Atmospheric Environmental Analytics

 

2021

(30) Ungeheuer, F.; van Pinxteren, D.; Vogel, A. L. Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport. Atmos. Chem. Phys. 21, 3763–3775, http://dx.doi.org/10.5194/acp-21-3763-2021, 2021.

(29) Tomaz, S.; Wang, D.; Zabalegui, N.; Li, D.; Lamkaddam, H.; Bachmeier, F.; Vogel, A.; Monge, M. E.; Perrier, S.; Baltensperger, U.; et al. Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass spectrometry. Nature communications 12, 300, http://dx.doi.org/10.1038/s41467-020-20532-2, 2021.

2020

(28) Heinritzi, M.; Dada, L.; Simon, M.; Stolzenburg, D.; Wagner, A. C.; Fischer, L.; Ahonen, L. R.; Amanatidis, S.; Baalbaki, R.; Baccarini, A.; et al. Molecular understanding of the suppression of new-particle formation by isoprene. Atmos. Chem. Phys. 20, 11809–11821, http://dx.doi.org/10.5194/acp-20-11809-2020, 2020.

(27) Wang, M.; Chen, D.; Xiao, M.; Ye, Q.; Stolzenburg, D.; Hofbauer, V.; Ye, P.; Vogel, A. L.; Mauldin, R. L.; Amorim, A.; et al. Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environ. Sci. Technol. 54, 7911–7921, http://dx.doi.org/10.1021/acs.est.0c02100, 2020.

(26) Simon, M.; Dada, L.; Heinritzi, M.; Scholz, W.; Stolzenburg, D.; Fischer, L.; Wagner, A. C.; Kürten, A.; Rörup, B.; He, X.-C.; et al. Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C. Atmos. Chem. Phys. 20, 9183–9207, http://dx.doi.org/10.5194/acp-20-9183-2020, 2020.

(25) Yan, C.; Nie, W.; Vogel, A. L.; Dada, L.; Lehtipalo, K.; Stolzenburg, D.; Wagner, R.; Rissanen, M. P.; Xiao, M.; Ahonen, L.; et al. Size-dependent influence of NOx on the growth rates of organic aerosol particles. Sci. Adv. 6, eaay4945, http://dx.doi.org/10.1126/sciadv.aay4945, 2020.

 (24) Qi, L.; Vogel, A. L.; Esmaeilirad, S.; Cao, L.; Zheng, J.; Jaffrezo, J.-L.; Fermo, P.; Kasper-Giebl, A.; Daellenbach, K. R.; Chen, M.; et al. A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmos. Chem. Phys. 20, 7875–7893, http://dx.doi.org/10.5194/acp-20-7875-2020, 2020.

2019

(23) Vogel, A. L.; Lauer, A.; Fang, L.; Arturi, K.; Bachmeier, F.; Daellenbach, K. R.; Käser, T.; Vlachou, A.; Pospisilova, V.; Baltensperger, U.; et al. A Comprehensive Nontarget Analysis for the Molecular Reconstruction of Organic Aerosol Composition from Glacier Ice Cores. Environ. Sci. Technol. 53, 12565–12575, http://dx.doi.org/10.1021/acs.est.9b03091, 2019.

(22) Ye, Q.; Wang, M.; Hofbauer, V.; Stolzenburg, D.; Chen, D.; Schervish, M.; Vogel, A.; Mauldin, R. L.; Baalbaki, R.; Brilke, S.; et al. Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between -50 °C and +25 °C. Environ. Sci. Technol. 53, 12357–12365, http://dx.doi.org/10.1021/acs.est.9b03265, 2019.

(21) Daellenbach, K. R.; Kourtchev, I.; Vogel, A. L.; Bruns, E. A.; Jiang, J.; Petäjä, T.; Jaffrezo, J.-L.; Aksoyoglu, S.; Kalberer, M.; Baltensperger, U.; et al. Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry. Atmos. Chem. Phys. 19, 5973–5991, http://dx.doi.org/10.5194/acp-19-5973-2019, 2019.

(20) Hartmann, M.; Blunier, T.; Brügger, S. O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F. Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophys. Res. Lett. 46, 4007–4016, http://dx.doi.org/10.1029/2019GL082311, 2019.

2018

(19) Lehtipalo, K.; Yan, C.; Dada, L.; Bianchi, F.; Xiao, M.; Wagner, R.; Stolzenburg, D.; Ahonen, L. R.; Amorim, A.; Baccarini, A.; et al. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 4, eaau5363, http://dx.doi.org/10.1126/sciadv.aau5363, 2018.

(18) Zuth, C.; Vogel, A. L.; Ockenfeld, S.; Huesmann, R.; Hoffmann, T. Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol. Anal. Chem. 90, 8816–8823, http://dx.doi.org/10.1021/acs.analchem.8b00671, 2018.

(17) Stolzenburg, D.; Fischer, L.; Vogel, A. L.; Heinritzi, M.; Schervish, M.; Simon, M.; Wagner, A. C.; Dada, L.; Ahonen, L. R.; Amorim, A.; et al. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceed. Natl. Acad. Sci. U. S. A. 115, 9122–9127, http://dx.doi.org/10.1073/pnas.1807604115, 2018.

(16) Frege, C.; Ortega, I. K.; Rissanen, M. P.; Praplan, A. P.; Steiner, G.; Heinritzi, M.; Ahonen, L.; Amorim, A.; Bernhammer, A.-K.; Bianchi, F.; et al. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmos. Chem. Phys. 18, 65–79, http://dx.doi.org/10.5194/acp-18-65-2018, 2018.

2017 and earlier

(15) Dias, A.; Ehrhart, S.; Vogel, A.; Williamson, C.; Almeida, J.; Kirkby, J.; Mathot, S.; Mumford, S.; Onnela, A. Temperature uniformity in the CERN CLOUD chamber. Atmos. Meas. Tech. 10, 5075–5088, http://dx.doi.org/10.5194/amt-10-5075-2017, 2017.

(14) Wagner, R.; Yan, C.; Lehtipalo, K.; Duplissy, J.; Nieminen, T.; Kangasluoma, J.; Ahonen, L. R.; Dada, L.; Kontkanen, J.; Manninen, H. E.; et al. The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17, 15181–15197, http://dx.doi.org/10.5194/acp-17-15181-2017, 2017.

(13) Gordon, H.; Sengupta, K.; Rap, A.; Duplissy, J.; Frege, C.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceed. Natl. Acad. Sci. U. S. A. 113, 12053–12058, http://dx.doi.org/10.1073/pnas.1602360113, 2016.

(12) Vogel, A. L.; Schneider, J.; Mueller-Tautges, C.; Phillips, G. J.; Poehlker, M. L.; Rose, D.; Zuth, C.; Makkonen, U.; Hakola, H.; Crowley, J. N.; et al. Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition. Environ. Sci. Technol. 50, 10823–10832, http://dx.doi.org/10.1021/acs.est.6b01675, 2016.

(11) Vogel, A. L.; Schneider, J.; Mueller-Tautges, C.; Klimach, T.; Hoffmann, T. Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation. Environ. Sci. Technol. 50, 10814–10822, http://dx.doi.org/10.1021/acs.est.6b01673, 2016.

(10) Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521-526, http://dx.doi.org/10.1038/nature17953, 2016.

(9) Hoyle, C. R.; Fuchs, C.; Jaervinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Troestl, J.; Bernhammer, A.-K.; et al. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmos. Chem. Phys. 16, 1693–1712, http://dx.doi.org/10.5194/acp-16-1693-2016, 2016.

(8) Yatavelli, R. L. N.; Mohr, C.; Stark, H.; Day, D. A.; Thompson, S. L.; Lopez-Hilfiker, F. D.; Campuzano-Jost, P.; Palm, B. B.; Vogel, A. L.; Hoffmann, T.; et al. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophys. Res. Lett. 42, 6084–6090, http://dx.doi.org/10.1002/2015GL064650, 2015.

(7) Brueggemann, M.; Vogel, A. L.; Hoffmann, T. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer. Eur. J. Mass Spectrom. 20, 31–41, http://dx.doi.org/10.1255/ejms.1260, 2014.

(6) Vogel, A. L.; Aijala, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petaja, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; et al. In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmos. Chem. Phys. 13, 10933–10950, http://dx.doi.org/10.5194/acp-13-10933-2013, 2013.

(5) Corrigan, A. L.; Russell, L. M.; Takahama, S.; Aijala, M.; Ehn, M.; Junninen, H.; Rinne, J.; Petaja, T.; Kulmala, M.; Vogel, A. L.; et al. Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiala, Finland, during HUMPPA-COPEC 2010. Atmos. Chem. Phys. 13, 12233–12256, http://dx.doi.org/10.5194/acp-13-12233-2013, 2013.

(4) Vogel, A. L.; Aijala, M.; Brueggemann, M.; Ehn, M.; Junninen, H.; Petaja, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study. Atmos. Meas. Tech. 6, 431–443, http://dx.doi.org/10.5194/amt-6-431-2013, 2013.

(3) Huang, R.-J.; Thorenz, U. R.; Kundel, M.; Venables, D. S.; Ceburnis, D.; Ho, K. F.; Chen, J.; Vogel, A. L.; Kuepper, F. C.; Smyth, P. P. A.; et al. The seaweeds Fucus vesiculosus and Ascophyllum nodosum are significant contributors to coastal iodine emissions. Atmos. Chem. Phys. 13, 5255–5264, http://dx.doi.org/10.5194/acp-13-5255-2013, 2013.

(2) Noelscher, A. C.; Williams, J.; Sinha, V.; Custer, T.; Song, W.; Johnson, A. M.; Axinte, R.; Bozem, H.; Fischer, H.; Pouvesle, N.; et al. Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos. Chem. Phys. 12, 8257–8270, http://dx.doi.org/10.5194/acp-12-8257-2012, 2012.

(1) Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petaja, T.; Rinne, J.; Back, J.; Boy, M.; Dal Maso, M.; et al. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmos. Chem. Phys. 11, 10599–10618, http://dx.doi.org/10.5194/acp-11-10599-2011, 2011.