a conformal map on the bottom level h,, (_yy: QPlU(X;,(ng)) = Y, (=N
which identifies the two differentials. The second step of the base case is to extend this
map by analytic continuation across the plumbing annuli to obtain a conformal map
h:;(_N): QPF’(X;(S_N)) — Y, (<-N)-

The inductive step starts with the map h:;(i): QP]D(X;,(Q)) — Y, (<i)- We choose

appropriately (X, (i+1), 7, (i+1)) and construct a conformal map

B (ig1y: SUPL (X;(Siﬂ),nn,(giﬂ),tn) = Yo (<it1)

which identifies the forms and agrees with h:

)

(i) On its domain. We then analytically

continue across the plumbing cylinders and disks to get h;u 1) QPI“(X:;( <i +1)) —

Y, (<i+1)- This procedure eventually ends at the top level when we have constructed

the entire surface X, together with a conformal isomorphism of Q P1(X,,) with Y.
We start with the details of the construction at the bottom level. The conformal map

g;%i N) is eventually defined on the fixed subsurface K_y containing X (i N) but this

map only approximately identifies the rescaled differentials, as is indicated in (10.13]).
We choose a sequence of surfaces (Xn,(_ NY» My (— N)) of the same topological type as
(X (=), M(=ny) such that

1
(10.14) Per(Xm(_N),nn,(_N)) = 1@ Per(_N)(Yn,wn)
n?(_N)

and such that (X, ), 7n,(—n)) converges to (X(_ny,7(—n))- In this equation Per(;) C
HY(%;\ Pi, Z;; C) denotes the relative periods in the level i subsurface. We may choose
such a sequence because the period map is open. By convergence in the conformal

topology, there exist maps (gff(_ N)): Xn,(-N) = X(—n) whose inverses are conformal

on the same subsurface. We apply Theorem to the sequences (g;\ (- N))*(tn *1,,)
and (gn,(_ N))*wn to produce a conformal map k;, defined on K(_y) which identifies

these forms. The composition

—1 X
hn,(fN) = In(-N)° ko In,(—N)
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provides eventually a conformal map

N X;,(,N) — Y, such that h:‘%(fN)wn = {5 ()T (—N)-
For the analytic continuation through the thin vertical annuli, recall that the plumbed

surface is obtained by gluing for all vertical nodes e the plumbing annuli V;, . = V(py,)

where p, = Hf(:egzij)l tnmj’i, equipped with the standard form €, . as in (10.8), to X,.

At this point, the gluing map on the bottom plumbing annulus is known, as we have
chosen the lower level surface, and the gluing on the top annulus will be known when
we have chosen the upper level surface X,, (yc+)). By construction, the composition

Une = hp o U;e: AT_L,S - Yy

(where v, . was defined in Theorem identifies the form w,, on Y,, with the standard
form €, . on the bottom plumbing annulus. We show in Lemma below that for
some sufficiently large R > 0 the maps v, . can eventually be analytically continued to
a conformal map vy, ¢: Vrﬁ’e — Y, where Vﬁ,e C Vpe is a round subannulus containing

the basepoint p;e =9/ RY2. A fortiori the analytic continuation also identifies wy,
with €, .. We define marked points ¢ = v, ¢(pF) in Y,,.

At this stage, we also analytically continue h,, ) across the &, at level —N.

We now begin the inductive step, assuming that we have constructed conformal
maps h;;(i) s QPIY (X;(Q.)) — Y, (<i)- We now wish to construct a sequence of marked
model differentials (X, (i+1),7n,(i+1)) converging to (X(;41),7(i+1)) and the conformal
maps f, (;4+1)- This is similar to the base case. The difference is that we have already
constructed maps on the top plumbing annuli of the nodes connecting to level 7 + 1
from below, and the new maps must agree on these annuli. To deal with this, we choose
the sequence X,, so that the perturbed period coordinates satisfy
(1015) PPer(an(iJrl), nn’(i+1)) = ;PPQI‘(Yn7(i+1),wn) .

a

n,(i+1)
The PPer on the right-hand side is a shorthand to express that we compute on Y,
periods in the same way as in the definition of PPer, i.e. we consider the surface cut
open at the lower ends and use integration at the “nearby points” ¢f determined by
the induction hypothesis for all cylinders whose top end is on level (i + 1). The choice
of X,, with the required perturbed periods is eventually possible, since the perturbed
period map is open by Proposition [9.7 B

To specify X,, as a marked surface, we define a marking f,, of X,, by composing the
marking of Y,, with the appropriate map f,: Y, — X, from Proposition which is
defined when Y, is sufficiently close to X as an unmarked multi-scale differential.

To complete the proof that X,, — X as model differentials, we need to check that
the sequence of markings f, is asymptotically turning number preserving. Since the se-
quence of markings of the Y), is asymptotically turning number preserving by definition,
and the sequence f, is as well by Proposition so is their composition f,. gt

In order to conclude the proof of the openness of the plumbing map, it remains to
justify the extension of the conformal map across the thin part.
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Given (Y,,w,) — (X,n) as in the above proof, we consider a fixed level i and
continue to let Y{;) denote the union of the components at this level of the e-thick
part of Y. For each edge e with £(e*) = i, we have a sequence of conformal maps
Up et Ape = Yy (<) of the bottom plumbing annuli of the plumbing fixtures V(pn.c)
such that (v, )" (w/t; W) = ., where

d —_—
Qe = (u“—r'e(t))—u and  ppe = H by
u A 2

Lemma 10.10. In the above situation, if R is sufficiently large (depending only on the
geometry of (X, n)), then the maps Uy, e eventually extend to conformal maps vy e whose
domains contain the annulus V7, = {6/pne < |u| < §/VR}, such that U;‘w(w/t‘[‘ﬂ) =
Qe, and moreover, the images of V7. and V:ye, are disjoint for any e # €.

Proof of Lemma[10.10, If R is sufficiently large, the subsurface below the outer bound-
ary Yn = Yne of A, ., given by [v| = 6/R, is convex for R sufficiently small, since
rl(tn) /tg,fﬂ tends to 0. We use orthogonal projection to v, to extend v, .. That
is, we map the equidistant curve of distance ¢ to 7, to the equidistant curve of dis-
tance £ to v,, .(7n), mapping geodesic rays orthogonal to 7, to geodesic rays orthogonal
tow (7n)-

This gives a well-defined conformal map vy of V,7, onto its image as long as the
(2e-distance between the boundary components of V7, is smaller than the w,-distance
from any zero of Y, (;j to v (). The distance between these boundary components
tends to 6" /kR"/2. Since (Y, w,) — (X,n), it suffices to take R large enough that
6" /kR"/? is smaller than the distance between any zero of 1@y and any nodal zero.

Similarly, to ensure the V7, are disjoint, it suffices to take R large enough that

6" /kR"/? is smaller than half of the distance between any two nodal zeros of n@- &
We now deal with the local injectivity of the plumbing map.

Proposition 10.11. The map QP1Y is injective in a neighborhood of any point (X, n)
in the deepest stratum QMDZ’A.

Proof. Consider a sequence Y, in ZD3" converging to X in the deepest stratum where
Y,, is obtained by plumbing two sequences of model differentials X! and Xz, both

converging to X. We eventually have almost-diffeomorphisms fi: Y, — Y;, defined
in Proposition and h, = f} o (f2)~! is conformal outside the disks £F and &,.
We homotope h,, on these disks to a conformal isomorphism, showing that the X! are
in fact the same sequence.

Alternatively, injectivity can be established by analyzing the proof of Proposition[10.9
to show that at every stage of the construction of the sequence X, and the isomor-
phism X,, — Y,,, there is eventually a unique choice. This uses in particular that the
perturbed period coordinates are injective, established in Proposition 9.7 g

Corollary 10.12. The vertical plumbing map is a local homeomorphism on Wk.
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Proof. For points P in the deepest stratum QMDZ’A this has just been shown. Since
being a local homeomorphism at a point is an open property, this implies that after
possibly restricting U to a smaller neighborhood of P x 0 the property of being a local
homeomorphism holds over all of U. pil

10.8. The horizontal plumbing construction. In this section, we complete the
plumbing construction by plumbing the horizontal nodes of the family (Y’ ,w) — W,
constructed by the vertical plumbing map 2 P1” to obtain a generically smooth family
Y= W x AH,

We enumerate the horizontal edges as eq, ..., eg and label the branches through the
corresponding nodes ¢; by an arbitrary choice of sign. Each ¢; is adjacent to two half-
infinite cylinders which each contain at least one zero of w. We denote by z;r and z; an
arbitrary choice of a zero in the boundary of each cylinder. We then apply Theorem [4.]
to choose standard coordinates

UT:WEXA1—>)}” and v, : We x Ay = )"
covering a neighborhood of ¢; in the corresponding branch and such that
W) ) = 12w @) w) =
u v

As these standard coordinates are unique up to multiplication by an arbitrary constant,
we normalize them by requiring that the zeros 27;+ and z; correspond to v = 1 and
v = 1 respectively.

We define for each j the (horizontal) plumbing fixture

(10.16) W2 = {(w,t,@,u,v) € We x AF x A 1uv =},
equipped with the relative holomorphic one-form

du dv
(10.17) Q; = —r’ej (t); = r’ej (t)j

and define two families of annuli A;-t C le by removing the upper or lower branches
of the singular fibers:

+ 1 — - _ 1 —
A7 = Wi\{v=0} and A; = W;\{u=0}.
We define two families of conformal maps T]j.[: le — X' by

+ _ o F - — o
(10.18) T (w,t,x,u,v) = v; (w,t,u) and T; (w,t,x,u,v) = v; (w,t,v),

which identify .A;E with families of annuli Bj»E C Y’ x AH. Note that, in contrast to
the vertical plumbing construction, these families of annuli have moduli tending to co
over the singular fibers.

We define the plumbed family Y — W, x AH by removing from )* the disks bounded
by the annuli Bj.[ and gluing in the plumbing fixtures le by the maps T;t. As the
gluing maps preserve the one-forms, ) is equipped with a relative one-form which we
continue to denote by w.

Alternatively, in terms of flat geometry, the family ) can be obtained by cutting
each half-cylinder bounding ¢; along a closed geodesic, and gluing the corresponding
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boundary components by an isometry to obtain a finite annulus C;. The heights of the
core geodesics and the gluing maps are determined by requiring that

/
/ w = r;logwy,
-
+

where the integral is along a curve 7; in C; from the chosen zero z; to zj.
As for the vertical plumbing construction, standard universal properties applied to
the restriction of ) to the strata WEJ define the plumbing map Q Pl: W, x AH EDg.

Proof of Theorem[10.1. We claim that QP is a homeomorphism onto its image, the
rest of the statements of the theorem following from the construction and having already
been established.

To see this, consider a sequence (X,,,t,) and point (X, ) in W, x A¥ (which we are
implicitly identifying with ZD3" x AH via the vertical plumbing map), and let Y,, and Y
in ED} be the corresponding horizontally plumbed surfaces. For each annulus C; C Y,
fix a subannulus C} C C; with geodesic boundary, and let Y/ C Y be the complement
of the CJ. By the definition of the plumbing construction, Y is canonically identified
with a subsurface X’ C X.

Suppose (X, t,) converges to (X,t), which is exhibited by a sequence of maps
gn: K, — X, defined on an exhaustion of X. These g, are eventually defined on X’
and define maps h,: J, — Y, defined on an exhaustion .J,, of Y’. These h,, satisfy the
required properties to exhibit convergence of Y,, to Y, except they need to be extended
over the annuli C] to be defined on an exhaustion of Y. We do so using the straight
line extension of Lemma

The pullbacks A’ (du/u) then converge to du/u. The extended maps h, are then
quasiconformal on an exhaustion of Y and satisfy the hypotheses of convergence in the
quasiconformal topology on forms from Section It follows that Y,, — Y in =ZDj,
so (2Pl is continuous.

If Y, = Y in ED}, convergence of X,, to X is proved similarly by transporting
maps exhibiting convergence of Y,, to Y to an exhaustion of X', and then extending
across the complementary punctured disks by the straight line extension to obtain
quasiconformal maps on an exhaustion of X. Convergence of the t, is obvious as
they are relative periods of a convergent sequence of forms. It follows that Q P17} is
continuous, so 2 Pl is a local homeomorphism as desired. s

10.9. The complex structure on the Dehn space. We can now collect the infor-
mation of the preceding sections and provide the Dehn space with a complex structure.

Proof of Theorem [10.1. The desired properties of Pl were shown in Proposition [I0.8
and Corollary The equivariance of the map with respect to the group Ky =
Twy/Twi follows from the construction in Section since K acts on the markings
and the simple rescaling parameters only, and they both have been transported from
the family over the model domain to the plumbed family. gt
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Proof of Theorem [10.3. We proceed inductively with respect to the partial order in-
duced by undegenerating. The base case of the induction A = ) is simply QMD;, =
OBy = QT (1) = QT (s, (1) = EDy.

For the induction step we consider multicurve A and note that for every undegener-
ation A’ ~» A the complex structure on 2D,/ induces a complex structure on the open
subset EDﬁ’f = ED3,/(Twj/Twj,) of ED} since Twj /Twj, acts properly discontin-
uously. The complex structure on the intersections EDQ%S and EDQQC;S agrees, since
it stems from the common undegeneration of Ay and As. So far, we have obtained a
complex structure on

—As _ =mys \ =S
) Py = EDi\EDy”.
A A

On the other hand, we can cover a neighborhood of the deepest boundary stratum
ED?’S by open sets of the form QP1(U;), where U; is of the form W, x A, The union
of all these sets cover all of ZD3. It remains to show that the complex structures
agree, i.e. that the change of chart maps are holomorphic. Using that the change of
chart maps are continuous, it suffices to show holomorphicity on the open stratum of
Qmi, since this is the complement of a (normal crossing) divisor. There, the change
of chart maps are compositions of the moduli map for the plumbed family and of the
inverse of such a map. Since the plumbed family is a holomorphic family over QM D3},
its moduli map is holomorphic (as a map to QBy/Tw? ) and this completes the proof.

The complex structure on =D, stems from that on =D} and the Kx-equivariance
of the plumbing map. gt

10.10. Horizontal extension of perturbed period coordinates. We finish this
section by extending the perturbed period coordinates discussed in Section [9] to the
case with horizontal nodes. These can be regarded as a generalization of the classical
period coordinates, giving explicit local coordinates at the boundary of Eﬂg,n(u).
These coordinates will not be used in the current paper, but the construction is essential
for further applications, e.g. in [CMZ20| or [BDG20].

More precisely, suppose that we have chosen the local gluing data to plumb each of
the H horizontal nodes by a plumbing fixture V' (z) for x € A, see (10.4]) and (10.18]).
Let Y — U = W x A be the family that results from plumbing the horizontal nodes of
X — W as in Section Our goal now is to extend the perturbed period map PPer
from Section to a local diffeomorphism whose domain is U.

Suppose the j-th horizontal node g¢; lies on the level i = i(j) subsurface Y C X
Let 3; be a path that stays in X(;), which represents a homology class in ¥ relative

to Z; (or to the points in the image of o if needed) and that crosses once the seam
of ¢;, and that crosses no other seams. Such a path exists, since each component of X
contains at least a point in Z;. Let a; be the loop around ¢;. We define the perturbed
period map

(10.19) ePP = PPer x Phor: U — CF"W x @R, x CH |
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where
U — CH,
(Kot (z)) s |ef 20t
;M t, (1 Jae; 16 HEG) ’

j=1,..H

(10.20) Phor:

and for integration we use the f-images of the paths in the corresponding fiber of the
family J — U. Note that we integrate the form in the fibers of ) which is the family
obtained after the second plumbing map. In particular, the horizontal node g; has been
smoothed out in the fibers of }J — U above the locus x; # 0 using the plumbing fixture.
The exponentiation makes this map well-defined, despite that f is only well-defined up
to composition by elements in the twist group Twy. Indeed any two images of 3; differ
by a power of the Dehn twist about «;.

Proposition 10.13. The perturbed period map ePP is a local diffeomorphism in a
neighborhood of W x 0.

Proof. Using Proposition the claim follows from the fact that the components of
the map Phor are non-constant, holomorphic (since the aj-periods tend to a non-
zero residue and the imaginary part of the §j-periods over the aj-period goes to +00)
and independent of each other by the construction of plumbing annuli disjointly and
independently. si

Example 10.14. We describe the perturbed period coordinates in the case of a curve
with two irreducible components X7 and X that meet at two horizontal nodes. Take a
model differential such that its restriction 7; to the component X is in QM 3(2, —1, —1)
and the restriction 7y to Xo is in QM 4(1,1,—1,—1). In this case, the GRC space
is the subset of the product of the H' such that the sum of the residues of the 7; at
each node is zero. Of course one of the two equations is redundant because of the
residue theorem, and hence the GRC space is a hyperplane (i.e. of codimension one
only). Moreover, since the twisted differential has only one level, there is no modifying
differential, hence the perturbed period map PPer is the usual period map.

Now let us denote by (1, x2) the coordinates in A2. Moreover for i = 1,2, let 3; be
a good arc crossing exactly once the seam of the node ¢; from the double zero of n; to
one of the zeros of 72. Then the map Phor|g, a2 is given by

(10.21) (z1,22) = (k171, kow2),

where the k; are non-zero constants.

To see this, we decompose the path §; into three paths as follows. The first path ﬁil
joins the double zero of 11 to the marked point in X; used to put the plumbing fixture.
The second path 51-2 is the (image in the plumbed surface of the) path in the plumbing
fixture of Equation joining the two marked points. The last path Bf’ joins the
point of X5 used for the plumbing fixture and the endpoint of ;. In this setting, the
period of f; is the sum of the periods of the three arcs 3/. Note that the periods of Bl
and BE’ are constants cil and cf above A%, An easy computation using Equation (10.17)
shows that the period of 37 is equal to r;log(z;), where r; is the residue of 7 at g;.
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Hence the B;-period is of the type ¢} + 7;log(z;) + ¢. This gives Equation (10.21]),
where the k; are the exponentials of (c! + ¢})/r;.

11. FAMILIES OF MULTI-SCALE DIFFERENTIALS

In this section we define families of multi-scale differentials, generalizing the defini-
tion of a single multi-scale differential in Section |7l Eventually we will give an algebraic
description of the stack of multi-scale differential as a blowup. The starting point will
be a flat family of pointed stable curves (m: X — B, z), over an arbitrary base B, possi-
bly reducible and non-reduced. We will first define a germ of multi-scale differentials at
a point p € B. Roughly speaking, this will consist of four pieces of data: the structure
of an enhanced level graph on the dual graph I', of the fiber X,,, a rescaling ensemble,
which is a germ of a morphism R,: B, — T?p to the normalization of the level rotation
torus closure (recall the definition and details of this from Section [6.5)), a collection of
rescaled differentials w(;), and finally prong-matchings at all nodes of the family, such
that for every non-semipersistent node (as defined below) the prong-matching is natu-
rally induced by the family. These data satisfy some restrictions analogous to those of
a single twisted differential, and there is an equivalence relation given by the action of
the level rotation torus, analogous to the definition of a single multi-scale differential.

We will show in Proposition that in favorable circumstances, for example for
a family over a smooth base curve B with no persistent nodes, giving a multi-scale
differential simply amounts to giving a family of stable differentials of type pu, that do
not vanish identically on any fiber.

11.1. Germs of families of multi-scale differentials. We will define all the notions
locally first, so until Section [T1.2 we will work with a family over the germ B, of an
analytic space B at a point p € B.

Recall e.g. from [ACG11, Proposition X.2.1] that for each node g, of X,, there is
a function f. € Opp, which we call a smoothing parameter, so that the family has
the local normal form we.v. = f. in a neighborhood of g.. The parameter f. is only
defined up to multiplication by a unit in Op;. We will write [f] € Op,;/O% , for its
equivalence class.

Given an enhanced level graph Iy, suppose we have a morphism R: B — T?p. This
morphism determines for each vertical edge e a function f. € Op and for each level ¢
a function s; € Op, such that if an edge e joins levels j < 4, then

(111) Fe = S5 ... 81

e

Definition 11.1. A rescaling ensemble is a morphism R: B — T?p such that the

parameters f. € Op for each vertical edge e determined by R lie in the equivalence
class [f.| determined by the family 7: X — B. A

The s; will be called the rescaling parameters determined by R, in parallel with the
notion defined in Section [8.2] The rescaling ensemble R can be thought of as a choice
of these parameters that satisfies for each edge e of Iy, together with the choices
of appropriate roots of these which define a lift to T?p, see Proposition for the
precise statement.
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Definition 11.2. A collection of rescaled differentials of type p at p € B is a collection
of germs of sections w(;) of wy,p defined on open subsets U; of X, indexed by the
levels i of the enhanced level graph I',. Each Uj; is required to be a neighborhood
of the subcurve X, <; with the points of its intersection with X, ; U Z°° removed.
For each level i and each edge e of I', whose lower vertex is at level i or below, we
define r, (;) € Op to be the period of w(;) along the oriented vanishing cycle . for the
node g.. We require the collection to satisfy the following constraints:

(1) For any levels j < i the differentials satisfy Wiy = 85 si—1w(j) on U;NU; for
some s, € Op,, with s;(p) =0 (where k =j,...,i—1).

(2) For any edge e joining levels j < i of Iy, there are germs of functions ue, v,
defined on a neighborhood of the corresponding node in X, and a germ of a
function f. on B, such that the family has local normal form w.v. = fe, and in
these coordinates

11.2 D= (et frer, )T and wey = — (o ydve
(11.2) wiy = (uet + frem) — and wy = —(0" Hre )~

€ U€

where k. is the enhancement of I',. The irreducible components of X[y (y,)
where w(;) is zero or oo are called respectively vertical zeros and vertical poles.

(3) The w;) have order my along the sections Zj, that meet the level-i subcurve
of Xp; these are called horizontal zeros and poles. Moreover, w(;y is holomorphic
and non-zero away from its horizontal and vertical zeros and poles.

(4) (Global Residue Condition) Let ¥ be the topological surface obtained by smooth-
ing each node of X,,, and regard the vanishing cycles v, as oriented curves on .
Then each relation

Y. =0 inH (NP, Q) for some ap € Q implies Y | aere sy = 0.
e (em)<i e ten)s

If the rescaling and smoothing parameters for the collection w;) agree with those of
the rescaling ensemble R, we call them compatible. We denote the collection by w =

(w(i))ieLs(r,) OF by wp. A

Some remarks to unravel the meaning of this definition are in order. Condition (2)
is often automatic from Theorem However, for the case of semipersistent nodes
defined below that Theorem does not apply, and the condition needs to be imposed.

Condition (3) ensures that each w; is not identically zero on a neighborhood of
the i-th level of X),. Condition (1) ensures that w(; vanishes on the components of X,
of level j < i. Moreover, w(; vanishes on a neighborhood in X of X; for some level
j < i, if some s with 7 < k <+¢ — 1 vanishes in a neighborhood of p on B.

Conditions (4) and (1) together imply the usual global residue condition in each
nearby fiber X, (using the enhanced structure of I'y, which we define below by unde-
generating from I'y). Note that Te,(i) agrees with 2711/—1 times the residue of w(;) at ge
over the locus where the node g, persists. By condition (1), given two levels j < i and
any edge e such that £(e”) < j < i we have

Te, (i) = i Si—1Te(j5) -
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In particular, if s; = 0 for some £(e”) < j, then 7 ; = 0. Consequently, the relations
reflect the global residue condition as stated in Proposition [9.2] as we now explore in
an Example.

Example 11.3. (Definition extends to fiberwise GRC.) We consider the level
graph given by Figure m, where k., = 2 for every 7. Consider a collection of rescaled
differentials with w_yy = t*w_g) (while w) will not matter for us) over B =
SpecClt]/(t*), and let 7, (;: B — C be as in Deﬁnition The usual GRC from Sec-
tion states that the residues at the point ¢ = 0 satisfy 7, (_1)(0) = ¢, —1)(0) = 0.

€1 €2

FIGURE 7. An enhanced level graph illustrating versions of the GRC.

Since the vanishing cycles corresponding to the edges e; and es are homologous,
Definition (4) states that

0 = 7oy (c1) F Teg (1) = Tep(—1) +E7e5(~2) -

This condition reproduces the GRC when setting ¢ = 0, and imposes a stronger con-
straint on the higher order terms of the expansion of the residues in ¢.

In preparation for the notion of prong-matchings in families, we define a subtle
variant of the usual notion of persistent nodes that becomes relevant over a non-reduced
base, and thus in particular for first order deformations.

Definition 11.4. Given a germ of a family 7: X — B, at p, we say that a node e is
persistent if fo = 0. If the dual graph I', has been provided with an enhanced level
graph structure, we say that a node e is semipersistent if fre = 0. A

We start with a discussion of prong-matchings in families, generalizing the definitions
in Section Suppose first that g. is a persistent node joining levels j < i of I'y. In
local analytic coordinates, the family is of the form w.v. = 0. We write Q). for the
nodal subspace cut out by u. = v. = 0, so that (). can be thought of as the image of
a nodal section B — X. We write N and N, for the normal bundles to Q. in each
branch of A along Q.. These are line bundles on ()., because ). is a Cartier divisor
in each branch, and by pullback via the nodal section they can be regarded as line
bundles on B.

We also have the rescaled differentials w(;) and w(;) defined near Q. in its respective
branches, and choose local coordinates u. and v, so that these differentials are in their
standard form (with fo = 0). The prongs of Q. are then the k. sections of the
dual line bundles (N:F)* given by v, = 9+8%6 and v_ = 9_3%6, where 61 range over all

possible -th roots of unity. A prong-matching at Q. is a section o, of P. = Nt @ N
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such that o.(v4 ® v_)" =1 for any two prongs v4 and v_. Intuitively each prong v
is matched to the unique prong v_ such that oe(vy @ v_) = 1.

Prong-matchings can be defined similarly for a non-persistent node. In this case,
the function f. defines a subspace B, C B over which this node persists. The entire
discussion of the previous paragraph can be carried out over B., and one defines a
prong-matching as an appropriate section of P., which is now a line bundle over B..

For a non-semipersistent node e, there is a natural induced prong-matching o, over Be
which is defined by the choice of the rescaled differentials w;) and the rescaling ensem-
ble. This prong-matching o, is defined explicitly in local coordinates by writing it as
e = due ® dv,, where u, and v, are as in . Any two possible choices of u. and v,
are of the form au, and o~ 'v, for some unit a € (’)*B’p, so the induced prong-matching
does not depend on this choice.

We can now package everything into the local version of our main objects.

Definition 11.5. Given a family of pointed stable curves (7: X — B, z) and B, a
germ of B at p, the germ of a family of multi-scale differentials of type pu over B, is an
equivalence class of the following set of data:
(1) the structure of an enhanced level graph on the dual graph I'j, of the fiber X,
(2) a rescaling ensemble R: B — T?p, compatible with
(3) a collection of rescaled differentials w = (w(;)icre(r,) of type p, and
(4) a collection of prong-matchings o = (0¢)ccpr)», which are sections of Pe
over B.. For the non-semipersistent nodes, these are required to agree with
the induced prong-matchings defined above.
The Op p-valued points of the level rotation torus 7, (Op) act on all of the above data,
and we consider the data (w(i), R,0.) to be equivalent to (p- Wi p ' R, p-o.) for any
pE Tpp((’)B). Here the torus action is defined by p - W) = Siw(s) and p- o, = feo., and
p~!- () denotes post-composition with the multiplication by p~*.
Replacing Tr, (Op,p) with the extended level rotation torus 772 (Op,p), the analogous
object is called a germ of family of projectivized multi-scale differentials. A

Remark 11.6. Note that over a reduced point, this definition of a family of multi-scale
differentials agrees with Definition

A morphism between two germs of multi-scale differentials
(11.3) (' X' = B2 'y, o) = (m: X = B,2,T),w,0)

is a pair of germs of morphisms ¢: B’ — B and ¢: X’ — X that jointly define a
morphism of families of pointed stable curves (see |ACG11, p. 281]), such that the
induced isomorphism of dual graphs I',y — I}, is also an isomorphism of enhanced level
graphs and such that ¢*(w, o) is equivalent to (o', o).

For later use in the context of marked differential, and as an auxiliary object in the
next subsection we define a simple rescaling ensemble to be a (germ of a) morphism
R°: B — T?p to the simple level rotation torus closure, such that the composition

with T;p — T?p is a rescaling ensemble in the above sense. Concretely, the map R® is
given by simple rescaling functions t;: B — C (in terminology consistent with that in
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Section Given a simple rescaling ensemble R?, the associated (non-simple) rescaling
ensemble is obtained by taking

Let)—1
(11.4) si = t% and f, = g
i=L(e™)

similarly to (|6.11]).

11.2. Restriction of germs to nearby points. Now we allow B to be any complex
analytic space containing a point p. Before giving the global definition of families,
we need to define restrictions of germs. For this purpose consider a germ of multi-
scale differentials at p given by the data (I'y,w = (w(;)), o = (0¢)) with w compatible
with R,. Let U C B be a neighborhood of p over which R, and all o, are defined. For
every q € U we wish to define the germ of multi-scale differentials at ¢ induced by this
germ at p.

First we explain how this datum defines an undegeneration of enhanced level graphs
dg: I'y ~ I') as in Section With notation of that section, this undegeneration is
given by J = {j_1,...,j-m}, where j, € J if and only if s, (¢) = 0. Moreover recall
that jo = 0 and j_p—1 = —N — 1 (though they are not part of J). More precisely,
the map of dual graphs 0: I', — Iy is obtained by contracting every vertical edge e
such that f.(q) # 0. (Whether horizontal edges are contracted or not is determined
by the fiber X,.) If e is contracted and joins levels j < ¢, then since ff'e = s;---s;_1,
the rescaling parameter s;(q) # 0 for each j < k < i. We then define the order on I';
so that the k’th level of I'; corresponds to a maximal interval (jx_1, ji] in L*(I'y) such
that s;,(¢) = 0 for ji, € J and s;(q) # 0 for every smaller i in this interval. The
map ¢ is then compatible with the enhancements of these dual graphs and defines a
degeneration dg, as desired.

Second, we define the restriction of R, to a rescaling ensemble at g. The undegenera-
tion dg induces a corresponding homomorphism dg, : T, — Tr, defined in Section
and a homomorphism dg, : T?q — T?p, which is equivariant with respect to the action
of each torus on the normalization of its closure.

Proposition 11.7. Given a rescaling ensemble R,: B — T?p, there exists a neighbor-
hood V' C B of q, a rescaling ensemble Ry,: V — T?q, and 7 € Tr, such that

dg,oR;, = 7-R,
as germs at q. Any two such T differ by composition with an element of Tr,.

Proof. We take the fiber product of R, with the finite map p: T;p — Tiip/ Kr, = T;p
to obtain some simple rescaling ensemble R): B® — T%p, defined on some ramified
cover B® of B. We solve the equation for the corresponding simple objects and then
descend. Let ¢’ € B® denote some preimage of ¢ € B. Two consecutive levels ,7+ 1 €
L*(T',) have the same image in L*(I'y) = L*(I'y) if and only if #;(¢') # 0. As in
Lemma the image of the monomorphism digi Tfﬂq, — T?p of simple level rotation
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tori is cut out by ¢; = 1 for all levels ¢ such that the images of level ¢ and ¢ + 1 are the
same in L*(T';). We define 7° € Ty, by

s 1/ti(¢'), if dg(i) =dg(i+1)
(%) = .
1, otherwise .

This ensures that 7° - R} is in the image of dgi and so there exists a simple rescaling

ensemble R defined on a neighborhood of ¢’ in B’ such that Tgi oRy = 7°- R,
The multiplication map 7% is K -equivariant, since the torus Tﬁp is commutative.

Since Rj and ding are Ky, -equivariant by construction as fiber product, the map R
descends to the required map R, and we let 7 = p(7°).

To show the uniqueness of 7 up to the action of Tr_, observe that if for some other o
the composition 7/ - R, were to also lie in the image of dg,, then the values of 7 - R,
and 7 - R, must all be equal on all the edges of I',, that are contracted in I';, and on
all levels i € L*(I',) such that levels ¢ and ¢ + 1 have the same image in L*(I';). Thus
ol e I, must act trivially on all such edges and levels. But this is precisely to
say that 7/ - 77! lies in the image of Tr, embedded into Tt . gt

Third, we define the collection of rescaled differentials at ¢g. For each k € L*(I';)
let (jk—1,Jx] be its preimage in L*(I'y). We act on (w, o) by the 7 from the preceding
Proposition. The rescaling ensemble dg, o R, has s; = 1 for each i € (jx_1,7x) and
moreover, for any edge e of I'j, joining two levels in this interval, we have f. = 1. By
Condition (1) in Definition the restriction of (7 - w)(; to a neighborhood of the
fiber over g agree for i € (jx—1, jx) on their overlap. So we define w, to be the collection
of differentials over ¢ obtained by this gluing for all k € L*(T'y).

The last datum to define is a prong-matching for each edge of I';. An edge e of I,
persists in I'; exactly when ¢ € B, the subscheme defined by f. = 0. The prong-
matching o, is a section of P, and as such restricts to a germ of a section over the
neighborhood of ¢ intersected with Be.

11.3. The global situation. We finally obtain global objects by patching together
germs using the restriction procedure of the previous subsection. Essentially, we mimic
the definition of sheafification of a presheaf.

Definition 11.8. Given a family of pointed stable curves (7: X — B, z), a family
of multi-scale differentials of type pu over B is a collection of germs of multi-scale
differentials of type u for every point p € B such that if the germs at p and at p’ are
both defined at ¢, their restrictions to g are equivalent germs. A

We usually refer to a multi-scale differential by (wp,o)pep or just by w, suppress-
ing I', and R, to simplify notation.

Given a family of multi-scale differentials over B and a map ¢: B’ — B, we can pull
back the family to a family of multi-scale differentials over B’ by pulling back each germ.
For this purpose we note that rescaling ensembles and prong-matchings have obvious
pullbacks by pre-composing the maps with ¢ and the collection of rescaled differentials
can be pulled back as sections of the relative dualizing sheaf. The notion of a family of
multi-scale differentials can be regarded as a moduli functor MS,,: (Analytic spaces) —
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(Sets) that associates to an analytic space B the set of isomorphism classes of families
of multi-scale differentials of type p over B. Similarly, there is a projectivized analogue
PMS,,. The notion of families of multi-scale differentials defines in an obvious way a
groupoid MS, that retains the information of isomorphisms (Section X.12 of [ACG11]
provides a textbook introduction, highlighting the difference between MS,, and MS,,).
In Section [14] we will see that this is a Deligne-Mumford stack.

Much of the data of multi-scale differentials is determined automatically in good
circumstances. The reader should keep in mind the following situation that will be a
special case of the considerations in Section [11.4

Proposition 11.9. If B is a smooth curve, then giving a multi-scale differential of
type u on a family X — B without persistent nodes simply amounts to specifying a
family w of stable differentials of type p in the gemeric fiber which is not identically
vanishing in any fiber.

Proof. Since B is smooth and one-dimensional, Proposition [11.13| below implies that
the family (X — B, w) is adjustable and hence orderly (see Definitions|11.11jand [11.15|
below). The claim then follows from Proposition |11.16 yie

In contrast to this we observe:

Example 11.10. (Lower level differentials are not determined by w().) If B admits
a zero divisor s, say s -y = 0, then differentials on the lower level components of a
collection of rescaled differentials with given w(p) may be not uniquely determined. In
fact, if w(g) = sw(_1), then we also have w(y) = s(w_1) + y§) for any differential §.

11.4. Adjustable and orderly families. In this section we analyze the ingredients of
multi-scale differentials and when their existence is automatic. The study here will be
needed for the description of the moduli space of multi-scale differentials as a blowup
of the normalization of the IVC, in Section [14.1

For families of pointed stable differentials (7: X — B, w, z) considered in this section,
we make a standing assumption that w does not vanish identically on any fiber of .

Definition 11.11. A family of pointed stable differentials (7: X — B,w, 2z) is called
adjustable of type u, if for every p € B and for every irreducible component X of the
fiber X, over p, there exists a family of differentials 7 defined over a neighborhood
of X minus the horizontal poles and minus the intersection with the other components
of X, such that

e there exists a non-zero regular function h € Op, \ {0} such that w = hn,

e the differentials do not vanish identically on X,

e and 7| x has zero or pole order m; prescribed by ;1 at every marked point z; € X,
and has no other zeros or poles in the smooth locus of X.

Such a function h is called an adjusting parameter for (X,w) at the component X,
and 7 is called an adjusted differential. A

Later we will show that under some mild assumptions an adjustable family naturally
yields the data of a family of multi-scale differentials (see Proposition [11.16]).



THE MODULI SPACE OF MULTI-SCALE DIFFERENTIALS 95

The adjusting parameter h is not unique, since multiplying n by a unit in Op, and
multiplying A by the inverse of such a unit gives another adjusting parameter. The
following example shows that the existence of adjusting parameters is a non-trivial
condition.

Example 11.12. (Adjusting parameters may not exist.) Recall from [BCGGM1S,
Example 3.2] that there exist pointed stable differentials whose associated twisted dif-
ferentials are not unique. Consider such a pointed stable differential (X,w) and two
distinct associated twisted differentials (X, ;) and (X, 7). Take two families of gener-
ically smooth stable differentials (m;: X; — B;,w;) above smooth curves B; for i = 1,2,
such that the adjusted differentials induce the twisted differentials 7; at the points p;.
Construct a nodal curve B by taking the union of By and By glued at p; and ps. Since
the fiber over p; of the family of stable differentials (X7, w1) coincides with the fiber of
(X9, ws) over po, we can glue X; and Xs to form a family of pointed stable differentials
(m: X - B,w). This family is not adjustable since the adjusted differentials of the two
branches do not coincide over the node of the base curve B.

Next we show that if the base is sufficiently nice, adjusting parameters do exist.

Proposition 11.13. If the base B is normal, then any family (X,w) satisfying the
standing assumption is adjustable. Moreover, any two adjusting parameters for a given
point p € B and a given irreducible component X of X, differ by multiplication by a
unit in Opp.

We first recall some terminology. Denote Z = Z?Zl m;Z; a divisor on X, where
Z; C X is the image of the section of the j-th zeros or poles z; of w. We call an effective
Cartier divisor V' C X a wertical divisor if the image 7(V') C B is a divisor. Note that
any section B — X is not vertical because it projects to all of B. In particular, the
divisors Z; and Z are not vertical. A vertical divisor is called a vertical zero divisor
of w if it is contained in the zero locus of w (and being vertical ensures that it is not
contained in Z).

Proof. Suppose w vanishes identically on an irreducible component X of the fiber X,
for some p € B. Then X is contained in the vertical zero divisor of w. More precisely,
let W C X be a small neighborhood of the generic point of X away from all nodal
loci of X and let U = w(W) C B be the corresponding neighborhood of p in B. Then
W 2 U x A where A is a disk. Let V' C W be the vertical zero divisor of w in W, i.e.
V' is the zero divisor of w regarded as a holomorphic section of the twisted dualizing
line bundle wy ;7(—2) restricted to W, so that in particular V' contains the generic
point of X. Since V is the zero locus of a holomorphic section of a line bundle, it
is an effective Cartier divisor (possibly reducible and non-reduced), and we denote by
h € Ow = Opxa the local defining equation of V.

We claim that h does not depend on the second factor A, i.e. h can be regarded as a
function defined on the base U. If this were not the case, then for a generic point b € U
we would be able to solve the equation h(b,z) = 0, but then V would map onto U,
which contradicts that V' is a vertical divisor. We thus conclude that h € Oy.

Let W' C W be the smooth locus of W. Then (h~'w)|y is holomorphic and
can have horizontal zeros only, as the vertical zero divisor V is canceled out by h~1.



96 BAINBRIDGE, CHEN, GENDRON, GRUSHEVSKY, AND MOLLER

Since U C B is normal, it implies that W = U x A is normal and the singular locus
W\ W’ has codimension two or higher. By Hartogs’s theorem, (h~'w)|y extends to W
holomorphically and can still have horizontal zeros only, as the zero locus of h~'w must
be of codimension one (if not empty). It implies that the zero locus of h~'w in W does
not contain the generic point of X, and hence (h~'w)|xrw is holomorphic and not
identically zero. Since X N W contains the generic point of X, it follows that h~lw
does not vanish identically on X. Thus A is the desired adjusting parameter for X and
n = h™'w is the corresponding adjusted differential.

Suppose that hi is another adjusting parameter for X. Note that hflw = (h/h1)n.
If h/hy has a zero or pole at p, then hl_lw would have a zero or pole along the entire X,
which contradicts the definition of adjusting parameter. We thus conclude that any
two adjusting parameters for X differ by multiplication by a unit in Op ). pid

In the algebraic situation, we show that adjusting parameters exist étale locally,
which will be used in the proof of Theorem [14.8] as a step towards the algebraicity of
the moduli space of multi-scale differentials.

Proposition 11.14. Under the assumptions of Proposition if moreover the
family (X — B,w) is algebraic with B irreducible and smooth generic fiber, then there
exists an étale base change B’ — B and a preimage p' of p such that the adjusting
parameters for the pullback family (X' — B',w') at p’ can be chosen in the algebraic
. alg

local ring (’)B,,p,.

Proof. The existence of a function in the local ring after an étale base change of
R = (’)aBlgp is by definition equivalent to finding such a function in the (strict) Henseliza-

tion R" of R. Let ha, € O%pr be an analytic adjusting parameter for an irreducible
component X of X, provided by Proposition We view h,, as an element of the
local ring completion R. The proof consists of two steps. First we show that there ex-
ists an algebraic function h € R such that hay (Aiivides h, as elements of R. Secondly, we
show that for any factorization h = hj - hy in R there exist b}, hy, € R" with h = ) - b},
and such that h;/h} is a unit in R. Applying this to hy = hay gives the result by taking
B as the desired (algebraic) adjusting parameter.

For the first claim, note that the vertical divisor V' (as in the proof of Proposi-
tion is contained in the locus of singular fibers S C X, which is the m-preimage
of a Cartier divisor D C B. Let m be the vanishing order of V' at a generic point near
the component X under consideration. Then h,, divides the defining equation h of
m)S, where h can be regarded as a function in R defining the Cartier divisor mD.

For the second claim, consider the factorization as decomposition of the associated
Cartier divisor D = Dy U Dy, where D = V(h) and D; = V(h;), in Spec(R). Note
that a prime ideal of R" remains prime after lifting in }/%, as a consequence of Artin
approximation (see e.g. [Haz00, Section 3A, Proposition 1.9]). It follows that the
decomposition of D induces a decomposition D = D} U D} in Spec(R") into (a priori
Weil) divisors with D} = V(I]) and I/ @ gn R = (h;). Since R" — R is a faithfully flat
morphism, this implies that I} is locally free of rank one, too, and their generators h/
are the elements we wanted to construct. gt
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Suppose for the rest of this section that (X', w) is an adjustable family of differentials
over B. Given p € B, let V], be the quotient of the set Op, \ {0} by the multiplicative
group of units (’)E,p. The divisibility relation induces a partial order on V,, and we
write hg < hy if hy | ho. For each fiber X, the structure of the family near p can be
encoded by decorating the dual graph I',. We assign to each edge corresponding to a
non-persistent node the germ f. € V),, where uv = f, is a model for the family near the
node represented by e. We assign to each vertex the function h, € V,, where h, is an
adjusting parameter for the family at the component represented by v. We emphasize
that each of the functions f. and h, is only defined up to multiplication by some unit
in the local ring.

The vertices of I';, have the usual partial order as defined in Section This partial
order can be understood also in terms of the divisibility relation on the set of h,.
Suppose an edge e connects two vertices v and v’. Then the edge e is horizontal if
hy =< hy, and vertical otherwise, with v < ¢ if and only if h, < h,. In this case, we in
fact have

(11.5) ho/hy = fre

€
as shown in the proof of Theorem
In general, the divisibility relation among the h, may not be a full order, because for
two vertices v and v’ that are not connected by an edge, it can happen that h, and h,
do not divide each other (see e.g. Example . We will be especially interested in
families for which it is a full order.

Definition 11.15. An adjustable family (7: X — B,w) is called orderly if for ev-
ery point p € B, the divisibility relation induces a full order on the set of adjusting

parameters (hy),cr, - A

After these preparations we will now show that all the ingredients in the definition of
a family of multi-scale differentials can be read off from an orderly family, except possi-
bly missing a compatible rescaling ensemble, whose existence can be further guaranteed
when the base of the family is normal.

Proposition 11.16. An orderly family (7: X — B,w, z) over a normal base B de-
termines an enhanced level graph, a collection of rescaled differentials of type p, a
collection of prong-matchings for every p € B and a compatible rescaling ensemble as
described in Definition . Namely, such (X,w,z) determines a unique family of
multi-scale differentials of type p.

Proof. The divisibility order of the family (X, w, z) gives the dual graph I, the structure

of a level graph, which we normalize so that the level set is N. For each level i, we

denote by h; the adjusting parameter for some arbitrarily chosen vertex of level 7.
Define the germs of holomorphic functions s; € Op ) by so = hg = 1 and

(116) S; i — hi/hi+1
for all ¢ < 0. For each 4, define the germ of a family of differentials

(11.7) wey =w/(s0.--8) =w/h;



98 BAINBRIDGE, CHEN, GENDRON, GRUSHEVSKY, AND MOLLER

which is generically holomorphic and non-zero on each level ¢ component of X,,, van-
ishes identically on all lower lever components, and has poles along each higher level
component. For an edge e of I'; joining levels j < i, the pole order of w(;) (minus one)
at the corresponding node determines the enhancement k.. Moreover, the local normal
form expressions of w(;) and w(;) as in follow from Theorem The e, ve in
the normal form can also be used to define the prong-matching o, = du. ® dv. at e.
We thus conclude that the w;) give a collection of rescaled differentials of type p at p
with the s; as rescaling parameters as in Definition

We will show the existence of a compatible rescaling ensemble R: B — T?p in three

steps. First, as a consequence of Theorem amap R': B — T/Fp can always be found

by using the tuples s; and f. as above such that they satisfy (11.1)), where T}p denotes
the entire torus cut out by Equation (6.10). Next, we want the image of R’ to lie in the
desired connected component Tpp of TF,,7 and this can be done as follows. The torus

T} has a map to (C*)" by projection, which is an isogeny since these are two tori of

the same dimension. Choose in each connected component of T r, an element in the
kernel of this projection. Note that modifying the tuples s; and f. by the chosen kernel
elements does not change the rescaling parameters s;, but it changes the f., and thus
by choosing the suitable kernel elements the whole collection can lie in the connected
component Tpp. Finally, if the base B is normal, the map R': B — Tpp automatically
factors through the normalization of the level rotation torus closure, by the universal
property of normalization, and thus gives the rescaling ensemble R: B — T?p. gt

12. REAL ORIENTED BLOWUPS

The goal of this section is to define a canonical real oriented blowup for a family of
multi-scale differentials; see Section for a discussion of welding in terms of the real
oriented blowup for the case of one Riemann surface. This construction will be used in
Section (15, where we will show that the action of SLy(R) extends naturally to the real
oriented blowup of the moduli space of multi-scale differentials along its boundary. This
blowup is also used to define families of marked multi-scale differentials in Section [12.2
In fact there are two real oriented blowups, associated with a rescaling ensemble R and
with a simple rescaling ensemble R®.

In Section we develop the parallel case of families of marked model differentials.

12.1. The real blowup construction. We start with the local version, which only
depends on the rescaling ensemble.

Proposition 12.1. Let n: X — B, be a germ of a family of curves with a rescal-
ing ensemble R. Then there exists the (local) level-wise real blowup, which is a map
X Ep of topological spaces with the following properties:
(i) There are surjective differentiable maps @ : X — X and YB: LA?p — B, such
th,atTI‘OgOX = ¥B oT.
(ii) All fibers of T are vertically welded surfaces (in the sense of Section .
(iii) The fiber of wp over the point p € B, is a disjoint union of tori isomorphic
to (S1)ETw),



THE MODULI SPACE OF MULTI-SCALE DIFFERENTIALS 99

Moreover, the level-wise real blowup is functorial under pullbacks via maps B;) — B,
of the base.

Note that the level-wise real blowup does not modify the neighborhoods of horizontal
nodes. Hence in general the fibers of 7 remain nodal.

The fibers of ¢p are connected if m has no vertical persistent nodes, but may not be
connected in general. The prong-matching singles out a specific connected component
in each fiber of 5. We now perform the above construction globally.

Theorem 12.2. A family of multi-scale differentials (w, o) onT: X — B singles out
a connected component By, of the local level-wise real blowup B for each germ B,,. We
denote by Tp: X — B the restriction of the local level-wise real blowup to B

These germs glue to a global surjective differentiable map 7: X — B, the (global)
level-wise real blowup. Moreover, the global level-wise real blowup is functorial under
pullbacks via maps B' — B of the base.

If B is a manifold, then B is a manifold with corners.

Our construction is closely related to a number of real oriented blowup constructions
that appear in the literature, e.g. the Kato-Nakayama blowup of a log structure [KN99),
see also |Kat00| and [Abr+15|. The distinguishing feature here is that the blowup is
determined by the level structure of multi-scale differentials.

Proof of Proposition |12.1. The rescaling ensemble R gives a collection of rescaling and
smoothing parameters (s;, fe)ie L(T,),ecE(T,)» Which are germs of functions on B),. We
introduce for each of the variables an S'-valued partner variable, denoted by the cor-
responding capital letter. Concretely, we define Bp C By x (Sl)E(FP)U X (Sl)L(FP) by
the equations

(121) F€|f6| = fe, SZ|SZ| = s;, and F:e = Sj...Sifl,

where k. is the enhancement at the edge e joining levels j < i of I'). Note that these
equations still make sense if some s; (or fe) is identically zero, in which case S; € St
(resp. F.) is an independent variable, not related to s; or fe. The map ¢p : Bp — By
is then given by the projection onto the first factor.

Next we define the family 7: X — B as follows. Near a smooth point in the fiber X,
we simply pull back a neighborhood via ¢p. In the neighborhood Y of a vertical node g,
given by the equation ufu; = f., we define ¥ C eB(Y) x (S1)? by

(12.2) Ugt\ugty = uf and UJU, = F..

The fibers of T are not yet smooth in a neighborhood of the preimages of the vertical
nodes (as can be seen by computing the Jacobian matrix of the defining equations),
but we are in the setting of [ACG11, Section X], see in particular p. 154. There it is
shown that
(ug US) = (Jud | = lug |, [ufug |, UE) = (r,5,U7)

is a map from a real-analytic manifold to a real-analytic manifold with corners (stem-
ming from the boundary of the base r = 0) that admits an inverse which is however
merely continuous. The pullback of the analytic structure on the target provides the
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fibers of 7T with a smooth real analytic structure away form the horizontal nodes that
can be checked to agree with the one of a welding.
The functoriality of this construction is obvious. pi

Proof of Theorem [12.3, In view of Remark Corollary [6.7] and the definition of B
given in Equation imply the first claim.

Suppose the germs at p and at p’ are both defined at ¢ and differ there by the
action of (r;, pe) € Tr,. Then multiplying S; by r;/|r;| and Fe by pe/|pe| provides the
identification of the additional parameters of the level-wise real blowup. pid

In the special case that all nodes of 7 are persistent, the base B of the real oriented
blowup is isomorphic to B x (S1)“(»), with parameters S = (S;). Denoting by 8(S)
the argument of the S; divided by 27, the fiber of T over a point (p, S) € B is simply
the surface &), welded according to the prong-matching §(S) - o, where this map is
defined in . This also justifies the use of overlines for both constructions.

12.2. Families of marked multi-scale differentials. We aim to define a marked
version of families of multi-scale differentials. The general strategy is that we only
mark families of vertically welded surfaces. We get rid of persistent vertical nodes by
welding and we remove non-persistent vertical nodes using the level-wise real blowup.
The following construction of marking appears also in [HK14, Section 5], for curves
without a differential.

Let s C X be a collection of n points on a topological surface 3. Let (7: Y — B, 2)
be a pointed family of vertically welded surfaces. We define the presheaf of markings
Mark(Y/B) by associating with an open set U C B the set of almost-diffeomorphisms
¥ x U — 7~ 1(U) respecting the marked sections s and z, up to isotopies over U. A
marking f of the family w: Y — B is a global section of the sheaf associated with
Mark()/B), i.e. a compatible collection of fy, € Mark()Y/B)(U;) for sets U; that
cover B.

For any fixed subgroup G of the mapping class group Mod,, we similarly define
the presheaf of G-markings Mark()/B; G) by enlarging the equivalence relation (from
merely isotopies) to include pre-composition of the diffeomorphisms by an element in G.
A G-marking f of 7 is a global section of the sheaf associated with Mark()/B;G).

We can now define the marked version of families of multi-scale differentials. It starts
with germs and glues them by sheafification, as in the unmarked case. Let A be an
enhanced multicurve and I" = I'(A) the underlying enhanced level graph.

Definition 12.3. Given a family of pointed stable curves (7: X — B, z) and B, a
germ of B at p, the germ of a A-marked family of multi-scale differentials of type
over B, is an equivalence class of the following set of data:
(i) agerm (m: X — B, z,T),w’, 0’) of a family of multi-scale differentials, and
(ii) a Twp-marking f of the level-wise real oriented blowup 7: X — By,.
The level rotation torus 71, (Op) acts on all of the above data (see (6.3]) for the action

on the marking) and we consider two germs equivalent if they differ by the action of
an element in Tt (Op).
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A morphism between two germs (X’ ', o’, f') and (¥,w, 7, f) is a morphism (¢, ¢)
of the underlying multi-scale differentials such that the induced map g: X’ — X com-
mutes with the Twj-marking, up to an isotopy respecting the marked points. A

If B is a (reduced) point, then B is the arg-image of the level rotation torus, and a
marked multi-scale differential is a family of markings of the family of welded surfaces
over B.

Given a map : B’ — B, the functoriality of the level-wise real blowup allows to
define the pullback of markings along v by pulling back the germ of the family as in
Section and by restricting the markings along the induced map 1: B’ — B. In
this way we define a family of A-marked multi-scale differentials by sheafification, just
as in Definition . We have thus defined a moduli functor MS,, ) of A-marked
multi-scale differentials. The notion of a family of A-marked multi-scale differentials
and this functor has an obvious projectivized version, denoted by PMS,, r).

12.3. Families of simple marked multi-scale differentials. There is a similar
definition of the notion of a family of simple marked multi-scale differentials of type p.
We aim to require a Tw-marking rather than merely a Twj-marking but this requires
to change the blowup. Suppose m: X — B is a germ of a family of curves with a
simple rescaling ensemble R®. Then a version of Proposition holds verbatim, but
the torus in its point (iii) is the real torus associated with the simple level rotation
torus rather than associated with the level rotation torus. To prove this version of the
Proposition we introduce for each of the variables of T an S!'-valued partner variable,
denoted by the corresponding capital letter. Concretely, we define B C B x (S 1) L(Tp)
by the equations

(12.3) Tl = b,
(This torus is a finite cover of the one given in (12.1). The map is given by letting
S; =T/ and F, = ije’j T if e is an edge connecting levels j < 4 and where

the m.; were defined in . The remaining construction of the smooth family over
this blowup is the same as above.) This procedure should properly be called simple
real oriented blowup, but the context (the rescaling ensemble) will always make it clear
which version we use.

The zoo of definitions given so far culminates in the following, the moduli functor
that will turn out to be indeed represented by a smooth space.

Definition 12.4. Given a family of pointed stable curves (7: X — B, z) and B, a
germ of B at p, the germ of a family of simple A-marked multi-scale differentials of
type p over B, is an equivalence class of the following set of data:
(1) the structure of an enhanced level graph on the dual graph I'j, of the fiber X,
(2) a simple rescaling ensemble R*: B — Tiip, compatible with
(3) a collection of rescaled differentials w = (w;))iers(r,) of type , and
(4) a collection of prong-matchings o = (0¢)ccpr)y». For the non-semipersistent
nodes, these are required to agree with the induced prong-matchings defined
before Definition [T.5
(5) a Twj-marking f of the level-wise simple real oriented blowup 7: X — B.
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The simple level rotation torus TI‘EP (Op) acts on all of the above data and we consider
two germs equivalent if the differ by the action of an element in T; l‘fp(OB). A

With the obvious definition of morphisms, pullbacks and sheafification, this defines
the notion of a family of simple marked multi-scale differentials. This defines a functor
that we denote by MS‘(S% A) and its projectivized variant by IP’MS‘(SH’ A

The group K acts on germs (and on families where the level graph is an undegen-
eration of I') by post-composing the marking f with the given element in Kp. The
quotient functor is exactly the functor of (non-simple) marked multi-scale differentials,
since in the presence of just the resulting quotient Tw-marking a simple rescaling en-
semble up to the equivalence relation generated by T; lfp(OB) is the same as a rescaling
ensemble up to the equivalence relation generated by Tt,(Op).

The following proposition will be used in Sections [I3] and [I4] to prove the universal
property of the Dehn space and of the moduli space of multi-scale differentials.

Proposition 12.5. For any family of multi-scale differentials (m: X — B, z,w, o) and
any p € B, for any multicurve A such that I'(A) is a degeneration of I'y, there exists a
neighborhood U of p such that w|y can be provided with a Twa-marking.

If the family admits a simple rescaling ensemble R®, then there exists a neighbor-
hood U of p such that 7|y can be provided with a Tw? -marking.

Proof. We need to provide the level-wise real blowup 7|y with a Twa-marking f. For
this purpose we take U to be simply connected, provide some fiber of 7 with a marking
and transport the marking along local smooth trivializations of 7. We only need to
make sure that the monodromy in this process is contained in Twy. By the choice of U,
and since by Theorem the fibers of U — U are (arg-images of) level rotation tori,
the monodromy is generated by level rotation. From the definition of level rotation tori
at the beginning of Section [6.3] it is now obvious that the monodromy is Tw.

The second statement follows in the same way using the simple version of the real
blowup. pit

12.4. Families of marked model differentials. To highlight similarities and differ-
ences, and for further use, we now define (the easier) families of marked and simple
marked model differentials. This will be used to verify all the relevant universal prop-
erties of the model domain in Section 13l

Recall that families of model differentials are constrained to be equisingular, but as
a trade-off they carry for each level an additional parameter ¢; that is allowed to be
zero, thus mimicking degenerations. While for families of multi-scale differentials we
needed to start with a germwise definition to be able to control degeneration, here we
can give the global definition right away.

While multi-scale differentials are based on a collection of rescaled differentials, the
simpler notion of a model differential is based on the simple notion of twisted differen-
tials. We adapt the definition from Section to families.

Definition 12.6. A family of twisted differentials i of type p on an equisingular fam-
ily m: X — B of pointed stable curves compatible with I is a collection of families of
meromorphic differentials ;) on the subcurve X{;) at level ¢, which satisfies the obvious
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analogues the conditions in Section [2.4] interpreting the residues as regular functions
on the base B. A

Definition 12.7. Let (7: X — B, z) be an equisingular family of pointed stable curves.
A family of A-marked simple model differentials of type u over B is an equivalence class
of the following set of data:

(1) the structure of an enhanced level graph on the dual graph T" of any fiber of ,

(2) a simple rescaling ensemble R*: B — T,

(3) a collection ) = (1(;))icre(ry of families of twisted differentials of type p com-

patible with T,
(4) a collection o = (0¢)ccp(r) of prong-matchings for n,
(5) a Tw}-marking f of the level-wise (simple) real oriented blowup 7: X — B

defined using (12.3])).

The simple level rotation torus 733(Op) acts on the above data, and two elements in
the same orbit are defined to be equivalent.

Replacing T(Op) with the extended level rotation torus 7T7°(Op), the analogous
object is called a family of marked simple projectivized model differentials of type u
over B. A

The notion of a morphism is derived from morphisms of pointed stable curves as
in (11.3)). We denote the functor of model differentials by MD? A) and its projectivized
version by IP’MD‘(SM A)-

Remark 12.8. Since a simple rescaling ensemble is simply a collection of functions
t = (ti)ierr) in Op we will denote a family of simple marked model differentials
interchangeably by the representatives (n, R, o, f) or by (n,t,o, f) of the T(Op p)-
orbits.

Similarly we can define (non-simple) marked model differentials by taking the Kp-
quotient or by using non-simple rescaling examples; we can also define the unmarked
versions. Since these other version will not be needed for what follows, we do not give
the details.

13. THE UNIVERSAL PROPERTY OF THE DEHN SPACE
The purpose of this section is to show the following two results.

Theorem 13.1. The Dehn space =Dy is the fine moduli space, in the category of
complex analytic spaces, for the functor MS(, ) of marked multi-scale differentials.

To obtain this, we first prove the simple marked version of this statement, and then
descend by the Kx-action.

Proposition 13.2. The simple Dehn space ZD3 is the fine moduli space, in the cate-
gory of complex analytic spaces, for the functor MSfM A) of simple marked multi-scale
differentials.

Given a family 7w: ) — B of stable curves with a family of simple marked multi-scale
differentials (w, o, f), we want to construct functorially a map m: B — ZD3 such that
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the pullback of the universal family agrees with the given family. Since the complex
structure on ED} stems from the model domain, we will first establish the universal
property of the model domain. The map m will be constructed by using the universal
property of the model domain to map there, and then by plumbing using the map 2 P1
defined in Section [I0l

To be able to use the universal property of the model domain, we will need to
define an unplumbing construction that takes multi-scale differentials on ) to model
differentials on an equisingular family X — B. Like the plumbing, the unplumbing
construction will depend on several choices, and we will need to carefully arrange the
choices consistently on ) and on the universal family.

13.1. The universal family over the model domain. We first exhibit the functor
that the space QT (n) represents. The following definition extends to families the
pointwise definition that appeared already in Section [5.4} using the notion of markings
in families that is now at our disposal (compare also to the definitions in Section.

Definition 13.3. An equisingular family of prong-matched twisted differentials of type
(1, A) over an analytic space B is

(i) a family (n,)yev(ry of twisted differentials of type p, compatible with I'(A) as in
Definition [12.6
(ii) a family of prong-matchings o, and
(iii) a family of markings f € Mark(X,/B) of the welded family. A

This definition is much simpler than Definition [12.3| or Definition [12.7] and does not
require a blowup of the base since there is no equivalence relation by the action of a
level-rotation torus, which has a non-trivial fundamental group.

We can now state the universal property of the space Q7™ (1t). The proof is rather
obvious and mainly serves to recall notation.

Proposition 13.4. Let A C X be a fized enhanced multicurve. The Teichmiiller space
of prong-matched twisted differentials QTY™ (w) is the fine moduli space for the functor
that associates to an analytic space B the set of equisingular families of prong-matched
twisted differentials of type (u, A) over B.

Proof. An equisingular family of pointed stable curves defines, by normalization, a
collection of families of pointed smooth curves with additional marked sections cor-
responding to the branches of the nodes. Conversely, such a collection of families
of smooth pointed curves, and a pairing of a subset of the marked sections defines
an equisingular family. From this observation it is obvious that the boundary stra-
tum 7Ta of the classical augmented Teichmiiller space comes with a universal family
(m: & = Ta, 2, (fo)vev(n)) of pointed stable curves equisingular of type I'(A), con-
structed by gluing families of smooth curves 7: X,, — Tx along the nodes given by the
marked sections ¢F corresponding to the edges e of T'(A). Here f, € Mark(X,/74) is a
Teichmiiller marking by the surface 3, (corresponding to the component v € V(I') of
¥\ A, with the boundary curves contracted to points). The universal property follows
from the universal properties for the Teichmiiller spaces of the pieces (X, 2y, gF, f,).
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Recall from Section that there is a closed subspace Ty (u) C 7Ta defined to be the
quotient of QT4 (1) under the action of (C*)V(®). The family 7 can be restricted to
Ta(p), pulled back to Q"Tx(u), and then restricted to Q7 (p). Since the total space
of a vector bundle represents the functor of sections of the bundle, Q74 (1) comes with
a universal family (73 X — Ta, 2, (fo)vev() (Mo)ocv(n)s Where 7 = (m)uev(y) is a
twisted differential of type (1, A), and the remaining data are as above.

Now we construct the family of markings in the welded surfaces 7: X, — QTP (1) =
Q7™ (p). Then we mark the welded surfaces by X in such a way that fiberwise after
pinching A we obtain the collection ( fv)vev( A)- The remaining data are the pullbacks
of the ones defined above. Since QT (1) — Q7Ta(p) is an (infinite) covering map (see
Section , the universal property follows from the universal properties of covering
spaces. pif

The family of model differentials over the model domain was already constructed
in Section [§ and its universal property follows from the construction and from the
universal property of the augmented Teichmiiller space of flat surfaces.

Proposition 13.5. The simple model domain QMDZ is the fine moduli space for the
functor of simple marked model differentials MD‘EM A and MDZ is the fine moduli
space for IP’MD‘(*MA).

The model domain QM D, (considered as quotient stack) is thus isomorphic to the
functor of model differentials MD,, r).

Proof. Recall that as discussed in Section [§ the family over QMDY is simply the
Twi’-quotient of the family over Q7™ (n). We showed in Proposition m that the
latter is the universal family of marked prong-matched twisted differentials. The family
over the other strata of QWX is constructed by covering the space by charts, and
considering the scale comparison. The universal property thus immediately follows
from the universal property of Q7™ (). i

13.2. The unplumbing construction. The unplumbing construction associates with
a family of multi-scale differentials a family of model differentials. The rough idea
is to pinch off neighborhoods degenerating to nodes, in order to create equisingular
families, and then to record the degeneracy of the nodes as the parameters t of model
differentials. Technically, we cannot pinch off curves without modifying the differential,
due to the presence of non-trivial periods over what we want to be the vanishing
(pinching) cycles. This forces us to subtract beforehand some perturbation differentials,
whose role is inverse to that of the modifying differentials.

Proposition 13.6. Given a germ of a family of simple marked multi-scale differentials
with all data (Y — B, (w())iersr,) B, 0, f) defined over B, there is an unplumbing
construction that produces a family (X — B, (n(i))ieL.(pp), Rs,0', f) of A-marked sim-
ple model differentials with the following properties:

(i) The construction is the identity over the locus B of all ¢ € B such that Iy, =
I'(A).
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(ii) The construction depends only on a finite number of choices of topological data
and on a choice of a section near each vertical node.

(iii) If B is an open neighborhood of p in the simple Dehn space, then the map
u: B — QWX induced by the unplumbing of the universal family of model
differentials, restricted over B, is a local biholomorphism.

Proof. The unplumbing construction is level-wise, similarly to how plumbing was de-
fined in Section For simplicity of the exposition, we only treat in detail the case
where I' has two levels, and no horizontal nodes. We may thus write w) = s - w(_1),
and B* C B is then precisely the vanishing locus of s.

For the definition of a perturbation differential we start by choosing some maximal
multicurve Apax 2 A. We denote by V' the image of A in H1(X \ Ps; Q) and, as in
Proposition we let V'’ be the subspace generated by curves in Apax and loops
around points in Ps. Let p: B — Homg(V, C) be the periods of w( along A and let p
be the extension of p by zero on a subset S of Apax generating V' /V. A perturbation
differential is a meromorphic section ¢ of the relative dualizing sheaf m,wy/p such that
the periods of £ are p. A perturbation differential exists and it is uniquely determined
by the choice of the topological datum Apax and the subset S. Since p is divisible by s,
the perturbation differential vanishes identically on the fibers over B,

Next, recall that a multi-scale differential comes with a normal form on a neighbor-
hood of the nodes that looks like a plumbing fixture, that is, a coordinate v, such that
w—y = (v + re7(_1))‘ﬁ"~. By Theorem |4.3[the coordinates in the normal form are
uniquely determined by a section near the lower end of each node. We fix such a section,
to be further specified in Section Consequently, the lower level subsurface of )
with the form w(_;) can be glued together with the form (A x B, (—vg " + 1, (1)) ‘f}”j)
on a disc A times the base with a one-form 7).

Using Theorem [4.1] (more precisely the subsequent remark, and moreover the chosen
section, to specify the coordinates uniquely) we put w() —§ in standard form ¢*(w gy —

€) = u’ge% on some family of annuli in V(f, €) near each node. Consequently, the

due

form w — £ on the upper level subsurface of )V and the forms (A x B, uf* ™

node glue to produce a closed surface X(g) with a one-form 7).

This one-form 7y does not necessarily have the correct orders of vanishing in the
smooth locus. Hence, similarly to what we do in plumbing, we merge the zeros. For
this purpose, we specify an annulus As, 5, around each zero of w in the upper level
subsurface of ). Using Theorem we put w — ¢ in standard form z™dz on As, 5, and
we glue it with the one-form (A x B, z"dz) to obtain a differential with the correct
orders. We continue to denote by (X(O),n(o)) this differential. We finally obtain an
equisingular family 7: X — B by identifying the points u = 0 of X and v = 0
of X(_y) in each plumbing fixture to form a node.

For an equisingular family, the space of prong-matchings is an unramified cover of the
base. Thus, to obtain the prong-matching o’ we simply extend the prong-matching o},
in a locally constant way. The level-wise real blowup of (), R®) and the level-wise
real blowup of X as defined in Section are almost-diffeomorphic. (The almost-
diffeomorphism is given by the identity on the upper and lower surface, blurred near
the marked zeros, and both the degenerate plumbing fixtures in X and the plumbing

) for each
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fixtures of ) are replaced by the welded fixtures as defined in ) We can thus
transport the marking f via this isomorphism. The rescaling ensemble R® is the same
on both sides of the construction. Finally we verify that the equivalence relations
are the same on both sides, since in both cases they stem from the T§{-action for the
differentials and prong-matchings, and from Tw§ for the markings.

Finally, to prove (iii) it suffices to show that the tangent map to u is surjective at any
point of BA. We argue similarly to the alternative proof of Proposition using the
fact that perturbed periods give local coordinates on the model domain, as shown in
Proposition Indeed, by construction, on the restriction of the family Y|za — BA
over B, the map u is the identity. Working in perturbed periods coordinates on the
model domain, it thus suffices to show that the directions corresponding to changing
the parameters t of the model differential are in the range of the tangent map to wu.
This is indeed obvious since those parameters are given by R®, which is part of the
datum of the unplumbed model differential. si

13.3. Consistent unplumbing and the proof of Proposition In order to
define the moduli map m we consider the results of applying the unplumbing construc-
tion in two situations. First, we apply unplumbing to Y — B, to obtain a family of
model differentials on 7: X — B. Second, we perform the unplumbing construction
for the universal family of multi-scale differentials over =D}, restricted to a neighbor-
hood W C EDj} of the moduli point of A}, to obtain a family of model differentials
gl yuni s 117 We want to perform these two plumbing constructions making all the
choices consistently as follows. First, we choose a maximal multicurve Ay« on Y, as
required for Proposition [13.6] and choose the same maximal multicurve on the univer-
sal family over W, which is possible since the surfaces are marked. Second, we choose
the normalizing sections for the unplumbing of each node to lie in the neighborhood
V(fe,€) and in such a way that their relative wy.-)-period to a marked zero on the
same level as the lower end of the node is constant in the family. The markings, which
are well-defined up to Tw}’-twists, allow to consistently choose the paths for computing
these relative periods.

Let m': B — Wi be the moduli map obtained by applying the universal property
for the simple model domain to the unplumbed family 7: X — B. Let u be the moduli
map for the universal family as in Proposition (iii). We claim that (after possibly
shrinking B to fit domains) the composition

m = v tom': B— 2D}

will then be the moduli map for B, i.e., that the family of multi-scale differentials
Y — B is the pullback of the universal family over ZD{ under the map m. By definition
there is an isomorphism of families of model differentials A': (m/)*Y"™ — X, and we
need to exhibit an isomorphism of families of multi-scale differentials h: mryumi ).

This isomorphism is constructed level by level, and for clarity of exposition we will
again only deal with the two-level situation without horizontal nodes, as in the proof of
Proposition In that setting, the lower level subsurfaces X{_1) and }_y) with their
differentials are simply the same by construction, and this also holds for the universal
families. This defines the map h on the families of lower subsurfaces. On the upper level
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subsurfaces a perturbation differential has been added. The consistent choice of Aax
implies that the m/-pullback of the perturbation differential on y(‘gii agrees with that
on Yg). Similarly, since all choices in both unplumbing constructions are the same, the
local modifications near the marked zeros agree under m’-pullback. We thus define the
map h on the upper level surfaces. The plumbing fixtures (i.e. the functions f.) are
compatible, since these functions can be read off from the rescaling ensemble. Lastly, it
remains to check that the way the plumbing fixtures are glued in is compatible so that
the piece-wise defined isomorphisms A glue to a global isomorphism. This follows from
the fact that the sections (which determine the normal form uniquely) were chosen
using the same relative period of w(_y). This completes the proof of the proposition for
points p where A, = A.

Next we deal with the situation that the pinched multicurve A, is a strict undegen-
eration of A. We use Proposition to provide the family with a Twip-marking and
the previous argument to obtain a moduli map B — EDf\p. The composition with the

natural maps EDf\p — ED?” ey =Dj then gives the moduli map we want.

Finally, after having constructed m = m, locally near p, we need to show that
the local constructions glue over all of B. The only point that might be not clear is
the prong-matching, since o’ was constructed in Proposition by locally constant
extension. However, this might make a difference only if the smoothing parameter f. is
not identically equal to zero, in which case the prong-matching is induced and can be
retrieved as o, = due ® dve from the other data of the family already known to agree
on the overlaps of local neighborhoods. This completes the proof of Proposition [13.2]

13.4. The proof of Theorem As for Proposition [13.2] we start with the local
version and then glue the moduli maps as above. Suppose we are given a family () —
B, (W(i))ie Lo(r,) B, o, f) of marked multi-scale differentials, defined on a neighborhood
of p. We proceed similarly to the proof of Proposition and let B® — B to be
the fiber product of R: B — T?F with finite quotient map p: Tf«p — Tizp/Kp = T;p.
The pullback family Y — B?® comes with a map R®: B® — Tlsﬂ and is thus a family
of simple marked multi-scale differentials. By Proposition we obtain a moduli
map m®: B® — EDj{. Composing m® with the quotient map ZD}§ — EDj we get a
map B® — ED, that is clearly K, -invariant by construction. It thus descends to the
required moduli map m: B — ZDjy.

14. THE MODULI SPACE OF MULTI-SCALE DIFFERENTIALS

We now have all the tools that are necessary to prove the main theorems announced
——ninc

in the introduction. Denote by PQM, ,"(1) the normalization of the incidence variety
compactification, where the incidence variety is considered as a substack of PQM, .
In this section we will show that the stack PMS,, of multi-scale differentials can be
obtained from }P’Qﬂ;’izc(,u) as the normalization of a certain explicit (complex alge-

braic, not real oriented) blowup, called the orderly blowup. We will then be able to
conclude the proof of Theorem [I.2) and Theorem [I.3] in particular proving algebraicity
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of =My, (1t). We will conclude this Section with an example that illustrates the orderly
blowup and the necessity of the subsequent normalization.

14.1. A blowup description. The incidence variety compactification in general can
have bad singularities. For instance, it can fail to be normal, as it can have multiple
local irreducible components along the locus of pointed stable differentials that admit
more than one compatible enhanced structure on the dual graph (see e.g. [BCGGM18,
Example 3.2]), and its normalization may still be quite singular, e.g. not even Q-
factorial, as shown in the following example.

Example 14.1. (The IVC may be not Q-factorial.) Consider a level graph with three
levels such that the top level has one vertex Xy, the level —1 has two vertices X3
and X7, and the bottom level has one vertex Xo, where X is connected to each of X
and X| by one edge, and Xo is connected to each of X; and X| by one edge. In
other words, the graph looks like a rhombus. Since the level graph has three levels
and no horizontal edges, the corresponding stratum has codimension two in the moduli
space of multi-scale differentials PEM, ,(n). On the other hand, since X; and X]

are disjoint, when considering the incidence variety compactification ]P’Qﬂlgrj,i(u) we
lose the information of relative sizes of rescaled differentials Anm; and X'nj on X; and
X1, where A\, X € C*, and hence the corresponding locus has codimension three in
IP’QM;IZ(#). Namely, the map PEM, (1) — PQH;IZ(M) locally around these loci
looks like a P!-fibration, where P* = [\, )] (in the degenerate case A = 0, X; goes
lower than X and the graph has four levels, and vice versa for A’ = 0). One can check
that locally outside of these loci the map does not have positive dimensional fibers.
We thus obtain locally a small contraction (which means no divisors get contracted),

and consequently the target space ]P’Qﬂi;;(,u) (as well as its normalization) is not
Q-factorial (see e.g. [KM98, Corollary 2.63]).

Given an adjustable but not necessarily orderly family (X — B,w) (as defined in
Section , we first describe a canonical way to blow up the base B so that the
pullback family under this base change becomes orderly. Let X, and X, be two
irreducible components of the fiber X, over some p € B. The family fails to be
orderly if neither of the adjusting parameters h and b’ for X, and X,/ respectively,
divides the other one, as elements in Op . Therefore, we perform the following blowup
construction.

Let U C B be a (sufficiently small) neighborhood of p such that there exist adjusting
parameters {h1,...,h,} for the family X|y. The disorderly ideal Dy C Oy, for Xy
at p is the product of all ideals of the form (h;,, ..., h;, ), where {i1,... i} ranges over
all subsets of components of X, on which w vanishes identically.

We denote by U the blowup of U along Dy, and call it the orderly blowup. If U’ is
an open subset of U such that X|;» becomes less degenerate, namely, some h; becomes
a unit in U’, or the ratio of some h; and h; becomes a unit, then Dy|y possibly differs
from Dy by some repeated factors of ideals. Note that blowing up the principal ideal
of a non-zero-divisor (i.e. the underlying subscheme is an effective Cartier divisor) is
simply the identity map, and moreover, blowing up a product of ideals is the same as
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successively blowing up (the total transform of) each ideal (see e.g. [Stal8, Tag 010F]).
This implies that for any two open subsets U; and Us, we can glue U; and Uy along

their common restriction Uy N Usz. In other words, this local blowup construction chart
by chart leads to a well-defined global space, which we denote by B, and there exists
a blowdown morphism B — B locally given by U — U.

Example 14.2. We illustrate the behavior of disorderly ideals by the following exam-
ple. Suppose the special fiber X, consists of four irreducible components Xo, X1, X2, X
such that X is on top level which connects to X; on level —1, and X connects to X»
and X} on lower levels that we cannot order. Let hq, ho, bl be the adjusting parame-
ters for X7, Xo, X! respectively, and assume that they are not zero divisors. Then the
partial order implies that h; divides both hy and h}, and hence

Dy = (h1)(h2)(hy)(h1, ho)(ha, hy)(ha, hy) (b1, ha, hy) = (h1)*(ha)(hh)(ha, h)

for a sufficiently small neighborhood U of p. Suppose ¢ € U is a nearby point such
that the fiber X, is less degenerate in the sense that the nodes connecting Xo, X7
to X7 are smoothed, i.e. suppose X, has only one lower level component with adjusting
parameter hy and both hg, hl, become hy multiplied by some units in a neighborhood
U’ C U of q. Then Dy = (hy), which differs from Dy | = (h1)7 by a power of (h1). In
particular, the ideals (h;1) and (h1)7 define different subschemes in U’. However, since
both ideals are principal, blowup along each of them is thus the identity map, so the
resulting spaces are isomorphic to each other.

We need the following lemmas about the properties of disorderly ideals.

Lemma 14.3. Let R be a local ring and I,J C R be two ideals such that the product
ideal I.J is a principal ideal generated by a non-zero-divisor. Then both I and J are
principal ideals generated by non-zero-divisors.

Proof. Suppose IJ = (a) for some non-zero-divisor a. Then there exist b; € I and
¢; € J such that bicy + - - - + bycn, = a, which implies that bi(ci/a) + -+ -+ bp(cn/a) =1
as a relation in the ring of fractions. Since the (unique) maximal ideal of R consists
exactly of all non-unit elements, it follows that some b;(c;/a) must be a unit, hence
I=(b). i

Lemma 14.4. Let R be a local ring and let hy,...,h, € R be some elements that are
non-zero-diwisors. Let D = [[(hiy,...,hi,) be the product of ideals where {i,..., i}
ranges over all subsets of {1,...,n}. Then D is a principal ideal (h) with h being a
non-zero-divisor if and only if h1, ..., h, are fully ordered by the divisibility relation.

Proof. If hy, ..., h, are fully ordered by divisibility, it is clear that D = (h) where h is
given by certain products of powers of the h;, and by assumption each h; is a non-zero-
divisor. Conversely if D = (h) is principal with h being a non-zero-divisor, then the
same holds for each factor (h;,,...,h;, ) by Lemma Suppose (hi,...,hy) = (b)
such that h; = bt; for ¢; in R and b being a non-zero-divisor. Then there exist wu;
in R such that uit;y + - - + upt, = 1. If all of ¢1,...,t, are not units, then the
ideal (1, ...,t,) is contained in the (unique) maximal ideal of the local ring R, which
is absurd because it also contains 1. Hence we may assume that ¢; is a unit in R,
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which implies that h; divides ho, ..., h,. Carrying out the same analysis for the ideal
(ha, ..., hy) and repeating the process thus implies the desired claim. gi

The orderly blowup construction possesses some functorial property.

Proposition 14.5. Given an adjustable family of differentials (7: X — B,w, z), the
pullback family 7: X — B over the orderly blowup B — B is orderly. Moreover, any
dominant map m: B’ — B, such that the pullback family X' — B’ is orderly, factors
through B.

Proof. 1t suffices to check the claim locally over each U, with the disorderly ideal Dy
in the preceding setup. The first statement then follows from Lemma More
precisely, on the orderly blowup, the pullback of Dy becomes a principal ideal, and
hence at every point of U the pullback family of differentials has adjusting parameters
(given by the pullback of the functions h;) that are fully ordered by divisibility, which
implies that the family is orderly over U.

The second statement follows from the universal property of blowup (see e.g. [Stal8,
Tag 010F]). Let U’ = 7~ 1(U). Since 7 is dominant, the pullback of any adjusting
parameter 7*h; is a non-zero-divisor, and moreover 77y = m*w/m*h; holds for the
adjusted differential n on any irreducible component X; of any fiber X, over a point
p € U. Hence these 7*h; can be used as adjusting parameters for the pullback family
over U’. Since the pullback family is orderly, these adjusting parameters 7*h; in U’ are
fully ordered by divisibility, and consequently the corresponding disorderly ideal 7* Dy
in U’ is principal (and generated by a non-zero-divisor). Since the blowup of Dy is the
final object that turns Dy into a principal ideal (generated by a non-zero-divisor), it
implies that 7: U’ — U factors through U. si

We remark that there is some flexibility in choosing the local disorderly ideals. For
instance, we can alternatively take D = [[(hi,,...,h;, ) to be the product of ideals
ranging over all subsets of cardinality at least two. This ideal differs from the original
definition of the disorderly ideal by a product of principal ideals, and hence the blowup
with center D gives the same space as the orderly blowup. We can also take the product
D = [[(hs, h;) over all pairs of h; and h; that do not satisfy the divisibility relation.
Then after blowing up the adjusting parameters are pairwise orderly, hence are orderly
altogether.

We warn the reader that the orderly blowup of a normal base may fail to be normal,
as illustrated by the following example.

Example 14.6. (A non-normal orderly blowup) Let x and y be the standard coordi-
nates of B = C2. Then z? and y? do not divide each other in the local ring of the
origin. The orderly blowup B for the ideal (22,%?) can be described by

(14.1) {(z,y) x [u,v] € C* x P! : 2?0 — yPu =0} .
Then we see that B is singular along the entire exceptional curve over x =y = 0. It

implies that B is not normal, since a normal algebraic surface can have only isolated
singularities.

We are now ready to apply these considerations to the IVC.
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Lemma 14.7. The incidence variety compactification PQM::L(/J,) can be considered
as a closed substack of PQAM, .

Proof. We can restrict to the neighborhood of a stable curve with dual graph I'. It
suffices to realize that conditions of the existence of a twisted differential compatible
with an enhanced level structure are closed conditions that can be read off from a
family of pointed stable curves. This is clear both for the existence of differentials (i.e.
sections of a line bundle determined by the family and the marked points) and for the
global residue condition (vanishing condition for sums of residues associated with these
differentials). yig

Theorem 14.8. The moduli stack of multi-scale differentials MS,, is equivalent (as
an analytic stack) to the mormalization QM;n(,u) of the orderly blowup of the nor-
malization Qﬂgjzc(,u) of the incidence variety compactification. This orderly blowup
QMg n(p), and thus also MS,,, is the analytification of an algebraic stack.

See [ACG11, Chapter XII] for a general introduction to (algebraic) stacks and [To€99]
for analytic stacks and analytification.

Proof. First, we make sure that the operations of normalization (e.g. [ACG11, Exam-
ple 8.3]) and orderly blowup make sense in this context, considering Qﬂ;lzc(u) as an

analytic stack. Proposition [11.13|ensures that over Qﬂ;}gc(u) the family of one-forms
that are the top level forms of the twisted differential is adjustable. In a local quotient
groupoid presentation [U/G| we see that G-pullbacks of adjusting parameters are again
adjustinrameters. Consequently, the disorderly ideal is G-invariant and in view of

Lemma below we can consider the orderly blowup ﬁ/v\/lzn(u) as an analytic stack.

Proposition [11.16|then ensures that the resulting orderly family over szn(u) gives
a family of multi-scale differentials of type p. This family induces a map of stacks

——n
OM, (1) — MS,,.

Conversely, a family in the stack MS, is orderly by definition, hence by Proposi-
tion we obtain a map of stacks MS,, — QM ,(u). Since MS,, is normal, this
map factors through QM;H (1), which gives the desired inverse map.

To show that the orderly blowup of Qﬂgfgc(u) is an algebraic stack, use that the

normalization Qﬂ;}gc(u) is an algebraic stack and pass from a local quotient groupoid
presentation [U/G] to a presentation [U’/G'] on a sufficiently large étale cover U — U
such that adjusting parameters exist (algebraically) on U’. The existence of such a U’
is guaranteed by Proposition [11.14 That the blowup is a stack is justified as in the
analytic case. Since we could have used [U’/G'] also as a presentation in the analytic
case, we have justified the last statement of the theorem. pi

In the preceding proof we used the following general fact.

Lemma 14.9. Let X be an algebraic or analytic variety and let T be a coherent ideal
sheaf. Let f: X — X be a finite étale Galois cover with group G and let J = f~'T
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be the pullback (that agrees with the inverse image here). Then there is a natural G-
action on Bly X and an isomorphism Blz X = (Bls X)/G (in the algebraic or analytic
category).

Proof. The existence of the G-action on Bl X follows directly from the universal prop-
erty for J. The universal property of Z (in the version [Har77, Corollary I1.7.16])
also gives a map Bl j)N( — Blz X. This map is equivariant with respect to the G-
action on the domain and the trivial action on the target. It thus descends to a map
Bly X/G — Blz X.

Conversely, take the fiber product F' = X x xBlz X. Since the pullback of Z to F' (via
Blr X — X) is principal, the pullback of J to F' is principal. The universal property
for J gives a map F — Bls X , which is obviously G-equivariant. Since F/G = Blz X
by definition, as fiber product, the map descends to the desired map Blz X — Bl s X /G
on the G-quotients. g

It is well-known that the blowup of a projective scheme along a globally defined ideal
sheaf (or equivalently a globally defined subscheme) remains to be projective. Never-
theless, we remark that in general gluing local blowups can lead to a non-projective
global space (recall the famous Hironaka’s example, see e.g. [Har77, Appendix B.3,
Example 3.4.1]). The preceding subsection thus does not answer the question on the
projectivity of the coarse space associated with PMS,,.

14.2. The universal property. Recall that for a complex orbifold with local orbifold
charts (U, G) there is an underlying complex space with charts being the (in general
singular) complex spaces U/G.

Theorem 14.10. The complex space associated with the moduli space of multi-scale
differentials EMg (1) is the coarse moduli space for the functor MS,, of multi-scale
differentials of type p.

Proof. Given a family of multi-scale differentials (7: X — B,w) € MS,(B), we want
to provide the family locally near any point p with a marking, and then construct the
moduli map m: B — Eﬂgm(,u) as the composition of the moduli map from Theo-
rem [13.1} and the natural quotient map.

For this purpose, we choose for any point p € B an enhanced multicurve A, on ¥ with
I'(Ap) =T',. For a sufficiently small neighborhood U, of p we apply Proposition to
provide the family with a marking. The moduli map given by Theorem [13.1| composed
with the projection then gives a map U, — EDy — Eﬂgvn(,u). These maps glue,
since any two choices of marking differ by the action of an element in the mapping
class group. This argument, together with the universal property of =Dy, also implies
the bijection on complex points and the maximality required as properties of a coarse
moduli space. pil

Proofs of Theorem[I.3 and Theorem[1.3 completed. For Theorem the density (1)
and the description of the boundary divisor (2) have been taken care of in Theo-
rem [10.3] Compactness (3) is the content of Theorem and the coarse moduli
space property (4) has been addressed in Theorem
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The forgetful map (5) is obvious, e.g. it follows from Theorem and its proof.

For Theorem the property of being a proper Deligne—Mumfggi/stnack carries
over from My, all the way up through PQM, ,, ]P’Qﬂ;jzc(u), and PQM,, (). The
isomorphism in the statement of Theorem is then obvious since our compactification
does not alter the interior PQQM, (1), and on a smooth curve a multi-scale differential
is simply an abelian differential of type u.

It remains to show the algebraicity and properness of the stack PEM, (). The al-
gebraicity is a consequence of Theorem [I4.8| which implies that the coarse moduli space
provided by Theorem is algebraic. This space is analytically locally covered by
quotient stacks [Ux/Gx| near X, where the group Gx is an extension of an automor-
phisms group of pointed curves by the group Kr, by the definition of morphisms of
marked simple multi-scale differentials. Here I' is the level graph compatible with the
point X. We need to show that the coarse space is also covered by quotient stacks
[U%/Gx] étale locally. This is a consequence of Artin’s approximation theorem |Art69,
Corollary 2.6] that provide an étale neighborhood in the coarse space isomorphic to a
neighborhood of the origin in A"/Gx. Intersecting the preimage in A" with its G x-
images to get a G x-invariant neighborhood gives the U% we need. Finally, properness
follows from the usual composition rules for proper map, using the fact that the map
for a stack to its coarse space is proper. gt

Remark 14.11. As a consequence of the orderly blowup description, we see that the
isotropy group of a point in the stack MS,, has no contribution from the group Kr
defined in Section Consequently, whenever this group is non-trivial, the stacks
EM,y (1) and MS,, are not locally isomorphic.

Conversely, whenever Kr is trivial, the functors of marked and simple marked multi-
scale differentials agree, as we have seen in Section . By definition EM, ,, (1) and
MS,, are then isomorphic in a neighborhood of such a stratum. This happens of course
in the interior 2M,, but also at the generic point of any boundary divisor, by definition
of KF.

14.3. Some moduli spaces in genus zero and cherry divisors. To illustrate the
necessity of both the orderly blowup and the subsequent normalization in the passage
from IVC to MS,, we consider the following class of divisors.

A cherry divisor is a boundary divisor of EM,, ,(x) such that the generic multi-scale
differential has one top-level component and two components at the second level, each
connected to the top level by one node. Note that the forgetful map from the moduli
space of multi-scale differentials to the incidence variety compactification (and hence
to the Deligne-Mumford compactification) contracts any cherry divisor, as we saw in

Example

Example 14.12. (The cherry requires both the orderly blowup and the normalization)
We consider the incidence variety compactification of PQMg5(2,1,0,0,—5), with two
marked regular points on the surface. Note that in this case the IVC is simply M s,
and in particular it is smooth. On the right in Figure [8| we schematically depict the local
structure of PQHB?;(Q, 1,0,0,—5) near the point that is the image of the cherry divi-
sor in the moduli space of multi-scale differentials. We will study the cherry where the
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marked points meet the zeros of orders 1 and 2, respectively. This point is the intersec-
tion of two boundary divisors of the IVC, the first one parameterizing the differentials
where the zero of order 1 meets a marked point, and the second parameterizing the
differentials where the zero of order 2 meets the other marked point. We introduce
local coordinates x,y on the IVC near this cherry point, such that the first divisor is
the locus {z = 0} and the second one is {y = 0}. Note that the number of prongs is
respectively equal to k1 = 2 and k9 = 3 along these two divisors.

{r=0} (=0}

F1GURE 8. The orderly blowup of the incidence variety compactification
of PQMy5(2,1,0,0,—5) at a cherry point.

Let us perform the orderly blowup in the neighborhood of the cherry point. We have
to blow up the ideal (22,4?%) discussed in Example (see for the description).
We recall that the total space of this blowup is not normal, and that the exceptional lo-
cus of this orderly blowup is a P! which is parameterized by the ratio of the differentials
on the two lower level components. This exceptional locus meets the strict transforms
of the two divisors {z = 0} and {y = 0} in two distinct points. The complete picture
of this orderly blowup is represented in Figure |8l Hence in this case the moduli space
of multi-scale differentials is obtained by normalizing the orderly blowup of the IVC,
and this normalization is not the identity map. We note moreover that in this case all
prong-matchings are equivalent, and thus this difficulty is not due to the choice of a
prong-matching.

We now illustrate the fact that the orderly blowup does not see the prong-matchings
in general. Consider the stratum PQM5(1,1,0,0, —4). We will study the cherry where
the marked points meet respectively the simple zeros, so that the number of prongs is
K1 = Ko = 2, and there are two non-equivalent prong-matchings on the generic cherry
curve.

The orderly blowup is given by the equation

{(z,y) x [u,v] € C* x P! : 2%v — y®u =0} .

Note that this space has two locally irreducible branches meeting along the excep-
tional divisor. In the moduli space of multi-scale differentials, the limits from these
two branches will give non-equivalent prong-matchings for the limiting twisted differ-
ential. But in the orderly blowup, both branches converge to the same limit. Hence
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it is not possible to distinguish the prong-matchings from the orderly blowup. How-
ever, the normalization of the orderly blowup precisely separates these two branches
corresponding to the two non-equivalent prong-matchings.

15. EXTENDING THE GLJ (R)-ACTION TO THE BOUNDARY

The goal of this section is to modify the boundary of the moduli space of multi-
scale differentials in such a way that the GLJ (R)-action on the open stratum extends
to this boundary, and such that the quotient of this compactification by rescaling by
positive real numbers is compact. The reason we need to consider rescaling by R<g
instead of by C* is essentially due to the fact that GL;(R) does not act meaningfully
on QM ,(p)/C* but it does act on QM (1) /R0, as SO2(R) is not contained in the
center of of GL;r (R) but R is. The concept of level-wise real blowup provides the
setup for this purpose. A related bordification, also a manifold with corners, is also
studied in an ongoing project of Smillie and Wu with the goal of understanding the
GLJ (R)-action near the boundary. While the constructions have certain similarities,
they apparently differ e.g. in the treatment of horizontal nodes.

Theorem 15.1. The GLJ (R)-action on the moduli space QM ,,(11) extends to a con-
tinuous GL3 (R)-action on the level-wise real blowup ZMg (1) of the moduli space of
multi-scale differentials Eﬂgyn(,u) along its total boundary divisor.

In comparison to Section |12 note that E/T/l\g,n (1) agrees with M, ,, (1) (where the
long upper bar refers to the level-wise real blowup) because the generic fiber is smooth,
and there are no persistent nodes. .

The basic objects parameterized by EM,,, (1) are real multi-scale differentials, re-
placing multi-scale differentials. The definition is very similar to Definition [I.1], simply
replacing the equivalence relation to be by real scaling.

Definition 15.2. A real multi-scale differential of type u on a stable curve X is

(i) a full order < on the dual graph " of X
(ii) a differential w(;) on each level X(;), such that the collection of these differentials
satisfies the properties of a twisted differential of type p compatible with <,
and
(iii) a prong-matching o = (o.) where e runs through all vertical edges of T

Two real multi-scale differentials are considered equivalent if they differ by rescaling at
each level (except the top level) by multiplication by a positive real number. A

To properly work with families of such differentials, we have to leave the category
of complex spaces. Recall that manifolds with corners are topological spaces locally
modeled on [0,00)* x R"~*. These spaces form a category (with a notion of smooth
maps, see [Joy12] for a recent account with definitions and caveats, but we will not detail
here). Since =M, (u) already has non-trivial orbifold structures, we in fact have to
work with orbifolds with corners, where the local orbifold charts are manifolds with
corners and where the local group actions are smooth maps preserving the boundary.
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Theorem 15.3. The level-wise real blowup E/(/l\gm(u) is an orbifold with corners. Its
points correspond bijectively to isomorphism classes of real multi-scale differentials. The
orbifold structure is exclusively due to automorphisms of flat surfaces, as for QMg .

The last statement says that E./(/l\g,n(,u) resolves the quotient singularites by the
groups Ky = Twyp /Tw} of Mg, (u):
Given Theorem 15.3|, we define the action of A € GL] (R) on M, (1) by

A (X)), (i), o) = (A (Xe),we)), A o),

where i € L*(I"). The first argument is the usual GLJ (R)-action on the components
of the stable curve. For the second argument we use the action of A on the set of
directions and note that a matching of horizontal directions (for w) gives a matching
of directions of slope A - (}) (for A -w) that can be reconverted into a matching of
horizontal directions.

The notion of families of real multi-scale differentials (over bases being orbifolds with
corners) can now be phrased as in Section with the equivalence relation changed
from Tr(Op,p)-action to level-wise Ry o-multiplication, as above. We will now essen-
tially construct a universal object.

All the statements in the above theorems are local, since continuity of the GLJ (R)-
action can also be probed by a neighborhood of the identity element. We thus pick a
point p € M, ,, (1) and work in a neighborhood U that will be shrunk for convenience,
e.g. to apply Proposition and to find an enhanced multicurve A with I'(A) =T,
and provide the restriction of the universal family over (the orbifold chart of) U with
a A-marking. We may thus view U C =ZD,. R

We provide the pullback to the level-wise real blowup U of the universal family
over U with real multi-scale differentials. (Note that here as in Definition above,
real multi-scale differentials live on stable complex curves.) The smooth (differentiable)
family X — U constructed in Theorem is tacitly used for the marking, but we
do not treat the issue whether differentials can be pulled back there. Let ¢; be the
rescaling parameters of the multi-scale differential w = (w(;);ec ren) on U, and let T;
and F, be the S!-valued functions used in the blowup construction (Section .

Proof of Theorem |15.5 The second statement is an immediate consequence of Theo-
rem about the points in EM,, ,(u) and of Proposition (ii).

For the first statement we may use charts of the level-wise real blowup of ZD} as
orbifold charts. There, the boundary is a normal crossing divisor with one component
D; = {t; = 0} for each level (but the top level). The real blowup of a normal crossing
divisor is then known to be a manifold with corners (see e.g. [ACG11], Section X.9, in
particular page 150), as in the last statement of Theorem

The fibers of the level-wise real blowup are a torus consisting of S! for each level
below zero, see Proposition The group Ky = Twp/Twj acts freely on this torus.
This proves the last statement. pidl

Proof of Theorem [15.1]. It remains to justify the continuity of the GL; (R)-action. Con-
sider a sequence {p,} converging to p in U C EDy. By definition of the topology, this
is equivalent (with notations as in Section to the convergence of the image points



118 BAINBRIDGE, CHEN, GENDRON, GRUSHEVSKY, AND MOLLER

wu(pn) to pu(p) in U C ED, and to the convergence of Fe(p,) to F.(p) and T;(py)
to T;(p). In turn, the convergence in =Dy is manifested by diffeomorphism g, satis-
fying Definition [7.4] with the compatibility with markings relaxed up to elements in
Twy. We aim to justify the convergence of the sequence of image points ¢y (A - pn)
to ou(A-pn) € U C EMy,(u). Since T;(A - py,) converges to T;(A - p), and similarly
for F,, by continuity of the GLJ (R)-action on S, this will conclude the proof.

For our aim, we use the maps A- g, - A~!, where A- () denotes the induced GLJ (R)-
action on pointed flat surfaces. This map is well-defined away from the seams and we
observe that it can be extended to a differentiable map across each seam using the
action of GLJ (R) on the seam identified with S*. pid

INDEX OF NOTATION

In this section we summarize the notations thematically. In each theme we mainly
give the notations in chronological order, omitting the introduction.

Surfaces.

(%, s) “Base” compact n-pointed oriented differentiable surface 15
(X, 2) Pointed stable curve of genus g 13
Xy Irreducible component of X 13
Nx Set of nodes of X 13
X?® =X\ Nx The smooth part of X 16
N¥% Set of vertical nodes of X 13
N ;} Set of horizontal nodes of X 13
X=X Marking 15
P, Zs Subset of s mapped respectively to the poles and zeros of w 36
X5 Welded surface associated to the prong-matching o 40
X Components of X at level ¢ 12
(i) Restriction of the twisted differential 7 on X(; 13
X< Components of X at level > i 13
X, (X,2)e  ethick part of X, resp. X \ z 16

Graphs and Levels.

T =(T,), ' Level graph with full order 3= 12
V(T) Vertices of I' 12
E(T) Edges of T’ 12
E(T)Y, E(T")" Set of vertical, resp. horizontal, edges of T 12
val(v) Valence of the vertex v 12
L*(T) Set of levels of the level graph T' 12
L(T) Set of all but the top level of the level graph T 12
N Number of levels strictly below 0 12
0:T—- N Normalized level function 12
f(l), T, Subgraph at (resp. above) level i of T 12
((¢%), £(e*) Bottom and top levels of the ends of a node 13

r+ r Enhanced level graph 14



A

A+, A
IHAT), A
dg: A2 ~ A1
o0: N —-M
D C AR
(8,D"), 6
nga 5J

THE MODULI SPACE OF MULTI-SCALE DIFFERENTIALS

Multicurve in X

Enhanced multicurve

Enhanced graph associated to the enhanced multicurve A
Degeneration of the ordered multicurve Ag

Map defining a vertical undegeneration

Subset of horizontal curves inducing a horizontal undegeneration

Undegeneration of an enhanced multicurve
(Un)degenerations associated with the subset J
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35
35
35
35
35
36
36
36

Teichmiiller and Moduli Spaces. Most of the following spaces have a projectivized
variant which is indicated with the symbol P.

E,n = 7EE7S)
Modgn_
Tg’n — T(E,S)
Dy

QDp

9722,5) (:u)

Q"Ta ()

QT (1)

Q7™ (1)

QT(Z,S) (M)
Ba

MDY, MDjy
=Dy

=Dy

=Dy’
EMg,n(H)
MS,,

MS,

MS . a)
MDy, z)

Families.

Teichmiiller space

Classical mapping class group
Augmented Teichmiiller space
Classical Dehn space

Hodge bundle over the Dehn space

Teichmiiller space of marked flat surfaces of type u
Teichmiiller space of flat surfaces of type (u, A) without GRC
Teichmiiller space of twisted differentials of type (u, A)
Teichmiiller space of prong-matched twisted differentials
Augmented Teichmiiller space of marked flat surfaces of type i
A-boundary stratum

(Smooth) model domain

Dehn space associated with A
Simple Dehn space associated with A
simple vertical Dehn space

Level-wise real blowup of EM, ,, (1)

Functor of multi-scale differentials
Grupoid of multi-scale differentials
Functor of marked multi-scale differentials
Functor of model differentials

Image of the section z;

Horizontal zero divisor

Horizontal polar divisor

Local equation of a nodal family

Local equation of a family near the node ¢,

Level-wise real blowup of a family of multi-scale differentials
Global level-wise real blowup

Orderly blowup of an adjustable family of differentials

15
16
16
20
21

36
37
37
41
93
93

60
70
70
70
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94
94
101
103

11
11
11
29
99
98
99
111
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t = (t;)icL Simple rescaling parameters 61
s = (si)ier,  Rescaling parameters 61
R,: B, — T?p Rescaling ensemble 88
R°: B — Tlip Simple rescaling ensemble 91
xj Smoothing parameters for the horizontal nodes 87
fe Smoothing parameters 88
h, hy, h; Adjusting parameter 94

Plumbing Constructions.

QPpPIY Vertical plumbing map 7
QPI Plumbing map 85
(Xo,m9) Base surface in the A-boundary stratum 72
oF Local coordinates at a node e 74
re(t) Residue of w at the node e 74
I3 Family of modifying differentials 63
Pi Period homomorphism 64
A5, 5o Annulus of inner radius ¢; and outer radius do 73
A* Top and bottom plumbing annuli 73
R,6 Defining constants of the plumbing annuli 73
V(s) Standard plumbing fixture 73
pt Top and bottom marked points 73
Wk Base of the plumbing construction 72
v Local chart center at the base surface 72
B~, BT Bottom and top plumbing annuli in X 76
c,C* Bottom and top plumbing annuli in )Y 76
vl v, oy Conformal maps on annuli putting ¢ % (n + £€) in standard form 75
b, by, Image of p* in B* 75
c, Image of the points p* in CF 76

Prong-matchings and Rotation Groups. The groups below usually have “ex-

tended” analogues which we denote by a superscript e.

Kq Number of prongs, equal to ord,+ n + 1 14
o Global prong-matching for X 40
d = (d;)icr+(a) Tuple in CE) acting on prong-matched differentials 44

Action of C*®) on prong-matched twisted differentials 44
* Action of T\ on prong-matched twisted differentials 49
Fy Fractional Dehn twist 45
@iy Mej Defined by a; = leme ke and me; = a;/ke 46
t‘{zﬂ Product of the t(;j for j >4 61
Pr Prong rotation group 41

wa{ﬂl Classical A-twist group 20
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Level rotation group 45
Map from level rotation group to prong rotation group 45
Vertical twist group 45
Horizontal twist group 46
Twist group 46
Simple vertical twist group of level ¢ 46
Simple vertical twist group 47
Finite group defined by Tw} /Tw}’ 47
Simple twist group 47
(Simple) level rotation torus 47
Ramifications groups 49

Other Notations.

A, ={zeC:|z| <r} 19 n={1,...,n} 11
e(z) = exp(2myv/—1z) 29 N = {0,-1,...,—N} 12
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