Press releases – 2017

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to ott@pvw.uni-frankfurt.de

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt 
presse@uni-frankfurt.de

 

May 24 2017
11:31

State of Hesse grants funds of about € 525,000 for research against forgetting

Sybille Steinbacher introduced as holder of Germany’s first chair for Holocaust research

Frankfurt. Boris Rhein, Minister for Science and the Arts, today introduced the holder of Germany’s first chair for research on the history and impact of the Holocaust, Professor Sybille Steinbacher, and welcomed her to her new post. Sybille Steinbacher took up office on 1 May as Director of the Fritz Bauer Institute. The position is linked to the new “Chair for Research on the History and Impact of the Holocaust” at Goethe University Frankfurt. The State of Hesse is sponsoring the Fritz Bauer Institute with € 375,100 this year and financing the Holocaust professorship with a further € 150,000, so that a total of € 525,100 of state funds is available for the two entities in 2017.

Boris Rhein, Minister for Science and the Arts: “I am very pleased that all the groundwork has now been completed and Professor Steinbacher can start to breathe life into her new task. The Holocaust professorship is a milestone along the path to a better understanding of National Socialist crimes and the history of their impact up to the present day. This joint appointment by Goethe University Frankfurt and the Fritz Bauer Institute will also further enhance the integration of university and institute-based research. I wish Professor Steinbacher every success in her work.”

Professor Steinbacher is a renowned expert in the field of Holocaust research as documented by many pertinent research papers. She already dealt with persecution and extermination policies in the National Socialist state and societal reactions to it in her Master’s thesis at LMU Munich. Her dissertation entitled “‘Model Town’ Auschwitz. Germanisation Policy and Murder of Jews in East Upper Silesia”, which she submitted at Ruhr University Bochum, later formed the basis for an internationally much acclaimed standard reference work on the subject, which was translated into numerous languages.

Professor Birgitta Wolff, President of Goethe University Frankfurt: “It is a great joy to us that we have succeeded in bringing Sybille Steinbacher to Goethe University. A type of Holocaust research such as we see it in Frankfurt can help not only to understand better the genocide of the Jews in the National Socialist era. It is equally important that the right lessons are drawn from it for the present and the future. Sybille Steinbacher’s research is highly topical in view, for example, of the fact that racially and ethnically motivated exclusion and discrimination seem at the moment to becoming socially acceptable again all around the world.”

Professor Sybille Steinbacher, Chair of Research on the History and Impact of the Holocaust and Director of the Fritz Bauer Institute: “The creation of this chair is a special event in the some 20-year history of the Fritz Bauer Institute. It signifies an affirmation and upgrading of its work, which is committed to a dual task: communication and research. Through this chair, research will in future be strengthened and the Institute and Goethe University more closely interlocked. I consider the fact that there is now a professorship in Germany with this special title to be an important achievement in terms of science and research policy. I will be tackling my new tasks with great vigour and creative drive.”

Sybille Steinbacher was already visiting professor at Goethe University Frankfurt for the history and impact of the Holocaust in 2010 in conjunction with the Fritz Bauer Institute, following which she was professor for Comparative Dictatorship, Violence and Genocide Studies at the University of Vienna. She has been Project Manager of the Dachau Symposium on Contemporary History since 2012. She is a member of several scientific bodies, including the international advisory board of the Richard Koebner Minerva Centre for German History at the Hebrew University of Jerusalem.

“The Fritz Bauer Institute is an education and research facility of highest international standing and its outreach goes far beyond the borders of Hesse. Above all the confrontation with the ethical and moral justification structures of the Holocaust up to the present day makes the research so unique and important. Especially in the land of the perpetrators there must be no forgetting. The linking of the new Holocaust professorship with the directorship of the Fritz Bauer Institute is thus a unique opportunity that we are using to give as great a boost as possible to the subject’s scientific reappraisal”, explained Boris Rhein, Minister for Science and the Arts.

 

May 19 2017
10:08

A team around Ivan Dikic and Mike Heilemann discovers an inflammatory signaling platform which may lead to novel antibiotic therapies

How cells combat Salmonella

FRANKFURT.With drug resistance being on the rise worldwide, bacterial infections pose one of the greatest global threats to human health. By deciphering the host-pathogen interaction on a molecular level, researchers hope to pave the way for new therapies. Studying the cell’s reaction to Salmonella, scientists from Goethe University Frankfurt have now made a critical discovery to this respect.

All bacteria have developed clever mechanisms for survival and propagation within host cells. Salmonella are a typical example: usually they hide in membrane-bound particles with only very few bacteria escaping to the cell’s interior. Those escapees are extremely dangerous as they proliferate and spread at enormous speed. To stop such an invasion, cells have developed very effective defense strategies. An interdisciplinary team around Prof. Ivan Dikic (Institute of Biochemistry II) and Prof. Mike Heilemann (Institute of Physical and Theoretical Chemistry), both from Goethe University Frankfurt, now studied such a cellular defense mechanism by visualizing protein patterns at the near-molecular level.

Protein chains relay pro-inflammatory signals

Upon bacterial invasion, cells react fast: They flag escaped bacteria with a small protein called ubiquitin, which is known to regulate numerous cellular processes. The attached flags contain chains of differently linked ubiquitin molecules, resulting in a secret code, which has so far only partially been decoded. Similar to mobile transmission towers, these ubiquitin chains relay specific signals from the surface of the bacteria into the cell.

Employing super-resolution microscopy, the Frankfurt team now succeeded with visualizing different ubiquitin chains on the bacterial surface and analyzing their molecular organization in detail. They discovered that one chain type, so called linear chains, plays an essential role during a bacterial invasion. Linear ubiquitin chains trigger degradation of bacteria and kick off an inflammatory signaling cascade which results in restricting bacterial proliferation. In addition, the researchers identified the enzyme Otulin as an important regulator capable of limiting this reaction – a very important notion considering the fact that excessive inflammation is one of the major causes of tissue damage following bacterial infection.

Signaling the cells’ need for pathogen defense is just one important role of ubiquitin. The small protein is also involved in development and progression of inflammatory and neurodegenerative diseases as well as of cancer. Until now, however, very little is known about how small errors in the ubiquitin system contribute to these serious human diseases, and how the system can be targeted pharmaceutically.

These new findings pave the way for many follow-up projects which may ultimately lead to novel therapeutic approaches. Very recently, Ivan Dikic obtained one of the prestigious ERC Advanced Grants of 2.5 M € in which he will investigate the role of ubiquitin in modulating the host-pathogen interaction in more detail.

The work of the Frankfurt team is an excellent example for interdisciplinary collaboration and was enabled by funding of several large research networks, e.g. the Cluster of Excellence Macromolecular Complexes, the CRC 1177 on selective autophagy and the LOEWE ubiquitin network. The results are now published in the latest online issue of Nature Microbiology, back-to-back with complementary insights generated by colleagues in Cambridge (UK).

 

Picture link: www.uni-frankfurt.de/66465906

 

Captions: 1. Salmonella within a human cell, surrounded by a coat of different ubiquitin chains. Purple represents linear ubiquitin chains, green all ubiquitin chains. Visualized by super-resolution microscopy (dSTORM). Copyright: Mike Heilemann/Ivan Dikic

2. One Salmonella bacterium within a human cell, surrounded by a coat of different ubiquitin chains. Purple represents linear ubiquitin chains, green all ubiquitin chains. Visualized by super-resolution microscopy (dSTORM). Copyright: Mike Heilemann/Ivan Dikic

3. One Salmonella bacterium within a human cell, surrounded by a coat of different ubiquitin chains. The coloured dots represent individual linear ubiquitin chains. Visualized by super-resolution microscopy (3D-dSTORM). Copyright: Mike Heilemann/Ivan Dikic

 

Publication: van Wijk SJ, Fricke F, Herhaus L, Gupta J, Hötte K, Pampaloni F, Grumati P, Kaulich M, Sou Y, Komatsu M, Greten F, Fulda S, Heilemann M, Dikic I. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nature Microbiology 2017, doi 10.1038/nmicrobiol.2017.66.

Information: Dr. Kerstin Koch, Institute of Biochemistry II, Faculty 16, University Hospital Frankfurt, Phone +49 (0)69 6301 84250, k.koch@em.uni-frankfurt.de.

 

May 19 2017
10:02

Light-inducible microRNA inhibitors used for the first time as local therapeutic agents

New hope for slow-healing wounds

FRANKFURT.MicroRNAs are interesting target structures for new therapeutic agents. They can be blocked through synthetic antimiRs. However, to date it was not possible to use these only locally. Researchers at Goethe University Frankfurt have now successfully achieved this in the treatment of impaired wound healing with the help of light-inducible antimiRs.

MicroRNAs are small gene fragments which bond onto target structures in cells and in this way prevent certain proteins from forming. As they play a key role in the occurrence and manifestation of various diseases, researchers have developed what are known as antimiRs, which block microRNA function. The disadvantage of this approach is, however, that the blockade can lead to side effects throughout the entire body since microRNAs can perform different functions in various organs. Researchers at Goethe University Frankfurt have now solved this problem.

The research groups led by Professor Alex Heckel and Professor Stefanie Dimmeler of the Cluster of Excellence Frankfurt Macromolecular Complexes have developed antimiRs that can be activated very effectively over a limited local area by using light of a specific wavelength. To this purpose, the antimiRs were locked in a cage of light-sensitive molecules that disintegrate as soon as they are irradiated with light of a specific wavelength.

As a means of testing the therapeutic effect of these new antimiRs, the researchers chose microRNA-92a as the target structure. This is frequently found in diabetes patients with slow-healing wounds. They injected the antimiRs in the light-sensitive cage into the skin of mice and then released the therapeutic agent into the tissue with the help of light. Together the research groups were able to prove that pinpointed activation of an antimiR against microRNA-92a helps wounds to heal.

“Apart from these findings, which prove for the first time that wound healing can be improved by using antimiRs to block microRNA-92a, our data also confirms that microRNA-92a function is indeed only locally inhibited. Other organs, such as the liver, were not affected”, says Professor Stefanie Dimmeler, underlining the trials’ clinical significance.  

The researchers now want to see whether they can also expand the use of light-inducible antimiRs to the treatment of other diseases. In particular they want to examine whether toxic antimiRs can attack tumors locally as well.

 

Publication: Tina Lucas, Florian Schäfer, Patricia Müller, Sabine A. Eming, Alexander Heckel & Stefanie Dimmeler: “Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice”, in: Nature Communications, publication date, doi: 10.1038/ncomms15162

 

Further information: Professor Dr. Stefanie Dimmeler, Institute of Cardiovascular Regeneration and Cluster of Excellence Frankfurt Macromolecular Complexes, Excellence Cluster Cardio-Pulmonary System, Faculty of Medicine, Frankfurt University Hospital, Tel.: +49(0)69-798-29475, dimmeler@em.uni-frankfurt.de

 

Apr 21 2017
12:10

Screening process for lead structures with optimized efficiencies

Molecular libraries for organic light-emitting diodes

FRANKFURT.Organic light-emitting diodes (OLEDs) are promising candidates for flexible flat displays. By means of a screening process developed by chemists at Goethe University Frankfurt, it is now possible to identify more quickly lead structures with superior luminescence and charge-transport properties.

The rising demand for increasingly sophisticated smartphones, tablets and home cinemas is a growing challenge for display technology. At present, organic materials are the most effective way to master this challenge. In particular molecules from the class of materials known as polycyclic aromatic hydrocarbons (PAHs) can be used to produce large and mechanically flexible flat screens. They unite brilliant colours with high resolution and are at the same time low in energy consumption.

Chemists at Goethe University Frankfurt are currently working on new types of organic luminescent materials which owe their particularly promising properties to the introduction of boron atoms into the PAH scaffold. To date, the syntheses required have been extremely complex and time-consuming. A recently developed screening process, which makes a wide variety of boron-doped PAHs quickly and easily accessible, could in future alleviate this situation. The technique makes it possible to evaluate their potential as OLED materials. Only the most promising candidates will be examined more extensively in the next stage.

As the research group led by Professor Matthias Wagner at the Institute of Inorganic and Analytical Chemistry of Goethe University Frankfurt reports in the scientific journal “Angewandte Chemie”, the method is based on a three-component reaction: Two components remain unchanged in all reactions whilst the third is chosen from a broad range of cheaply available PAHs. The reactive boron-containing starting material plays an important role in the assembly of the molecular scaffold. In addition, it gives the compounds obtained the desired optoelectronic properties by increasing luminescence and improving the materials’ electrical conductivity.

“For a long time, it has mostly been pharmaceutical research which has profited from screening processes”, says doctoral researcher Alexandra John. “Yet it makes sense precisely in the dynamic and growing field of organic materials to use similar strategies to achieve results in a cost-efficient and resource-friendly way”. Professor Matthias Wagner adds: “Our development’s market relevance can also be seen by the fact that the Federal Ministry for Economic Affairs and Energy is giving our research work generous financial support.” The funding instrument behind it - WIPANO - supports the transfer of knowledge and technology through patents and norms and aims to ensure the commercial exploitation of innovative ideas and inventions generated by public-funded research by safeguarding and utilizing intellectual property. Wagner and John have already filed a patent for their process.

 

Publication:

Alexandra John, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner: A Vicinal Electrophilic Diborylation Reaction Furnishes Doubly Boron-Doped Polycyclic Aromatic Hydrocarbons, in: Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201701591.

A picture can be downloaded from: www.uni-frankfurt.de/66206458

Caption: A new screening process means that promising OLED lighting materials can be identified more efficiently.

Copyright: AG Matthias Wagner

Further information: Professor Dr. Matthias Wagner, Institute for Inorganic and Analytical Chemistry, Riedberg Campus, Tel.: +49(0)69-798-29156; Matthias.Wagner@chemie.uni-frankfurt.de

 

Apr 18 2017
11:18

Proposal by young geoscientists and physicists shortlisted

Student experiment soon on the ISS?

Their own experiment on the International Space Station (ISS) is the dream of many young early career researchers. For some geosciences and physics students at Goethe University Frankfurt this could soon becoming intriguing reality. They answered a call by the German Aerospace Center and entered their own project proposal in the area of zero gravity.

A total of eight projects were selected from a large number of submissions. Three students from each project have now been invited by the centre in Bonn to present their concepts in person, including the EXCISS project of the student group in Frankfurt. EXCISS stands for Experiment on Chondrule Formation on the ISS. At the end of the selection procedure, German astronaut Alexander Gerst will take three experiments with him to the International Space Centre and conduct them there.

“What we want to solve with this experiment is nothing less than the origin of the most common solid objects in the early solar system”, reports group leader Tamara Koch. When our solar system was born about 4.56 billion years ago, the solar nebula was composed of gas and dust particles. These were made up either of calcium and aluminum-rich minerals or iron and magnesium-rich silicates. By means of a process as yet unexplained, these were suddenly heated up to several thousand degrees in the early phase of the solar system, only to solidify equally suddenly in droplet form, what are known as chondrules. This process has left researchers baffled up until today.

There are several hypotheses. For example, shock waves or flashes of lightning could have heated up the dust particles to such a high temperature. Another possibility could be a collision between asteroids. None of the three hypotheses has so far won through. The students want to examine now in the framework of the EXCISS project whether the chondrules in the dust-gas mix of the solar nebula could have evolved through high-energy lightning. The focus is on the iron and magnesium-rich silicates.

Tiny flashes of lightning in a weightless environment

“The idea behind this project is simple“, explains Tamara Koch. “We want to let dust particles collide in zero gravity under conditions such as prevailed in the solar nebula. Flashes of lightning are then repeatedly shot at the lumps of dust which have formed as a result. The lightning is created by discharging plate capacitors. What’s new about the idea is its implementation under realistic zero gravity conditions and with low gas pressure. Such experiments are not possible on Earth even in drop towers. The ISS offers a unique environment in which to test the lightning hypothesis.” 

“Carrying out such a project in a small box of less than 15 centimeters edge length and with a 2-volt electricity supply is certainly a challenge”, says Yannik Schaper, who together with his fellow students is taking care of the physics side of the project.

“Only through close cooperation between geoscientists and physicists can the project be put into practice successfully”, explains Frank Brenker, Professor for Nanogeoscience and project initiator. “The students have done a great job here and produced a sound concept in a very short time frame. That’s why we weren’t really surprised to be among the last eight”, he reports.

The group is now eagerly awaiting the meeting in Bonn and hopes to be one of the three projects which is awarded funding and ultimately flies to the ISS. The project is supported by the working groups on Nanogeoscience (Professor Frank Brenker) and Crystallography (Professor Björn Winkler) as well as by the glassblowing workshop of the Department of Chemistry at Goethe University Frankfurt (Michael Röder). Sponsors willing to give the project their financial support are greatly welcomed.