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TORIC NEWTON-OKOUNKOV FUNCTIONS WITH AN
APPLICATION TO THE RATIONALITY OF CERTAIN
SESHADRI CONSTANTS ON SURFACES

CHRISTIAN HAASE, ALEX KURONYA, AND LENA WALTER

ABSTRACT. We initiate a combinatorial study of Newton—Okounkov functions
on toric varieties with an eye on the rationality of asymptotic invariants of line
bundles. In the course of our efforts we identify a combinatorial condition which
ensures a controlled behavior of the appropriate Newton—-Okounkov function on
a toric surface. Our approach yields the rationality of many Seshadri constants
that have not been settled before.
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1. INTRODUCTION

In the present paper, we start to develop methods to determine Newton—Okounkov
functions in the case of toric varieties. As a by-product, we can show rationality of
Seshadri constants for many new examples of toric surfaces.

Newton—Okounkov bodies are convex bodies which encode various facets of al-
gebraic and symplectic geometry such as the local positivity of line bundles on
varieties and going as far as geometric quantization [HHK20]. More specifically,
it is possible to gain information on asymptotic invariants (Seshadri constants,
pseudo-effective thresholds, Diophantine approximation constants) from well-chosen
Newton-Okounkov bodies and concave (Newton-Okounkov-)functions on them.

Over the past decade, Newton—Okounkov theory has attracted a lot of attention.

Many deep structural results have been proven, drawing information about varieties

and their line bundles from Newton—Okounkov bodies. At the same time it also
1
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became apparent that it is often very difficult to obtain precise information about
Newton—Okounkov bodies and Newton—Okounkov functions in concrete cases.

Newton—Okounkov Functions.

Newton—Okounkov functions are concave functions on Newton—Okounkov bodies
arising from multiplicative filtrations on the section ring of a line bundle. They
have proven to be more evasive than Newton—Okounkov bodies themselves.

The first definition of Newton-Okounkov functions (in other terminology, concave
transforms of multiplicative filtrations) in print is due to Boucksom—Chen [BC11].
These functions on the Newton—Okounkov body yield refined information [BKMST5),
DKMSI16b, [Fujl6l, KMS12, KMR19, MR15] about the arithmetic and the geometry
of the underlying variety.

Already the most basic invariants of Newton—Okounkov functions contain highly
non-trivial information. Perhaps the most notable example is the average of such
a function — called the S-invariant of the line bundle and the filtration — , which
is closely related to Diophantine approximation [MR15], and K-stability [Fujl6].
By the connection of the S-invariant to Seshadri constants [KMR19], its rationality
could decide Nagata’s conjecture [DKMSI16a]. Not surprisingly, concrete descrip-
tions of these functions are very hard to obtain.

A structure theorem of [KMR19] identifies the subgraph of a Newton-Okounkov
function coming from a geometric situation as the Newton—Okounkov body of a
projective bundle over the variety in question. (Compare §4.1.1| below.)

Based on earlier work of Donaldson [Don02], Witt-Nystrom [WNI12] made the ob-
servation that the Newton—-Okounkov function coming from a fully toric situation
(meaning all of the line bundle, admissible flag, and filtration are torus-invariant) is
piecewise affine linear with rational coefficients on the underlying Newton—Okounkov
body, which happens to coincide with the appropriate moment polytope. In this
very special situation, the function is in fact linear. (Compare Proposition be-
low.)

The next interesting case arises when we keep the toric polytope (that is, we work
with a torus-invariant line bundle and a torus-invariant admissible flag), but we
consider the order of vanishing at a general point to define the function. To our
knowledge, no such function has been computed for toric varieties other than pro-
jective space.

While the usual dictionary between geometry and combinatorics is very effective
in explaining torus-invariant geometry, when it comes to non-torus invariant phe-
nomena, one does need the more general framework of Newton—Okounkov theory.
Broadly speaking Newton—Okounkov theory would be toric geometry without a
torus action; in more technical terms Newton—Okounkov theory replaces the natu-
ral gradings on cohomology spaces by filtrations.
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In determining Newton—Okounkov functions in a not completely toric setting, our
first goal is to devise a strategy to determine Newton—Okounkov functions associated
to orders of vanishing on toric surfaces, and to apply it to interesting examples. The
trick is to avoid blowing up the valuation point, which could result in losing control
of the Mori cone.

Instead, we change the flag defining the Newton—-Okounkov polytope to one which
contains the valuation point and show that there is a piecewise linear transforma-
tion of the moment polytope into the new Newton—-Okounkov polytope (see Corol-
lary [3.8). This is reminiscent of the transformation constructed in [EH]. But the
connection is, as of yet, unclear.

We can then employ arguments from convex geometry to provide upper and lower
bounds for the desired function. We study combinatorial conditions which guarantee
that the obtained upper and lower bounds agree.

In the case of anti-blocking polyhedra in the sense of Fulkerson [Ful71l [Ful72] we
obtain a particularly easy answer. Nevertheless, the strategy works much more
generally.

Theorem A (Newton-Okounkov functions on toric surfaces). Let X be a smooth
projective toric surface, D an ample divisor and Y, an admissible torus-invariant
flag on X so that the Newton-Okounkov body Ay, (D) is anti-blocking.

Let Y] be a torus-invariant flag opposite to the origin. Then the Newton—Okounkov
function pr on Ay; (D) coming from the geometric valuation ordg in a general point
R € X is linear with integral slope.

Along the way, we formulate and prove existence and uniqueness of Zariski de-
composition on toric surfaces in the language of polyhedra. One can “see” the
decomposition in terms of the polygons.

Local Positivity.

Newton—Okounkov bodies and the Newton—-Okounkov functions defined on them
reveal a lot about positivity properties of the underlying line bundles. Just like in
the toric case, one can use this convex geometric information to decide for instance
if the line bundle whose Newton-Okounkov bodies we consider is ample or nef
IKL17al [KL17h].

Using Newton—Okounkov theory one can even obtain localized information about
line bundles. A line bundle is called positive or ample at a point of our variety
[KL18a] if global sections of a high enough multiple yield an embedding of an open
neighborhood of the point. Local positivity can be decided via Newton—Okounkov
bodies [KL17al [KL17bl [Roé16]. Even more, we can measure how positive the line
bundle in question is [KLI17al.
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Local positivity is traditionally measured by Seshadri constants [KLI18al, Laz04].
Originally invented by Demailly [Dem92] to attack Fujita’s conjecture on global
generation, Seshadri constants have become the main numerical asymptotic positiv-
ity invariant (cf. [Laz04, Chapter 5],[Bau99]). While there has been considerable
interest in this invariant’s behavior, many of its properties are still shrouded in
mystery [Szel2].

One interesting question about Seshadri constants is if they are always rational
numbers. This is widely believed to be false, but there has only been sporadic
progress towards this issue. On surfaces, the rationality of Seshadri constants would
imply the failure of Nagata’s conjecture [DKMS16al.

The rationality of Seshadri constants and related asymptotic invariants often follows
from finite generation of appropriate a multi-graded ring or semigroup [ELM™06,
CLI12]. But finite generation questions tend to be wide open, and are typically skew
to the major finite generation theorems of birational geometry.

In the literature around Newton—Okounkov bodies the involved valuation semi-
groups are frequently assumed, from the outset, to be finitely generated (see [HK15,
KM19], this is to obtain a toric degeneration as in [And13]). However, deciding
finite generation of multigraded algebras or semigroups arising from a geometric
setting is an utterly hard question.

We obtain results on the rationality of Seshadri constants in general points of toric
surfaces using asymptotic considerations and convexity to circumvent some of these
difficulties.

Previously, Lundman [Lun20] and Sano [Sanl4] have verified rationality of these
same Seshadri constants for restricted classes of (line bundles on) toric surfaces. As
it turns out, a condition we call “zonotopally well-covered”, is sufficient to guarantee
rationality of the Seshadri constant, and conjecturally also guarantees the success
of our strategy for the Newton—Okounkov function.

Theorem B (Rationality of certain Seshadri constants). Let X be a smooth pro-
jective toric surface and D an ample divisor. If there is a torus-invariant flag Y,
on X, and a primitive direction v € Z? so that Ay, (D) is zonotopally well-covered
with respect to v, then the Seshadri constant of (X, D) at a general point of X is
rational.

This theorem reproves some of the cases covered in [Lun20, [San14] and adds many
new cases, even some where we can only conjecture what the Newton—Okounkov
function looks like. We would like to point out that it was Ito in [Itol3l Mtol4],
who first studied the connection between Seshadri constants and Newton—Okounkov
bodies (partially in the toric setting as well), however, he is mostly concerned with
non-trivial lower bounds on Seshadri constants and so his work yields no rationality
results.
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It is worth mentioning at this point that certain pairs of subgraphs of Newton—
Okounkov functions associated to torus-invariant and non-torus-invariant flags hap-
pen to be equidecomposable (cf. Remark . This is an exciting and unexpected
phenomenon with possible ties to the mutations studied in [CFKT17]. We offer a
conjectural explanation for this phenomenon.

Organization of the Paper

We start in Section 2 by fixing notation and giving necessary background informa-
tion. Since our work sits on the fence between two areas, we give ample information
on both. Section 3 is devoted to a self-contained combinatorial proof of Zariski de-
composition on toric surfaces. In Section 4 we give description of Newton—Okounkov
functions/concave transforms in the two relevant cases: when every actor is torus-
invariant (Subsection 4.1) and when we are looking at the order of vanishing filtra-
tion coming from a general point (Subsection 4.2). The latter part contains a proof
of Theorem A and the outline of our general strategy. Section 5 contains the appli-
cation of our results on Newton—Okounkov functions to the rationality of Seshadri
constants.
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2. BACKGROUND AND NOTATION

We work over an algebraically closed field K. Although no arguments depend on
characteristic zero, for convenience we will assume K = C.

2.1. Toric Varieties. Since we will mostly consider the case of toric varieties, we
review some basic results and fix notation regarding toric varieties and divisors in
particular the interplay between algebraic geometry and combinatorics. We will
mainly follow the conventions used in |[CLS11] which gives a broad introduction to
toric varieties.

Let X be an n—dimensional smooth projective toric variety. Then X = Xy is
determined by a complete unimodular fan ¥ in Ng = N ® R ~ R", where N ~ Z"
denotes the underlying lattice of one—parameter subgroups. Its dual, the lattice
of characters is denoted by M = Homyz(N,Z) and the associated vector space by
Mr = M ® R. We denote the underlying torus by T = N ® K*.
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Let ¥(i) denote the set of i—dimensional cones of the fan. Each ray p € (1)
is determined by a primitive ray generator u, € N. Since ¥ is unimodular, the
primitive ray generators of each maximal cone o € ¥ form a basis of N. The toric
patches will be denoted by U, for o € X.

Since X is smooth, a divisor D is a Weil divisor if and only if it is a Cartier divisor,
ie. Pic(X) = CI(X). Due to the Orbit-Cone correspondence a ray p € %(1)
gives a codimension—1 orbit whose closure V(p) is a torus-invariant prime divisor
on X which we denote by D,. Let Kx = — ) » D) denote the canonical divisor on
X.

Given a torus-invariant divisor D = ) 0 a,D, on X, it determines a polyhedron
(1) Pp :={m e Mg | (m,u,) > —a, for all p € (1)},

which is actually a polytope, since ¥ is complete. Denote the normal fan of Pp by
Xp,.

To a Cartier divisor D on X we can associate the sheaf Ox (D), which is the sheaf of
sections of a line bundle 7: Vo — X which we will denote by . for short. This is a
one-to-one correspondence. For convenience we will use these terms interchangeably.
Furthermore, we can describe a Cartier divisor D = ) 0 a,D, in terms of its support
function SFp: |X| — R which is linear on each o € ¥ with SFp(u,) = —a, for all
p € 3(1). Additionally, a Cartier divisor is determined by its Cartier data {m, }sex,
where the m, satisfy D|y, = div(x~")|y, for all o € ¥. The vector space of
global sections arises from the characters for the lattice points inside the polytope,
namely

(2) I(X,0x(D)= & C-x™

mePpNM

A lot of properties of the divisor D can be read from the polytope Pp. A divisor D
is big if and only if its associated polytope Pp is full-dimensional and ample if and
only if the normal fan ¥p, of the polytope Pp is exactly X. It is nef if and only if
all defining inequalities of Pp are tight and the fan ¥ is a refinement of the normal
fan ¥p,.

Let D be an ample divisor on X with corresponding polytope Pp. Then for each
vertex () € vert(Pp) the primitive vectors m?, ...,my inits adjacent edge directions
are a lattice basis for the lattice M and therefore specify an associated coordinate
system of the space Mpg.

For a strongly convex rational polyhedral cone 7 in Ny, let N, be the sublattice of
N spanned by points in N N7, then we denote the quotient lattice by N(7) = N/N;.
Let ¥ be a fan in Ng and 7 € ¥. We consider the quotient map Ng — N(7)r and
denote by & the image of a cone o € ¥ containing 7. Then

star(7) = {d C N(r)r | T 20 € X}

is a fan in N(7)g.
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There is again a toric variety associated to this fan. Let P C Mg be a full dimen-
sional lattice polytope with normal fan ¥ p and associated toric variety Xp. Then
each face ) = P corresponds to a cone 0@ € Xp. According to Propositions 3.2.7
and 3.2.9 in [CLSTI] we obtain the isomorphisms

Xstar( V(UQ) = XQ

between the resulting varieties, where X¢ is the variety that is associated to the
lattice polytope Q.

Q) &

2.2. Measuring Polytopes. Let P C My be a polytope. The width of P with
respect to a linear functional u € N is defined as

width, (P) = Jnax, lu(Q) — u(T)|.
For a rational line segment L there is the notion of lattice length, denoted by
length,;(L). Let therefore L be the segment connecting the rational points Q,T €
Mg and denote by m € M the shortest lattice vector on the ray spanned by @ —T'.
Then we define length,, (L) := |j|, where j € Q such that Q@ — T = jm.

2.3. Newton—Okounkov Bodies. The rich theory of toric varieties provides a
very useful dictionary between algebraic geometry and convex geometry. It turned
out that there is a one-to-one correspondence between the following sets.

{P C My | P is a full-dimensional lattice polytope}
—

{(X%, D) | ¥ is a complete fan in Ng, D a torus-invariant ample divisor on Xy}

This allows us to translate questions about algebraic geometric properties of the
pair (Xs, D) into questions about Pp on the polytopal side and the other way
round. In the 90’s in [Oko96] Okounkov laid the groundwork to generalize this idea
to arbitrary projective varieties motivated by questions coming from representation
theory. Based on that Lazarsfeld-Mustata [LM09] and Kaveh-Khovanskii [KK12]
independently developed a systematic theory of Newton—Okounkov bodies about
ten years later. It lets us assign a convex body to a given pair (X, D) that captures
much of the asymptotic information about its geometry.

We review the construction of Newton-Okounkov bodies and will hereby mostly
follow the approach and notation in [LMO09].

Let X be an irreducible projective variety of dimension n. We fix an admissible
flag
Yo: X=Y2V12---2Y,

of irreducible subvarieties, where admissible requires that codimx Y; = ¢ for all
0 <i < n and that Y; is smooth at the point Y;, for all 0 < ¢ < n.

Additionally let D be a big Cartier divisor on X and . = Ox (D) the associated
big line bundle.
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We define a valuation-like map
val = valy, : I'(X,Ox (kD)) \ {0} — Z"
s = (vali(s),...,val,(s))
for any k£ € Nin the following way. Given a non-zero global section s € I'( X, Ox (kD))
! val; = valj(s) := ordy, (s).
More explicitly, since Yy = X is smooth at Y,,, there exists an open neighborhood

Up of Y, in which Y7 is a Cartier divisor. Let f; denote its locally defining regular
function and let g; be the regular function that locally defines s. Then ordy, (s) is

the maximal integer j, such that ff divides g;. This determines a section
S1 € F(X, O)((kD — valy Yl))

which does not vanish identically along Y. Therefore its restriction yields a non-zero
section

(3) 81 € F(Yl, OYl (kD — valy Yl))

that is locally given as —Z

fval 1

ly; in terms of regular functions. Next choose a suitable

1
open set Uy on Y] and set
valy(s) = ordy,(s1)

in the same manner. Proceed iteratively to determine val by the successive orders
of vanishing along the subvarieties Y}, i.e.

val;(s) = ordy; (si—1).
Having this map we want to associate a convex body to the given data.

Definition 2.1. The Newton-Okounkov body Ay, (D) of D (with respect to the
flag Ys) is defined to be the set

Ava(D) = | 1 fvala(s) | 5 € T(X, Ox (kD)) \ {0}} C "
k>1

By definition the Newton—Okounkov body Ay, (D) is a convex set. Lemma 1.11
in [LMO9| states that it is also a bounded subset and therefore compact and by
Proposition 4.1 in [LM09] it only depends on the numerical equivalence class of D.
For its volume we have n!- volgn (Ay, (D)) = vol(D) independently of the flag Y, by
Theorem 2.3 in [LMO09].

2.3.1. Newton—Okounkov Bodies on Surfaces

Given the data X, Y, and D there is no straight forward way to compute the cor-
responding Newton—Okounkov body that works in general. For the case of surfaces
the existence of Zariski decomposition plays the key role for a promising approach.
In its original form it goes back to Zariski [Zar62], where he gave a way to uniquely
decompose a given effective Q-divisor D into a positive part D™ and a negative
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part D~. This result was reproved by Bauer [BauQ9] and also Fujita provided an
alternative proof in [FT79] which also extends to pseudo-effective R—divisors. Here
we review the statement in the most general form.

Theorem 2.2 ([KMMS&T7], Theorem 7.3.1). Let D be a pseudo-effective R-divisor
on a smooth projective surface. Then there exists a unique effective R-divisor
L

D™ =) aN;
i=1
such that
(1) DT =D — D™ is nef,
(2) D~ is either zero or its intersection matriz (N;.Nj); ; is negative definite,
(3) DY.N; =0 forie{l,...,¢}.
Furthermore, D™ is uniquely determined as a cycle by the numerical equivalence
class of D; if D is a Q-divisor, then so are DT and D~. The decomposition
D=D"+D"

is called the Zariski decomposition of D.

The above Theorem provides a decomposition D = DT + D~ for a given divisor D.
To receive information about the shape of the resulting Newton—Okounkov body it
is important to know how that decomposition varies once we perturb the divisor.
Let C' = Y; denote the curve in the flag. Start at D, move in direction of —C
towards the boundary of the big cone Big(X) and keep track of the variation of the
Zariski decomposition of D; == D — tC. For more details see [BKS04], also [KL18al,
Chapter 2]. The next Theorem is a fundamental result that applies this procedure
in order to compute the Newton-Okounkov body Ay, (D).

Theorem 2.3 ([LM09], Theorem 6.4). Let X be a smooth projective surface, D a
big divisor (or more generally, a big divisor class), Yo: X 2 C D {z} an admissible
flag on X. Then there exist continuous functions o, f: [v,u] — Rso such that
0 <v <pu=:puc(D) are real numbers,

(1) v = the coefficient of C' in D,
(2) a(t) = ord; Dy |c,
(3) B(t) = a(t) + (D .C).
Then the associated Newton—Okounkov body is given by
Ay,(D)={(t,m) eR* |y <t <p, a(t) <m < B(t)}.

Moreover, « is convex, 3 is concave and both are piecewise linear.

As an immediate consequence the Newton—Okounkov body will always be a polytope
in R2.
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2.4. Functions on Newton—Okounkov Bodies Coming from Geometric Val-
uations. The construction of Newton—Okounkov functions in the sense of concave
transforms of filtrations goes back to Boucksom—Chen [BC11] and Witt—Nystrom
[WN14] who introduced them from different perspectives and in a more general way
than considered in the following. We will focus on functions coming from geomet-
ric valuations as dealt with in [KMS12] and recall the definition restricted to that
case.

Given an irreducible projective variety X, an admissible flag Y, and a big divisor
D let Ay, (D) be the corresponding Newton—Okounkov body. Let now Z C X be a
smooth irreducible subvariety. Then we define a Newton—Okounkov function ¢z in
a two-step process. A point m € Ay, (D) is called a valuative point, if

1
m € Valy, = | J - {valy,(s) | 5 € D(X, Ox (kD)) \ {0}}
k>1
For a valuative point m € Ay, (D) set
g522 Valy. —- R

1
m klim z sup{t € R | it exists s € ['(X, Ox (kD))
—00

with valy, (s) = km, ordz(s) > t}.

Due to Lemma 2.6 in [KMS12] the set of valuative points Valy, is dense in Ay, (D).
For all non-valuative points m € Ay, (D) \ Valy, set ¢z(m) = 0. To define a
meaningful function on the whole Newton—-Okounkov body we use the concave en-
velope.

Definition 2.4. Let A C R" be a compact convex set and f: A — R a bounded
real-valued function on A. The closed convex envelope f€ of f is defined as

fe=1inf{g(z) | g > f and g: A — R is concave and upper-semicontinuous}.
Definition 2.5. Define the Newton—-Okounkov function ¢z coming from the geo-
metric valuation associated to Z as
¢z: Ay, (D) — R
m — @5 (m).

Due to Lemma 4.4 in [KMS12] taking the concave envelope does not effect the values
of the underlying function @z(m) for valuative points m € Valy,.

Computing the actual values of a Newton—Okounkov function ¢z becomes extremely
difficult and thus the functions are not well-known even in some of the easiest cases.
In general as far as the formal properties of ¢z we will make use of the following
know facts.

e ¢z is non-negative and concave ([WN14] or [BC11], Lemma 1.6, 1.7).
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e ¢z depends only on the numerical equivalence class of D ([KMS12], Propo-
sition 5.6).

e oz is continuous if Ay, (D) is a polytope ([KMS12], Theorem 1.1).

e The numbers

max and /
Ay, (D) vz Ay, (D) w7

are independent of the choice of Y, ([DKMSI16b], Theorem 2.4, [BCII],
Corollary 1.13).

In our setting an observation made in Lemma 1.4.10 in [KL18b| has the following
immediate consequence. Consider the Newton-Okounkov body Ay, (D) with respect
to the admissible flag Yo: X D Y7 D --- D Y, and the big divisor D. Whenever we
consider the function ¢y, coming from the geometric valuation ordy, of the point
Y, in the flag Y,, then it is bounded from above by the sum of coordinates, i.e.

oy, Ay, (D) — R
(4) (m1,...,mn) — @Yn(ml""vmn)Sm1+"‘+mn.

There are plenty of examples for which the inequality in [4]is strict.

3. ZARISKI DECOMPOSITION FOR TORIC VARIETIES IN COMBINATORIAL TERMS

Given a smooth projective toric variety X, a torus-invariant flag Y, and a big divi-
sor D, then the construction of the Newton-Okounkov body Ay, (D) recovers the
polytope Pp by Proposition 6.1 in [LM09].

Let D, ,...,D,, denote the torus-invariant prime divisors. Since the flag Y, is
torus-invariant, we can assume an ordering of the divisors such that the subvarieties
in the flag are given as Y; = D, N---N D, for 1 <7 < n.

The underlying fan ¥ is smooth and thus the primitive ray generators u,,,...,u,,
span a maximal cone o and form a basis of the lattice N. This gives an isomorphism
N ~ 7" and the dual isomorphism is given by

oM — 7"
(5) m (<m7 uﬂi>)1§i§n’
which extends linearly to the map ®g: Mr — R™.

The Newton—Okounkov body remains the same if one changes it within its linear
equivalence class. Hence we can assume D[y, = 0, i.e. that if the divisor is given as
D =3",a,D,, then we have a, =0 for all p € o(1).

This can also be interpreted in terms of Newton polytopes. For convenience we
assume D to be ample. Each divisor D, corresponds to a facet F, of Pp and
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all facets F),,...,F),, intersect in a vertex (), that is associated to . Assuming
D|y, = 0 on the polytope side means to embed the polytope Pp in R™ such that
the vertex @, is translated to the origin.

Let s € I'(X, Ox (D)) be a global section with Newton polytope NP(s) C Pp. Then
the order of vanishing of s along Y7 = D,, is given by the minimal lattice distance
to F,,, that is

(6) ordy, (s) = mgll\]iél(s)<up1 ,m).

Let F; =< NP(s) denote the face of the Newton polytope NP(s) that has mini-
mal lattice distance to F),,. Then ordy,(s1) = miny,cp (up,, m) and in general we
have

(7) ordy,,, (si) = nrmnell% (Upirsm)

for 1 < i < n—1. Thus the map val sends the section s to the point m € NP(s) whose
coordinates are lexicographically the smallest among all points of the Newton poly-
tope. A similar argument applies for £ > 1. Thus we obtain Ay, (D) C Pp. Since in

particular all the vertices ) =< Pp correspond to respective global sections extending
characters x@, this yields Pp C Ay, (D) and therefore Pp ~ Ay, (D).

For our convenience we identify Pp with its image under ®g.

As the Newton—Okounkov bodies only depend on the numerical equivalence class of
D, we can and often want to choose a torus-invariant representative. If D is given
by a defining local equation then there is a combinatorial way to find one.

Proposition 3.1. Let X be a smooth projective toric variety with associated fan
and D a divisor on X that is given by the local equation f in the torus for some
fe K(X)\{0}. Then D' :=3%" 51y —apD, with coefficients

8 a,:= min (m,u
(8) mesupp(f)< o)

is a torus-invariant divisor that is linearly equivalent to D, where u, is the primitive
ray generator of the ray p € X(1).

Proof. Consider the Cox ring S = Clz, | p € ¥(1)] which is graded by the class
group Cl(X), see Chapter 5 in [CLS11] for details. For a cone o € ¥ we denote by
20 = Hpgéa(l) x, the associated monomial in S and by S,s the localization of S at
2. Applying Lemma 2.2 [Cox95] to the {0}-cone o9 € ¥ gives an isomorphism of
rings

C[M] = Cloo N M] =~ (S4a0)q

where 270 = Hp z, and (S,s), is the graded piece of degree 0.
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Given a lattice point m € M the character x™ is homogenized to the monomial
2m) — Hp w/()mvuﬁ by the corresponding map 6: C [M] — (S,s,),.- Thus homogeniz-
ing f =3, csupp(s) bmX™ € C[M] yields

F=oh=o( X b= X ba[[am -0
p

mesupp(/) mesupp(/) (Hp xp) '

for some homogeneous g € S and some k € Ng. We can rewrite this as

9) f‘:#z x,% - h
)

for h € S coprime with [] 2 Zp and uniquely determined a, € Z.

Since f is homogeneous of degree 0, it gives a rational function on X and we have

0 ~ div(f) = div (Hp {L‘pa”) + div (h). On the torus the zero sets of f and h agree.

Since h is coprime with z, for all p € X(1), is has no zeros or poles along the
boundary components. Altogether we have

D = div (h) ~ div (H x,,—ap> =D
p

Then D’ is torus-invariant by construction.

It remains to show, that the coefficients a, as in @D satisfy equation . To see that
note that the homogenization of f consists of summands of the form b,, || p xﬁ,m’u” >,
where we sum over m € supp(f). But h is an element of the Cox ring and it is
supposed to be coprime with [] pZp- Therefore to obtain the expression in @ we

have to bracket the factor z7 for j maximal that is a common factor of all the
summands for each p € ¥(1). The maximal j is precisely

a,= min (m,u,)
P s Up
méesupp(f)

as claimed. I

We give an example to illustrate the proof of Proposition (3.1

Example 3.2. We consider the Hirzebruch surface X = 57 associated to the fan in
Figure where the torus-invariant prime divisor D; corresponds to the ray p; € ¥(1)
for 1 < <4.

We work with the divisor

D={(z,y) €T| f(z,y) =zy=> —1=0}.
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FIGURE 1. The fan ¥ of the first Hirzebruch surface Xs», = 74

Then the Cox-ring is given by S = C [z, x2,x3,24] = C [az,y,a:_l

we write x; for z,,. Homogenizing f yields

o) = Y ba et = atay ey el — 1

méesupp(f) p

,x_ly_l], where

3 3 222 ,.2

(M) e

_ a 9 1 2
= pr Poh=uxy s - (w114 — T523),
p

where the coefficients are a,, = a,, =0, a,, = —2and a,, = —1 and h = z124—2323
is coprime with z1x92374. The same coefficients are obtained using Lemma,

ap, = min({(0,0), (1,0)), ((1,-2),(1,0))) =0

ap, = min({(0,0),(0,1)),((1,=2),(0,1))) = =2

ap, = min({(0,0), (=1,0)),((1,=2),(=1,0))) = —1
({(0,0), (=1, =1)), {(1, =2), (=1, -1))) = 0.

)

ap, = min(((0,0),

Thus D" =} s 1y —apDp = 2D3 + D3 is a torus-invariant divisor which is linearly
equivalent to D.

With Proposition in hand, we can provide a combinatorial proof for the existence
and uniqueness of Zariski decomposition for smooth toric surfaces independently of
Theorem [2.21

Theorem 3.3. Let X be a smooth projective toric surface associated to the fan %
and let D be a pseudo-effective torus-invariant R—divisor on X. Then there exists
a unique effective R—divisor

such that
(1) DY =D — D~ is nef,
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(2) D~ is either zero or its intersection matriz (N;.N;); ; is negative definite,
(3) DY.N; =0 forie{l,...,¢}.
If D is a Q-divisor, then so are D™ and D~ .

For the proof we will need the following Lemma.

Lemma 3.4. Let X be the toric surface associated to the fan X. Let Dy, ..., Dgiq
be torus-invariant prime divisors with adjacent associated primitive ray generators

Ug, - - -, Upy1 € R? such that cone(ug, ugy1) is pointed and uy, . . ., up, € cone(ug, g, 1).
Then
(10) det((—Di.Dj)1<ij<k) = det(uo, upt1).

Proof. By Theorem 10.4.4 in [CLS11] the intersection numbers of the torus-invariant
prime divisors D1, ..., D} are given as

o D;.D; = —)\;, where u;—1 + ujr1 = Ay

e and for ¢ # j as

DD — 1 if p; and p; are adjacent
"7 10 otherwise.

Thus the intersection matrix is of the form

AN =1 0 -0 .- 0

-1 X -1 0 ‘e 0

0 0
(11) Ay = (=Di.Dj)i<ij<k =

0 .- e e .. 0

0 -+ 0 -1 X1 -1

0 0 -1 X
We will prove by induction on k that holds.
base case: For k£ = 1 we have

det(ug,uz) = ugl)ugz) - u[()Q)ugl)
= )\ (u[()l)ugz) — u((f)ugl))

= A17
since Y is smooth. A similar computation applies for k = 2.

induction step: Let & > 3 be given and suppose is true for all integers smaller
than k. Note that the determinant of the tridiagonal matrix Ay, fulfills a particular
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recurrence relation, since it is an extended continuant. The recurrence relation is
given by

det(Ap) =0, det(A4;) =1, and det(Ai) = Ap det(Ag—1) — det(Ag_2) .
Thus we have

det(Agr) = Apdet(Ag_1) — det(Ag_2)

i A det(ug, ug) — det(ug, ug—1)
= det(ug, Apur — up—1)
= det(ug, ugs1)
as claimed. i

Proof of Theorem [3.3, Since the divisor D is torus-invariant, it is given as D =
>_papDp. We can assume, that D is effective, i.e. a, > 0 for all p € ¥(1). This
defines the polygon

Pp={me Mg | (m,u,) > —a, for all p e X(1)}.
Let a, € R be the coefficients, such that
Pp={me Mg | (m,u,) > —a, for all p € ¥(1)}

and all the inequalities are tight on Pp , i.e. for all p € ¥(1) there exists a point
m € Pp such that (m,u,) = —a,.

Set DT :==3%" a,D, and D~ ==} (a, — Gp)D,. Then

D=> a,D,=D"+D"
p
and (a, — a@,) > 0 by definition. We now show that this satisfies (1)-(3).

(1) Since X is a surface, the divisor D is nef by construction.

(2) Let D,.D, > 0 for some p € ¥(1). There exists a vector v € M, such
that v is orthogonal to u,y and (v,u,) < 0, where p' is a ray adjacent to p.
Then the inequality corresponding to p is tight on Pp, i.e. a, = a,, because
otherwise the polytope Pp would be unbounded in the direction of v. Thus
only negative curves will appear in D

The matrix (N;.N;); ; is negative definite, if all the leading principal minors
of (—=N;.Nj);; are positive. Label the negative curves that appear in the
negative part D~ as {Ny,..., Ny} in such a way that adjacent rays are
given consecutive indices counter clockwise. Then the intersection matrix
(N;.Nj);; is a block matrix, where each block is of the form as in
Lemma[3.4] Solet {Ni,..., Ny} C {Ny,..., N} be adjacent negative curves,
that form a sub block (_Ni-Nj)lgi,jgk of the matrix (_Ni-Nj)lgi,jgﬁ and
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denote by Cy and Cj1 the remaining curves whose rays are adjacent to p;
and p; as indicated in Figure

P1
Pk ]/ po
Prt1
FIGURE 2. Adjacent rays po, ..., pr+1 of the prime divisors Cy, ..., Cii1
For the ray generators it holds that wj,...,ur € cone(ug,urs1) and that

cone(ug, ug41) is convex, for otherwise the polytope Pp would be unbounded
in the direction of v/, where v' € M is chosen such that it is orthogonal to
up and (v, ugq) > 0.

Thus it remains to show that the determinant of each such sub-block matrix
is positive. According to Lemma we have

det(—Ni.Nj)lgiJgk = det(ug, uk+1).

Let ug = (m1,mg) and ug41 = (mf, m}) and assume without loss of general-
ity that m; > 0. Since cone(ug, ug1) is convex and uq, . .., u; € cone(ug, Ugt+1),
it holds that mj > "2m/, because otherwise the polytope Pp would be un-
bounded. It follows that
/
o mp mqyy\ I
det(up, ug41) = det <m2 m’2> = mimy — myma > 0.
An similar argument works for m; < 0. Thus altogether we have that
(N;.Nj);,; is negative definite, since all sub block matrices of (—N;.N;); ;
have a positive determinant.

(3) Let p € ¥(1) be a ray for which D, appears in the negative part D~ of the
decomposition. Then by construction of DT its corresponding face F,, < Pp+
is a vertex. Using Proposition 6.3.8 in [CLS11] it follows that

Dt.D,=|F,NnM|—-1=0,

when Pp is lattice polytope. A similar argument works in the non-integral
case using length,,(F),).

The above gives the existence of a Zariski decomposition. It remains to show unique-
ness of D™, Assume we have a decomposition

D=D"+D =Y a,D,+ (a,~a,)D,.
P P
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Since D is supposed to be nef which translates into bar non tight inequalities for

P+, we have @, < a, for all p € ¥(1). Let p € X(1) be the ray of a divisor D, that

appears in the negative part D . Then as argued before this has to be a negative
curve. But due to (3) the corresponding face F), of P5+ has to be a vertex and

therefore it follows that @, = a,. This yields uniqueness of D . O

Although we can always assume the divisor D to be torus-invariant, the shape of the
Newton—Okounkov body Ay, (D) will heavily depend on the flag Y, which on the
other hand is not necessarily torus-invariant. If the curve Y7 in the flag is determined
by an equation of the form z¥ — 1 = 0 for some primitive v € Z?, then we can show
a combinatorial way to compute Ay, (D).

Proposition 3.5. Let X be a smooth projective toric surface, D a big divisor and
Yo: X D C D {z} an admissible flag on X, where the curve C = {z € T | v =1}
for some primitive v € Z? and z a general smooth point on C. Then the associated
function B(t) in Theorem[2.3 is given by

(12) Bty = (D-tC)".C

(13) = (D-tCc"H*.C

(14) = MV (Pp_icry+, NP(z" — 1))

(15) = MV (Pp N (Pp+tv),NP(z" — 1))

for 0 <t < pu, where C' is a torus-invariant curve that is linearly equivalent to C.

Proof. Since the Newton—Okounkov body only depends on the numerical equivalence
class, we may assume that the divisor D is torus-invariant, i.e. D =3 pES(1) ap,D,,
where ¥ is the fan associated to X with primitive ray generators u, for p € ¥(1).

From Theorem 2.3 we know that 3(t) = (D—tC)*.C for v < ¢ < u, where (D—tC)*
is the positive part of the Zariski decomposition of D — tC' and for C' not part of
(D —tC)~ we have v = 0. Theorem states that the decomposition is unique up
to the numerical equivalence class of the given divisor. Let

C'= Z - min (m,up) D,

mesu xv—1
pes(1) pp( )

be the torus-invariant curve given as in Proposition This means C' ~ C and
the curves are in particular numerically equivalent which yields . Due to Section
5.4/5.5 in [Ful93] the intersection product of two curves equals the mixed volume of
the associated Newton polytopes and therefore we have .

To verify the remaining equality we show that

P(D_tcl)+ = PD N (PD +tU)
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holds up to translation. For the torus-invariant curve D — tC’ the construction of
its Zariski decomposition as in Theorem [3.3| guarantees the equality
Pp_icry+ = Pip—tcn
for the corresponding polytopes. Consider its translation by tv, this gives
P(D_tcl) + tv
={m+tve Mg | (m,uy) > —(a, +t-min (0, (v,u,))) for all p € £(1)}
={me Mg | (m—tv,u,) > —(a,+t-min (0, (v,u,))) for all p € £(1)}
={me Mg | (m,u,) > —a, —t-min (0, (v,u,)) + t(v,u,) for all p € X(1)}
={me Mg | (m,u,) > —a, +max{0,t(v,u,)} for all p € 3(1)}.

On the other hand we have
Pp={me Mg | (m,u,) > —a, for all p € (1)}
and
Pp +tv={me Mg | (m,u,) > —a,+t(v,u,) for all p € ¥(1)}.
Thus their intersection is the set

PpnN (PD + t’U)
={m e Mg | (m,u,) > —a, and (m,u,) > —a, + t(v,u,) for all p € (1)}
={me Mg | (m,u,) > —a, +max (0,t(v,u,)) for all p € (1)}

This verifies the equality in . O

Example 3.6. We return to the Hirzebruch surface X = 74 from Example
and consider the big divisor D = D3 + 2D4 on X. Then for any admissible torus-
invariant flag Y, the associated Newton-Okounkov body Ap(Y,) coincides with a
translate of the polytope Pp which can be seen in Figure

We wish to determine the Newton—Okounkov body Ap(Ys) given by a different flag
Yo: X D C D {z}, where C = {(x,y) € T |y —1=0} is a non-invariant curve,
and z is a general smooth point on C. In local coordinates the curve C' is given
by the binomial y — 1 for v = (0,1) and thus has the line segment NP (C') =
conv((0,0),(0,1)) as its Newton polytope. Using Lemma we obtain the torus-
invariant curve C’ = D, which is linearly equivalent to C.

To determine the Newton—Okounkov body we use variation of Zariski decomposition
for the divisor Dy = D — tC. To compute the upper part of the Newton—Okounkov
body in terms of the piecewise linear function 5, we move a copy of the polytope
Pp in the direction of v as indicated in Figure

The intersection Pp N (Pp + tv) gives the polytope associated to Pp_;cry+. By
Proposition [3.5] the function f3 is then given as
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q
l\PD+1tv
p

[ Po-ion+

v

FIGURE 3. Moving a copy of Pp in the direction of v to obtain
PD M (PD + t’U) = P(D,tcl)+

Bty = Df.C
= MV (Ppn(Pp+t-(0,1)),NP(y—1))
1 ifo<t<1
- {2—t if1<t<2,

where the mixed volume MV (Pp N (Pp +t-(0,1)),NP(y — 1)) can be seen as the
area of the shaded region in Figure

MV(Pp N (Pp +t- (0,’1)),NP(y - 1))

PpN(Pp+t-(0,1))

F1GURE 4. The mixed volume MV (Pp N (Pp +t-(0,1)),NP(y — 1))

Since D is nef, we have v = 0 and since z can be chosen general enough on C, we
also have «a(t) = 0. Therefore the Newton—Okounkov body Ay, (D) is the polytope

shown in Figure

Ay, (D)

F1GURE 5. The Newton-Okounkov body Ay, (D)
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Let us for simplicity assume, that v = 0 and that a = 0. Then the Newton—
Okounkov body Ay, (D) is completely determined by /.

Given the polytope Pp and the vector v the procedure described in Proposition[3.5to
compute the function 8 divides the polytope Pp into chambers. In the following we
consider this process in detail. For that we introduce the following definition.

Definition 3.7. Let P C R? be a 2-dimensional polytope and let v € R? be a vector.
Then we call a facet F < P sunny with respect to v, if (v,ur) > 0, where up is the
inner facet normal of F'. We call the set of all sunny facets of P with respect to v
the sunny side of P with respect to v and denote it by sun(P,v).

Let sun(Pp,v) be the sunny side of Pp with respect to v. By construction the
function [ is piecewise linear. There is a break point at time ¢, if and only if there
exists a vertex @) € vert(Pp) such that

Q € Pp N (sun(Pp,v) + tv).

Thus we move the sunny side sun(Pp,v) along the polytope Pp in the direction of
v. We start at time tp = 0. Whenever we hit a vertex @; € vert(Pp) at time ¢;, we
enter a new chamber as indicated in Figure [0

(" Sun(Pp,v)

Qratt; =1

Qo at to =3
Sun(Pp,v) + 4v

v

Sun(Pp,v) + lv

Sun(Pp,v) + 3v Qs at t3 =4

FIGURE 6. Break points @1,Q2 and Q3 of shifting the sunny side
sun(Pp,v) through Pp in the direction of v

Then ((t) is linear in each time interval [t;, ¢;4+1] for ¢ > 0.

The other part of the chamber structure comes from inserting a wall in the direction
of v for each vertex ) € sun(Pp,v) and in the direction of —v for each vertex
Q € sun(Pp, —v) as it can seen in Figure

In the following we verify that for this particular chamber structure there exists
map between Pp and Ay, (D) that is linear on each of the chambers.

For that we choose a coordinate system my,ma for Mg ~ R?, such that v = (1,0)
without loss of generality. Consider the polytope Pp C R? in (my, mg)-coordinates
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FIGURE 7. The chamber structure on Pp induced by the shifting process

and assume without loss of generality, that Pp lies in the positive orthant. We can
write it as

Pp = {(m1,mz) ER?* | vy <my <6, {(ma) <my < r(ma)},

for some v, € R and some piecewise linear functions ¢ and r that determine the
sunny sides sun(Pp,v) and sun(Pp, —v), respectively.

To determine the function 8 using the combinatorial approach from Proposition [3.5
we shift the sunny side sun(Pp,v) through the polytope as depicted in Figure @
Now we want to “tilt the polytope leftwards” such that the mji—coordinate of each
point in the image expresses exactly the time, at which the point in the original
polytope is visited in the shifting process. This is shown in Figure |8 To make this
precise, map the polytope Pp via

Uie: Pp CR?2 — R?

(ml,mg) — (ml—f(mQ),mg).

Ficure 8. Tilting the polytope Pp leftwards via the map Wi

By construction the map W is a piecewise shearing of the original polytope and
therefore volume preserving. Additionally Wi (Pp) N {my = t} are exactly the
images of the points of Pp that are visited at time ¢. Given m; =t we now want to
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determine ((t). According to (L5)) it is given by
B(t) = MV (Ppn(Pp+tv),NP(z"—1))
= MV (Pp N (sun(Pp,v) + tv),NP(z" — 1
= MV (Ut (Pp) N {my1 = t},NP(z" — 1))
= lengthy (Wier (Pp) N {m1 = t}).

The last equation holds, since v was chosen as (1,0). In a last step we want to
“tilt the polytope downwards” similarly to the previous process as it can be seen in
Figure [0} Therefore we can describe the polytope Wies(Pp) as

Viete(Pp) = {(m1,m2) €R* |y <my <6, 0<my < r(ma) — €(ma)}

)

= {(ml,mg) eER?|0<m < 5, b(my) < mg < u(mg)},
for some 4 € R and some piecewise linear functions b and u that determine the
bottom and top of the polytope.
So set
\Ildown: \I]left(PD) C RQ — RQ
(ml,mg) — (m1,7n2 — b(ml))

FIGURE 9. Tilting the polytope Wi (Pp) downwards via the map Vyown

By construction this is again a piecewise shearing of the polytope and therefore
volume preserving. The image Wqown(Piert(Pp)) is the subgraph of 8 and thus it
coincides with the Newton—Okounkov body Ay, (D) with respect to the new flag
Y,.

The above shows the following.

Corollary 3.8. Let X be a smooth projective toric surface, D a big divisor and
Yo: X D C D {z} an admissible flag on X, where the curve C is given by a binomial
¥ — 1 for a primitive v € Z? and z is a general smooth point on C. Then there
exists a piecewise linear, volume preserving isomorphism ¥ = Wqoun(Viers) between
the two Newton—Okounkov bodies Pp and Ay, (D).



24 CHRISTIAN HAASE, ALEX KURONYA, AND LENA WALTER

4. NEWTON—OKOUNKOV FUNCTIONS ON TORIC VARIETIES

Whenever we determine the value of a Newton-Okounkov function ¢(m) for a point
m € Ay, (D), we will often assume that m is a valuative point if not mentioned
otherwise.

4.1. Completely Toric Case. In the case when all the given data is toric, we can
completely describe the function ¢z, and it even has a nice geometric interpretation.
By “all data toric” we mean that X is a smooth toric variety, Y, is a flag consisting
of torus-invariant subvarieties, D is a big torus-invariant divisor on X and Z C X
a torus-invariant subvariety.

In order to formulate and prove Proposition below, we recall the combinatorics
of the blow-up z: X* — X of Z. As Z is torus-invariant, it corresponds to a cone
7 € ¥ of the fan. According to |[CLS11l Definition 3.3.17] the fan ¥* in N of the
variety X* is given by the star subdivision of ¥ relative to 7: Set u, =) per(1) Uos
pz = cone(u,), and for each cone o € ¥ containing 7, set

Si(r) = {o'+pz | 7L o' C o}
and the star subdivision of ¥ relative to 7 is the fan
S =% (r)={oceX|[rZatu ] i)
ooT

Then the exceptional divisor E of the blow-up 7z corresponds to the ray pz € ¥*,
and the order of vanishing of a section s along Z is, by definition, the order of
vanishing of 77 (s) along E.

The Cartier data {mJ.}yexx(n) of 77D is given by my. = mg+ for o* € %(n) (ie.,
o* 2 pz), and m}. = m, for o* € X% (7)(n).

Proposition 4.1. Let X be an n—dimensional smooth projective toric variety asso-
ciated to the unimodular fan ¥ in Ngr. Furthermore let Yo be an admissible torus-

invariant flag and D a big torus-invariant divisor on X with resulting Newton—
Okounkov body Ay, (D).

Let Z C X be an irreducible torus-invariant subvariety. Then the geometric val-
uation ordy yields a linear function ¢z on Ay, (D). More explicitly, it is given
by
pz: Ay, (D) =R
m = (m—mge,ur),

where m, = my is part of the Cartier data {mg}geg(n) of D for any cone 0 € X
containing T.

This function ¢z measures the lattice distance of a given point m in the Newton—
Okounkov body to the hyperplane with equation (m,u.) = (m,,u.). If D is ample
this is the lattice distance to a face of Ay, (D).
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Proof. Since the flag Y, and the divisor D are torus-invariant, the resulting Newton—
Okounkov body Ay, (D) coincides with a translate of the polytope Pp.

Let Y denote the proper transform of Y, on X*. The pullback 77D of the given
divisor D determines a polytope Pr:p and by construction we have Pp ~ Pr: p.
To embed the Newton-Okounkov body Ay, (7},D) ~ P”*z p in R™ we have to fix a
trivialization of the line bundle. Fix the origin 0 of R™ to be m,. If m, € Pr: p,

this means that the corresponding character x? is identified with a global section s
of O(n}, D) that does not vanish along Z.

Then according to [CLS11), Proposition 4.1.1] the order of vanishing of a character
x™" along Z is given as
ordz(x™) = ordg(x") = (m, ur)
for m € Ay;(n3,D).
For a given point m € Ay (7}, D) let s € O(kn},D) be an arbitrary global section

that gets mapped to m by the flag valuation associated to Y,* for some suitable
ke N.

Write s in local coordinates x; with respect to the flag Y,", that is, Y;* is given by
1 =...=z; = 0 and in particular 0 = Y,’. The change of coordinates is obtained
by multiplication by the monomial x™ on the level of functions and by a respective
translation by the vector m,; € M on the level of points. This yields

ordz(x™) = (m — mr,ur).

The section s is identified with a linear combination of characters, in which x™
appears with non-zero coeflficient. This gives the upper bound

ordz(s) = m’EI?ui}?p(S) ordz(x™) < ordz(x™).

The lower bound is realized by the monomial x™ itself. Hence, the function that
comes from the geometric valuation along the subvariety Z is given as

wz(m) =ordz(x™) = (m —m,,ur)

for m € Ayy(n*D) = Ay, (D). O

We give an example to illustrate the proof.

Example 4.2. As in Example we consider the Hirzebruch surface X = J#, an
admissible torus-invariant flag Y, and the big divisor D = D3 + 2D4. As a torus-
invariant subvariety Z C X consider the torus fixed point associated to the cone
T = cone((—1,0), (0,1)).

Then the additional primitive ray generator u, = (—1,1) = (—1,0) 4+ (0,1) for the
fan ¥* comes from the star subdivision of the fan X relative to the cone 7 as indicated
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T .
Ur

FIGURE 10. Star subdivision of the fan ¥ relative to 7

in Figure The Newton—Okounkov function ¢z on the Newton-Okounkov body
Ay (m*D) is given by
vz(m)=(m—m;,u;) = (m—(1,0),(-1,1)),

which gives the values shown in Figure

7

FI1GURE 11. Values of the Newton-Okounkov function ¢z associated
to the m,

4.1.1. Interpretation of Subgraph as Newton—Okounkov Body

Let X be a smooth projective variety, Y, an admissible flag and D a big Q-Cartier di-
visor on X. This determines the Newton—Okounkov body Ay, (D). Given a smooth
subvariety Z C X, we consider the function ¢z on Ay, (D) that comes from the
geometric valuation ordyz.

In [KMRI9] Kiironya, Maclean and Roé construct a variety X , a flag Y. and a
divisor D on X so that the resulting Newton—Okounkov body is the subgraph of ¢~
over Ay, (D). We translate their construction into polyhedral language in the toric
case.

According to Lemma 4.2 in [KMRI9] we may assume that the geometric valuation
ordy comes from a smooth effective Cartier divisor L on X, i.e. ordz = ord;. This
can always be guaranteed by possibly blowing up X (compare §4.2)).

Set R
X = Px(OX D Ox(L))
In other words, we consider the total space of the line bundle Ox (L) and compactify

each fiber to a P'. We denote by 7 the projection X I X. The zero-section of
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Ox (L) is a divisor Xy <% X which is isomorphic to X. The same is true for the
oo-section Xoo <2 X.

In our toric situation, X is again toric, and its fan is described in Proposition 7.3.3
of [CLS11] as follows. The local equation of L as a Cartier divisor along a toric patch
U, is a torus character which corresponds to a linear function on o. These linear
functions glue to the support function SF: |X| — R of L (see Definition 4.2.11 &
Theorem 4.2.12 in [CLS11]). Using SF, we define an upper and a lower cone in
Nr x R for every o € X:

6 ={(u,h) e Ng xR |u€o, h>SFr(u)}
:={(u,h) e Ng xR|u€co, h<SFr(u)}.

Together with their faces, these cones form a fan 3 which determines our X. The
upper and lower cones of the origin 0 € ¥, are rays 0 and 0 whose toric divisors in
X are X, and X0, respectively. The projection X — X is toric. It comes from the
projection N x Z — N which identifies both star(0) and star(0) with .

Example 4.3. Let Xy, = P! be the projective line. Its corresponding fan ¥ in
R is depicted in Figure where the torus-invariant prime divisors Dy and Dq
correspond to o9 = R>g and 01 = R<g with primitive ray generators up = 1 and
u1 = —1, respectively.

Uy Uuo

[ ]

FIGURE 12. The fan ¥ of the projective line Xy, = P!

Consider the divisor L = Dy. Then ¥ is a fan in R? and its top-dimensional cones
are

((0,1),(1,-1)),
&0 = cone((0,-1),(1,-1)),
((0,1),(—1,0)) and
&1 = cone((0,—1),(-1,0)).
We obtain the fan of the Hirzebruch surface J# as depicted in Figure

69 = cone

01 = cone

For the suitable divisor D on X we fix some rational number b such that
b>sup{t>0| D —tL is big }
and define D = 7*D + bXso- As an admissible flag }}. we set
Y= Xo, Vi = to(Yi—1) for all i > 2.

Kiironya, Maclean and Roé show that X , Y, and D are the suitable ob jects to obtain
the desired identification

{(m,h) € Ay, (D) x R | 0 < h < gr(m)} = Ay (D).
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5 ®
g1
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FIGURE 13. The fan 3 of Pp1(Op1 & Op1(1))
Example 4.4. We continue with Example In addition to the data X = P!,
L = Dy we choose the toric flag Y1 = V(o) and the big divisor D = 2D,.
Then the flag Y, consists of Y1 = V(0) and Y = 1(Y1) = V(60).

The support function for 7* D is the pullback of the support function for D along the
linear projection ¥ — 3. Its values at the ray generators are indicated in Figure

F1GURE 14. Values of the support function SF «p for the ray gen-
erators u, for p € ¥(1)

The resulting polyhedron in My x R is
{(m,h) € Mg xR | m € Ay, (D), h<0, h>0}

Adding tX., = tV(0) to 7*D for t > 0, relaxes the corresponding inequality h < 0
to h +t < 0. The effect on the polyhedron is depicted in Figure

4.2. Geometric Valuation Coming from a General Point. Let X now be
a smooth projective toric surface and D an ample divisor on X. In this section
we relax the requirements in the sense that the function ¢ now comes from the
geometric valuation ordg at a general point R, not necessarily torus-invariant. Here
we can determine the values of pr on parts of Ay, (D) and give an upper bound on
the entire Newton—Okounkov body.

Therefore we need to introduce some more terminology. We are given an admissible
torus-invariant flag Ye: X D Y] D Ys on X. Since Y, is toric, the Newton—Okounkov
body Ay, (D) C R? is isomorphic to Pp and one of its facets corresponds to Y;. Let
U € (]RQ)* denote the defining linear functional that selects this face when minimized
over the polytope Ay, (D). We denote by F' < Ay, (D) the face that is selected, when
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1A
K
f

PﬂxD ~ PD ~ AY. (D)

FIGURE 15. The polytope Pr«pytx,, for small ¢ on the left and for
t = b on the right

maximizing u over Ay, (D). Either this already is a vertex or if not, we maximize
u’ over F, where u’' € (RQ)* is a linear functional selecting Y2 when minimized over
Ay, (D). Denote the resulting vertex by Qy,. We say that the vertex Qy, lies at
the opposite side of the polytope Pp with respect to the flag Y,.

Proposition 4.5. Let X be a smooth projective toric surface, D an ample divisor
and Yo an admissible torus-invariant flag on X. Denote by Ay, (D) the correspond-
ing Newton—Okounkov body and by Q = Qy, the vertexr at the opposite side of
Ay, (D) with respect to Yo. Moreover let R € T be a general point. Then for the
Newton—Okounkov function wr coming from the geometric valuation ordr we have

(1)
vr(a,b) <a+b
for all (a,b) € Ay, (D), where (a,b) are the coordinates in the coordinate
system associated to Q.
(2) Furthermore, we have
vr(a,b) =a+b
for all
(a,b) € {(a’, V) € Ay, (D) | NP((z = 1)*(y —1)") C Ay, (D)}.

Proof. (1) Let (a,b) € Ay, (D) be a valuative point in the Newton-Okounkov
body. We want to determine pgr(a,b), where pg is the function coming
from the geometric valuation ordg. Consider an arbitrary section s €
I'(X,Ox (kD)) that is mapped to (a,b) = f valy, (s) for some k € N. Then
by construction the rescaled exponent vectors of all monomials that can
occur in s have to be an element of the set

HT ={meAy,(D) | wu(m)>u(a,b)or
(u(m) = u(a,b) and u'(m) > u'(a,b))} .
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As indicated in Figure this region is obtained by intersecting Ay, (D
with the positive halfspace associated to the hyperplane H = {m | u(m) =

u(a,b)}.

ATy

\
\

\\\ Yl
(a,b)
\ HY ;)
Q- T H

FIGURE 16. Admissible region H* of rescaled exponent vectors asso-
ciated to monomials of s inside the Newton—Okounkov body Ay, (D)

Moreover, we can assume without loss of generality that the general point
R is given as R = (1,1). To determine the order of vanishing of s at R we
substitute by 2’ + 1 and y by 3’ + 1 and bound the order of vanishing of
s'(2',y) = s(2' + 1,4 + 1) at (0,0). Assuming without loss of generality
that the monomial 2@y itself occurs in s with coefficient 1, multiplying

out gives

S@y) = s@ 41y +1) =@ + D)"Y + )T+ w

= (2))*(y/)** + lower order terms + * % *.

CrAIM: The monomial (z')¥?(y/)** cannot be canceled out by terms coming
from * * *.

Aiming at a contradiction assume that * x % contains a monomial (z/ +
1)*¢(3y +1)* for some ke, kd € N that produces (z')*(3/)** when multiplied
out. Observe that multiplying out (2’4 1)*¢(y/+1)¥¢ produces all monomials
in {(2)¢(y') | e < kc and f < kd}. Thus kc > ka and kd > kb. In addition,
as an exponent vector of a monomial in s the point (¢, d) is required to be
an element of the set H', which forces the hyperplane H to have positive
slope as indicated in Figure

Let F' < Ay, (D) denote the face that corresponds to {z = 0} and let @’
denote its second vertex. Then u(Q') > u(Q) which contradicts the fact that
u is maximized at @ over Ay, (D). Thus such a monomial (2’4 1)*¢(y/ + 1)
cannot exist and (z')*®(3/)* does not cancel out.
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Q ¢

FIGURE 17. A non-empty region of points (c,d) € H*' that satisfy
¢ > a and d > b forcing H to have positive slope

Consequently, k(a + b) is an upper bound for the order of vanishing of s’
at (0,0) and thus for s at R. Since this is true for all sections s that get
mapped to (a,b), this yields ¢r(a,b) < a+b.

Consider a point
(a,b) € Par == {(a', V') | NP((z — 1) (y = 1)) C Ay, (D)},

and set s(x,y) = (x — 1)*(y — 1)*, for a k € N such that s is a global
section of kD, whose Newton polytope can be seen in Figure Then
by construction s is a section associated to the point (a,b) and its Newton
polytope fits inside kAy, (D). We have ordg(s) = k(a + b) which gives the
lower bound ¢g(a,b) > ¢ ordg(s). Combined with (1) we obtain ¢g(a,b) =
a+b.

\\ ) }/2
Par \\\ Y]
(a,b)
1
| +NP(s) :
Y.

o'
FIGURE 18. The scaled Newton polytope ;NP(s) of the section
s(a,y) = (= 1k (y —
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We illustrate the use of Proposition by the following example.

Example 4.6. We continue our running example of the Hirzebruch surface X = 74
and the ample divisor D = D3+ 2D, as in Example Furthermore fix the torus-
invariant flag Ye: X D Y7 D Y5, where Y7 = Dy and Yo = D1 N Dy. Then the vertex
@ = Qy, of the Newton—Okounkov body Ay, (D) ~ Pp that lies at the opposite
side of the polytope Pp with respect to the flag Y, is the one indicated in Figure [19
The associated coordinate system specifies coordinates a,b for the plane R? and
local toric coordinates x, y.

Y;

Y

FiGURE 19. The coordinate system associated to the vertex () which
lies at the oppsite side of Pp with respect to the flag Y,

We want to determine the Newton—Okounkov function coming from the geometric
valuation at the point R = (1, 1). Propositionyields the upper bound ¢g(a,b) <
a + b on the entire Newton—Okounkov body Ay, (D), and ¢gr(a,b) = a + b for
(a,b) satisfying a,b < 1, as indicated by the shaded region in Figure It will
turn out in Example that there exist points (a,b) € Ay, (D) for which we have
vr(a,b) <a+b.

For a particularly nice class of polygons, Proposition [f.5]alone is enough to determine
the function pg. A polytope P C RY is called anti-blocking if P = (P+RZ;)NRY,
(compare [Ful71l, [Ful72]). Observe that this coordinate dependent property implies
(and for n = 2 is equivalent to) the fact that the parallelepiped spanned by the
edges at the origin covers P.

Corollary 4.7. Let X,Y,,D and R be as in Proposition [{.5. Suppose Ay, (D) is
anti-blocking. Let Y] be a torus-invariant flag opposite to the origin. Then the
Newton—Okounkov function ¢r on Ay;(D) is given by

vr(a,b) =a+b

on the entire Newton—Okounkov body Ay;(D) ~ Pp in the coordinate system asso-
ciated to Y.

Using the tools from Section [5, Corollary [£.7] implies that the Seshadri constant
of D at R is rational. This can also be seen from Sano’s Theorem [Sanl4] as
dim| — Kx| > 3 in the anti-blocking case.
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If we are not in the lucky situation of Corollary then things are getting more
complicated and more interesting. We give an approach that works in numerous
cases. We consider this strategy as the main contribution of the article.

The general strategy

GIVEN:

X a smooth projective toric surface

Y. an admissible torus-invariant flag

D an ample torus-invariant divisor on X
R a general point on T.

GoAL: Determine the function

vr: Ay, (D) ~ Pp — R.
coming from the geometric valuation ordp.
APPROACH:

(1) For each valuative point (a,b) € Ay, (D) “guess” a Newton polytope + NP(s) C
Pp of a global section s € I'(X, Ox (kD)) for some k € N to maximize the
order of vanishing ordr(s) according to the following rules:

e The section s has to correspond to the point (a,b).

e Choose a Newton polytope NP(s) that is a zonotope whose edge direc-
tions all come from edges in Pp.

e Try to maximize the perimeter of the Newton polytope NP(s) among
the above.

(2) Determine the values of the function ¢: Ay, (D) — R that takes + ordg(s)
as a value with respect to the chosen sections s for a point (a,b) € Ay, (D)
and compute the integral fAy (D) ¥ -

(3) Choose a new admissible flag Y): X O Y/ D Y] such that

e Y/ = {zv — 1} is a curve on X given by a binomial for some primitive
v € Z? with R € Y{. Hereby choose the vector v in such a way that the
width width, (Pp) is minimized, where u € (R?)* is a linear functional
with u(v) = 0.

o Y] =R.

(4) Compute the Newton-Okounkov body Ay, (D) with respect to that new flag
Y. using variation of Zariski decomposition or the combinatorial methods
from Section [3l
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(5) Compute the integral | Ay (D) ¢©', where we assume the function to be given
by )
QD/Z AY./ (D) —- R
(b)) — d +V.

(6) Compare the value of the integrals fAy (p) ¥ and fAY/(D) ¢'. Tt holds that
/

(16) / s@S/ ©R =/ sD’RS/ ¢
Ay, (D) AY.(D) AY.’(D) AY,’(D)

o If fAY.(D) Y= fAY./(D) ¢’ then we have equality in and therefore a
certificate, that the choices we have made were valid and we are done.

o If fAy () # < fAy,(D) ¢, then we have chosen sections with non-

maximal orders of vanishing at R in step or for the chosen vec-
tor v from step the function ¢g takes values smaller than a’ + b’
somewhere on Ay, (D).

Example 4.8. We return to Example[4.6] and again consider the Hirzebruch surface
X = JA equipped with the torus-invariant flag Yo: X D Y] D Y5, where Y7 = Dy
and Yo = D1 N Dy and the ample divisor D = D3 + 2D4 on X.

We want to determine the values of a function on Ay, (D) coming from a geometric
valuation at a general point, so let R = (1,1) € X in local coordinates. The
valuation ordp is given by the order of vanishing of a section at R. The value of the
function ppr associated to ordg at a point of Ay, (D) is defined as the supremum
of orders of vanishing at R over all sections that get mapped to this point. More
precisely for the rational points in Ay, (D) in the coordinate system associated to
the flag Y, we study

er: Ay, (D) — R
(a,b) khﬁrgo % sup {t € R | there exists s € Ox (kD) :
vy,(s) = k(a,b),ordg(s) > t}.
= khﬁrgo % sup {t € R | there exists s € Ox (kD) :
ordy, (s) = ka,ordy,(s1) = kb,ordg(s) > t},

where s; is given as in .
We claim that ¢g coincides with the function ¢ given by

2—a fo<a+b<1
¢(a,b) = .
3—2a—-0b ifl<a+b<2

at a point (a,b) € Ay, (D).
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To verify this claim we will give explicit respective sections and argue that the max-
imal value of ordp is achieved for these particular sections. We treat the two cases
individually.

0<a+b<1:

Set
s(a,y) = (2%(y — 1> Pz —y)")"*

in local coordinates x,y for suitable £ € N. The corresponding Newton polytope
+ NP(s) is depicted in Figure Since the leftmost part of it has coordinates (a, -),
we have ordy, (s) = ka. If we restrict to the line (a,-), then the lowest point of
the Newton polytope is (a,b) and thus ordy,(s;) = kb. Together with the fact that
the Newton polytope 7 NP(s) fits inside the Newton-Okounkov body Ay, (D) this
guarantees that the section s is actually mapped to the point (a,b) when computing

Ay, (D).

For the order of vanishing of interest we obtain

ordr(s) =k((2—a—>b)+b) =k(2—a) .

1<a+b<2

Set

s(a,y) = @y y = )P 0@ — )R
That all the requirements are fulfilled by s follows by using the same arguments as
in the previous case. For the order of vanishing of interest we obtain

ordr(s) =k((2—a—-0)+(1—a))=k(3—2a—0b) .

Sy

FIGURE 20. Newton polytopes NP(s) of the respective sections s

The values of the resulting piecewise linear function are depicted in Figure

If we integrate ¢ over Ay, (D) we obtain
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1

2 0
2 1
FiGURE 21

Now it remains to show that these values are actually the maximal ones that can
be realized. To do this we make use of the fact that the integral of our function ¢
over the Newton—Okounkov body Ay, (D) is independent of the flag Y,.

We keep the underlying variety X the ample divisor D. Choose a new admissi-
ble flag Y;: X DO Y/ D YJ, where Y/ is the curve defined by the local equation
y—1=0and Y = R = (1,1) is the point of the geometric valuation. Since
this flag is no longer torus-invariant, the corresponding Newton—-Okounkov body
Ay;(D) will differ from the polytope Pp. As shown in Example we obtain the
new Newton-Okounkov body Ay;(D) depicted in Figure

For the function ¢, on Ay;(D) we are still working with the geometric valuation
associated to ordg. Thus define

¢ Ayi(D) — R
(b)) — d+0.

1 2

N

0 1 2

FiGURE 22

The values of ¢ are depicted in Figure If we integrate ¢" over Ay;(D) we obtain

, 11
7%
Ay.’(D)

Overall we have [ Av.(D)P = / Ayy(D) ¢'. This shows that our choice for the section
s was indeed maximal with respect to ordg(s) and thus determines the value of ¢p.

Remark 4.9. In the previous example the integrals [ Ay, (D) ¥ and [ Ayl (D) ¢’ coin-

cide. Observe that even more is true. Let

G(p) = {(a,b,¢(a,0)) | (a,b) € Ay, (D)}
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denote the graph of ¢. Since ¢ is a concave and piecewise linear function, the set
Ay, (D), = conv ((Ay, (D) x {0}) UG(p)) C R?

is a 3-dimensional polytope. If we compare Ay, (D), and Ay;(D), it turns out
that they are SL3(Z)-equidecomposable, where the respective maps are volume
preserving.

To see this we give the explicit maps between corresponding pieces. Use

P1: R® - R
a -1 -1 0 a 2
bl—|-1 0 O bl+1(1
c 0 0 1 c 0

to map the parallelogram in Ay, (D) with its corresponding heights. And use

Po: R® — R
a -1 -1 0 a 2
bl — 10 1 0 bl+10
c 0 0 1 c 0

for mapping the triangle in Ay, (D) with its corresponding heights. This is illustrated
in Figure 23] where the respective heights are given in red.

1
, 1 2
V4 0 wl 9 [
—> |
1 ' ‘
0 1
2 S
W .
— i
|

2 1 1 2

FIGURE 23. SL3(Z)-equidecomposable pieces of the Newton—
Okounkov bodies Ay, (D) on the left and Ay;(D) on the right

We conjecture that this in not a coincidence but holds in general for a suitable choice
of the vector v.
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Conjecture 4.10. Let X be a smooth projective toric surface, D an ample torus-
invariant divisor, R = (1,1) a general point and v € Z? a primitive direction. Any
admissible torus-invariant flag Y, gives the Newton-Okounkov body Ay, (D) ~ Pp.
Denote by Ay;(D) the Newton-Okounkov body with respect to the flag Y;: X 2
C D {R}, where C = {2V — 1} and R = (1,1). If the Newton-Okounkov function
¢, coming from the geometric valuation ordg is given by ¢i(a’,b') = o’ + ¥ for
(d/,V') € Ay;(D), then for the flag Y, at the opposite side of @ = ¥~1(0,0) we
have pr(a,b) = ¢R(¥(a,b)) for all (a,b) € Ay, (D). Here ¥ is the piecewise linear
isomorphism from Section |3| between the Newton—Okounkov bodies.

5. RATIONALITY OF CERTAIN SESHADRI CONSTANTS ON TORIC SURFACES

There is a direct link between the rationality of Seshadri constants on surfaces and
the integral of Newton—Okounkov functions. Let X be a smooth projective surface,
D an ample divisor and z € X a point. We denote the blow-up of z with exceptional
divisor E by m: X’ — X. The Seshadri constant is the invariant

(17) e(X,D;z) =sup{t >0 | 7°D — tE is nef}.

Rationality can be deduced from the rationality of the associated integral in the
following way.

Corollary 5.1 ([KMR19], Corollary 4.5). Let X be a smooth projective surface, z €
X and D an ample Cartier divisor on X. Then (X, D; z) is rational if fAy (D) P=

is rational, where ¢, is the Newton—Okounkov function coming from the geometric
valuation associated to z and Y, any admissible flag.

In [Sani4] Sano studies Seshadri constants on rational surfaces with anticanonical
pencils. More precisely he considers a smooth rational surface X that is either a
composition of blow-ups of P? or of a Hirzebruch surface .74, such that dim |— K x| >
1. In terms of the corresponding polytope this means that P_g, contains at least
two lattice points. In these cases he gives explicit formulas for the Seshadri constant
e(X,%;z) of an ample line bundle .# at a general point z € X (Theorem 3.3 and
Corollary 4.12 in [Sanl4]). As a consequence he obtains rationality in the cases
above as observed in Remark 4.2.

In [Lun20] Lundman computes Seshadri constants at a general point for some classes
of smooth projective toric surfaces. It follows in particular that it is rational in these
cases. The characterization of the classes involve the following definitions.

Definition 5.2. Let .Z be a line bundle on a smooth variety X and z € X a smooth
point with maximal ideal m, C Ox. Consider the map

FTX, %) - T(X,Z®0x/mh

d's
s <s(z),...,azt(z),...> ,
z t<k
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where z = (21,...,2n) is a local system of coordinates around z. We say that L is
k-jet spanned at z if the map j* is surjective. We denote by s(.Z, z) the largest k
such that X is k—jet spanned at z and call it the degree of jet separation of .Z at z.

So the map j* takes s to the terms of degree at most k in the Taylor expansion of
s around z. For X a projective toric variety let sq,...,sq be a basis for I'(X,.Z).
Then .Z is k—jet spanned at z € X if and only if the matriz of k—jets

olvl
Je(ZL) = (Je(£))ij = (82 0. -0, Sl) .
vy T Rvg vn 0<i<d,0<|v|<k
has maximal rank when evaluated at z, where v = (v1,...,v,) € N and |v| =
SR

Definition 5.3. Let X be a smooth projective toric variety and D a torus-invariant
divisor on X. We define

n(D) = (sup{r >0 | Prgy+p is non-empty })~*

and call the polytope core(Pp) = Py py-1x+p the core of Pp.

Theorem 5.4 ([Lun20|, Theorem 1). Let X be a smooth toric surface and £ an
ample line bundle. If X is a projective bundle or s(.£,1) < 2, then (X,.%Z;1) =
s(Z,1).

The other Theorems in [Lun20] that yield rationality of Seshadri constants both
require the core core(Pp) to be a line segment.

We give an example for which none of the above Theorems applies and thus for
which the rationality of the Seshadri constant has not been known before.

Example 5.5. We consider a blow-up 7: X — P? of the projective plane in 13
points, namely the toric variety X whose associated fan ¥ is depicted in Figure

FI1GURE 24. The fan ¥ with associated torus-invariant prime divisors
DO, ey D]_5
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The torus-invariant prime divisors are denoted by Dy,..., D15 and choose D =
Dy +2Dy+6D3+ 5D+ 15D5 + 11Dg + 19D7 4+ 9Dg 4+ 18D9 + 10D1o + 13D11 +
4D15 + 4D13 + D14 as an ample divisor on X. For any torus-invariant flag Y, this
gives the polytope Pp in Figure as the Newton—Okounkov body Ay, (D). We
have dim | — Kx| = 0, the core core(Pp) is a point and the degree of jet separation
is 5(.Z,1) = 9. Thus this example does not fall in any of the classes covered by Sano
or Lundman.

X

FIGURE 25. The Newton-Okounkov body Ay, (D) ~ Pp with core(Pp)

We claim that the Seshadri constant £(X, D;1) is rational. To verify this claim we
consider the Newton-Okounkov function ¢, on Ay, (D) coming from the geometric
valuation ordp at the general point R = (1,1) and argue that its integral takes a
rational value. In order to do this consider the flag Y): X D Y] D Y], where Y/ is
the curve given by the local equation 7! — 1 = 0 and YJ = R. Thus we obtain the
Newton-Okounkov body Ay; (D) with respect to this flag by the shifting process via
the vector v = (—1,0) as explained in Section |3} This gives the polytope Ay;(D)
shown in Figure

9 10

0 9

FIGURE 26. The Newton-Okounkov body Ay, (D) with respective
values of ¢/,
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We claim that the Newton-Okounkov function ¢/, on Ay;(D) that comes from the
geometric valuation ordg is given as ¢’p(a/,V') = o/ + ¥ for all (a’,0') € Ay;(D).
To prove this we consider the following global sections of I'(X, Ox (D)) as in Ta-
ble [l

’ global section s H image in Ay, (D) image in Ay;(D) ordg(s) ‘
si(z,y) = (z — D(ay —1)° (0,0) (1,9) 10
sa(,y) = (a%y — 1)° (1.0 (0,9) 9
53w, y) = 2y @ — )PPy — 1) (4,9) 9.1) 10
54(@,y) = 2 (@ — 1) 6.5) 9,0) 9
85(.1‘, y) = y(.ﬂ? — 1)5(1'23/ — 1)7 (07 1) (57 7) 12
se(z,y) = ay?(z —1)7(z%y — 1)° (1,2) (7,5) 12
s1(,y) = 2% (19,9) (0,0) 0

TABLE 1. Global sections of D that realize lower bounds for the
order of vanishing ordp.

The sections are chosen in a way such that they get mapped to the vertices when
building the new Newton-Okounkov body Ay;(D) and a such that the order of
vanishing is ordg(s) = o’ + b’ for a section s that gets mapped to the point (a/,b") €
Ay;(D). For the vertices vert(Ay;(D)) these values realize a lower bound for the
function ¢',. Since the function ¢/, has to be concave, this yields ¢ (a’,b") = o’ + ¥/
on the entire Newton—Okounkov body. For the integral we obtain

, 1295
YR = T?
AY.’(D)

which is rational and therefore the Seshadri constant (X, D;1) is rational.

Although proving rationality of the Seshadri constant did not require knowing the
values of the function ¢r on the Newton—-Okounkov body Ay, (D), determining
these values in this particular example is of independent interest. It turns out
that the approach of choosing sections whose Newton polytopes are zonotopes with
prescribed edge directions is not always sufficient to maximize the order of vanishing
at the general point R. For the function ¢r we expect 22 domains of linearity as
shown in Figure that arise from the shifting process in the direction of v =
(—1,0).

As seen in Table [2] for the domains 1,...,9,13,14,15 and 19 zonotopes using only
edge directions of Ay, (D) are sufficient. For the domains 10,11 and 12 we need
a Minkowski sum of those edge directions and “small” triangles that have a high
order of vanishing at (1,1). The section s(z,y) = 23y? — 3zy + y + 1 for instance
has order of vanishing ordg(s) = 2 and its Newton polytope NP(s) is depicted in

Figure



42 CHRISTIAN HAASE, ALEX KURONYA, AND LENA WALTER

FiGure 27. Expected domains of linearity of the function ¢ on the
Newton-Okounkov body Ay, (D)

<

F1cUuRE 28. The Newton polytope NP(s) of the section s(x,y) =
23y? —3xy +y+1

For the remaining regions 16,17,18,20,21 and 22 global sections with the desired
order of vanishing at R could not be found via computations up to k = 12.

The approach for proving rationality of the Seshadri constant applies for a cer-
tain class of polytopes. To describe this class we need to introduce the following
terms.

Definition 5.6. Let P C R" be a polytope and v € Z" a primitive vector. For a
point QQ € P we define the length of P at ) with respect to v to be

length(P, @Q,v) = max{|t| | t € R and Q + tv € P}.
Definition 5.7. Let P CR" be a polytope and v € Z™ a primitive direction. Set

vert(P,v) = {Q € 0P | Q=T +tv for some T € vert(P) and t € R}
U {QedP| Qe (PN (sun(P,v)+tv)) and (PN (sun(P,v) + tv))
contains a vertex T' € vert(P) for some t € R>o} .

and call it the extended vertex set of P with respect to v.

Definition 5.8. Let P C R? be a polygon. We call P zonotopally well-covered with
respect to a primitive direction v € Z? if for all points Q € vert(P,v) the set

PN (P +length(P,Q,v) -v), ifQ € sun(P, —v)

P(Q) - {P N (P — length(Pv vi) ’ U)’ if Qe sun(P,v)



TORIC NEWTON-OKOUNKOV FUNCTIONS 43

Region Inequalities Newton Polytope Section ordp(s)
s(z,y) = a%y°
, 0<b<l, Y
0<a—4b<1 (y — 1)
(x2y o 1)9—2b
s(z,y) = a%y’
0 1<b<2, (= 1)zt 11—a+2b
1<a—3b<2 (y—1)*?
(ny _ 1)1073b
(xy _ 1)31)—3
s(z,y) = a%y°
3 2<b<4, (o —1)Pers? 12—a+3b
4<2—5b<6 (x?y —1)72P ?
(.va o 1)2+%b
s(z,y) = a%y’
4 isbs5, A VI
A<a—26<5 (zy —1)°>7P
(zy — 1)*
s(z,y) = a"y’
- 1<b<2, (x =170 g 41
1<a—3b<2 (y—1)75tsd 2 e
(zy —1)7 3
= s(z,y) = a%y’
] T<b<8, (=D,
10<a-b<11 (y—1)
(zy —1)87°
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Region Inequalities Newton Polytope Section Value
s(z,y) = a'y’
_ 1}19—a
; 8<b<09, (z—1) 28 —a—b
18 < a <19 (y—1)°°
= S(SC, y) — xayb
<b< -1 19—a .
< 8<b<9, x )9 1 73,
a <18, (y—1)2Fae? ©
—a+4b <18
s(z,y) = ayP
0 7<bh<8, (z —1)tt-oth 35 _ 3, _ 1p
6<a—b<10 (y —1)-3Fio-id L
(zy — 1)%°
s(z,y) = ay’
. 5<b<T, (& —1)7o+3b
0 - <o  \—341a-3p 19 3, 1,
a—3b<13 (y—1)"sTa%"s § — 4973
(zy — 1)
(x3y? — 3zy +y + 1)% L
s(z,y) = ayP
5—a+2b
" 4<b<s, (z—1) 13— 3a+ 1b
0<a—2b<4 (2%y —1)°7"
(xy . 1)1+ aféb
(a3y? — 3wy +y + 1)1 a0+
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Region Inequalities Newton Polytope Section ordpg(s)
s(x,y) = a%’
. 2 < b <4, (z — 1)+t
—4 < —2a+5b (y — 1)% so—gb 23 3 7
2+ 5b < 4 (z?y —1)772 AT
—2a <
(zy — 1)
(@32 — 3wy +y + 1)+
s(z,y) = a%’
_ 1\2—a+3b
13 t=b=2 e F-dorio
3<a—-3b<1 (y—1)atao—ab
(ny -1 9—2b
(zy — 1)~ 1P
s(x,y) = a9’
_ 1\1—a+4b
" 5<b<T, (@=1) 10 — 2a+ 2b
5<2a—3b<13 (y—1)1°
(ny 1)9 2b
(l‘y _ 1) 1+b
s(xz,y) = a%’
_ 1\2—a+3b
5 1<b<2, (z—1) B _1,. 1
—a+b<1, (z?y —1)07% o
—a+3b>3 (xy —1)2+3973°
s(x,y) = a9’
_ 1\ll—a+b
19 7<b<8, (@ —1) L, 16 —1a—1b
a—b < 6, (:cy _ 1)5+§a—§b
—a+3b<10

TABLE 2. Sections s

such that s*

are global

sections of

I'(X,0x (kD)) that realize lower bounds for the order of vanishing
ordg for respective k € N
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contains a zonotope Ly + ...+ Ly, such that

¢
ZlengthM(Li) = width, (P(Q)),
=1

where u € N is primitive with u(v) = 0. The polygon P is zonotopally well-covered
if it is with respect to some v.

Theorem 5.9. Let X be a smooth projective toric surface and D an ample torus-
invariant divisor on X with associated Newton—Okounkov body Ay, (D) for an ad-
missible torus-invariant flag Ye. If the polytope Ay, (D) is zonotopally well-covered,
then the Seshadri constant at a general point (X, D; R) is rational.

Proof. Since all input data is torus-invariant, the Newton-Okounkov body Ay, (D)
is isomorphic to the polytope P = Pp for any admissible torus-invariant flag Y.
By assumption, this polytope is zonotopally well-covered, so let v = (vy,ve) € Z2
be its associated primitive direction. Consider the flag YJ: X D C O {R}, where
C' is the curve given by the local equation z"'y*2 —1 = 0 and R = (1,1) is a
general point on C'. Then the shifting process explained in Section [3] yields the
Newton-Okounkov body Ay; (D) with respect to this new flag. By Corollarythis
process relates the Newton—Okounkov bodies via a piecewise linear homeomorphism
U: Ay, (D) — Ay (D).

We show that the Newton-Okounkov function ¢: Ay;(D) — R that comes from
the geometric valuation ordg satisfies ¢/p(a’,b") = o’ +¥ for all vertices T' = (a’, ') €
vert(Ay;(D)). Together with the facts that ¢, is concave and has a’ 4" as an upper
bound it follows that ¢’,(a’,b’) = a’ + V' on the entire Newton-Okounkov body.
Rationality of the integral | Ay (D) @', yields rationality of the Seshadri constant

(X, D;R).

Let Qy, = ¥~1(0,0) be the vertex of Ay, (D) that gets mapped to the origin.
Choose the torus—invariant flag Y, for Ay, (D) such that Qy, lies at the opposite
side of Ay, (D) with respect to Y.

Let T = (a/,V') € vert(Ay;(D)) be a vertex and let Q@ = (a,b) = ¥~1(T') denote
its preimage in Ay, (D). Then @ € vert(Ay,(D),v). Since Ay, (D) is zonotopally
well-covered, there exist line segments L1,..., Ly with

l
> lengthy(Li) = width, (P(Q)) = MV(P(Q), NP (z"'y"* — 1)),
=1

such that (L1 + ...+ Ly) C P(Q).
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Consider the section that is locally given as

s(z,y)
gy g if @ = U~1(0,0) for some ¥/,
= 2yl (zvryv2 — 1)leneth(Ave (D).Q0) if @ = ¥~1(a’,0) for some a’,

zyl - (xVry?2 — 1)length(Aye (D).Q0) L g . L g, otherwise,
where g; denotes a section associated to Lj;.
By construction, the following holds for the section s.

(1) The Newton polytope NP(s) fits inside Ay, (D) and therefore s* is a global
section of I'(X, Ox (kD)) for some suitable k& € N.

(2) The section s* is mapped to Q = %valy. (s¥) when computing the Newton—
Okounkov body Ay, (D).

3) When computing the Newton-Okounkov body Ay;(D) it is mapped to

1
z valy, (s%)
= (ord¢(s),ordr(s1))
(0, S lengthM(Lz-)> if Q = U~1(0,¥) for some ¥/,
= ¢ (length(Ay, (D), Q,v),0) if @ = U~1(d/,0) for some a/,
<length(Ay. (D),Q,v), Zle length (Ll)) otherwise,
(0, width, (P(Q))) if Q = U~1(0,¥) for some ¥/,
= ¢ (length(Ay, (D), Q,v),0) if @ = ~1(d/,0) for some a/,
L (length(Ay, (D), Q,v), width, (P(Q))) otherwise,
=T

(4) For the order of vanishing at R we have

1
Z ordg(s*)
=ordpg(s)
S length,, (L) if @ = U=1(0,b') for some ¥/
= ¢ length(Ay, (D), Q,v) if Q = ¥~1(d’,0) for some a',

length(Ay, (D), Q,v) + Zle length,,(L;) otherwise,
=d+V.
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Alltogether this yields ¢ (a’,0') = o’ + V' for all vertices T = (a,b’) € vert(Ay; (D))
and therefore the rationality of the Seshadri constant £(X, D; R). O

Example 5.10. To illustrate the proof we stick to the previous Example [5.5] The
polytope Ay, (D) is zonotopally well-covered with with respect to v = (—1,0). Con-
sider, for instance the vertex T' = (7,5) € Ay;(D). Its preimage under the piecewise
linear isomorphism ¥ is Q@ = (2,1) € Ay, (D) and length(Ay,(D),Q,v) = 7. A
global section which is mapped to @ and T respectively, is

s(x’y) — mayb . (xmyvz o 1)1ength(AY. (D),Q,v)
= o (=17 (ay? - 1)

as seen in Figure 29 with ordg(s) =7+ 5 = 12.

“g1

T e o,
)/ \l\ength(AY.(D)a Q,v)
Y Ay.(D)— o v
lentg;th(Ay.(D), Q,v)-v Ly NP(s)
N \ Q. e
“ A (D)
w7 vy (0,0)

FIGURE 29. The setup of the proof of Theorem in the context

of Example

Remark 5.11. The property of being centrally-symmetric is not sufficient for being
zonotopally well-covered. Consider for instance the polytope

P = conv((0,0), (2,1),(1,3),(~1,2)) C R?

in Figure and the direction v = (—1,0). Then the point @ = (—3,1) € vert(P,v)
and P has length length(P,Q,v) = g at ) with respect to v. The intersection
P(Q) = PN (P+35-(-1,0)) is just a line segment L whose lattice length is
lengthy2(L) = L. But on the other hand we have width,(P(Q)) = 1 > % for

2 2
u=(0,1).

It remains to argue why any other direction v € Z? will also fail. If we interpret P
as the Newton-Okounkov body Ay, (D) for some completely toric situation X, D, Y,
then the shifting process by the vector v = (—1,0) yields the polytope on right in
Figure|30|as the Newton-Okounkov body Ay;(D) for the adjusted flag Y;, where Y7
is the curve determined by v and Yy = R = (1,1). Consider the Newton—-Okounkov
function ¢’;: Ay;(D) — R. Since ¢z(a’,b") < o'+ and MAaX(q/ b)e Ay, (D) Olp(a, b))
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(0,0)

F1GURE 30. An instance of a centrally-symmetric polytope P that
is not zonotopally well-covered

is independent of the flag, this yields that max ¢/, < % A straight forward compu-
tation shows that any primitive direction v € Z? with |Jv|| > 1 results in the vertex
(0,1) € Ay;(D) with & > Z which is a contradiction to the above.

Although P is not the polytope of an ample divisor on a smooth surface, it can
be used as a starting point to construct such an example: The minimal resolution
m: Xp — Xp has a centrally-symmetric fan. There is a “centrally-symmetric”
ample Q-divisor on X} near the nef divisor 7*D. Now scale up the resulting rational
polygon to a lattice polygon.
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