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Abstract 

Despite common notion that the correlation of socioeconomic status with child cognitive 

performance may be driven by both environmentally– and genetically–mediated transactional 

pathways, there is a lack of longitudinal and genetically informed research that examines 

these postulated associations. The present study addresses whether family income predicts 

associative memory growth and hippocampal development in middle childhood and tests 

whether these associations persist when controlling for DNA–based polygenic scores of 

educational attainment. Participants were 142 6–to–7–year–old children, of which 127 

returned when they were 8–to–9 years old. Longitudinal analyses indicated that the 

association of family income with children’s memory performance and hippocampal volume 

remained stable over this age range and did not predict change. On average, children from 

economically disadvantaged background showed lower memory performance and had a 

smaller hippocampal volume. There was no evidence to suggest that differences in memory 

performance were mediated by differences in hippocampal volume. Further exploratory 

results suggested that the relationship of income with hippocampal volume and memory in 

middle childhood is not primarily driven by genetic variance captured by polygenic scores of 

educational attainment, despite the fact that polygenic scores significantly predicted family 

income.  
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1. Introduction 

Longitudinal research investigating the relationship of socioeconomic status (SES; 

income, education, occupation) and children’s cognitive development is recently amassing. 

Children from socioeconomically disadvantaged background tend to have lower levels and 

slopes in general cognitive ability as well as multiple cognitive and achievement domains 

(Hackman, Gallop, Evans, & Farah, 2015; Lawson & Farah, 2017; von Stumm & Plomin, 

2015; Wang et al., 2017). For instance, children growing up at–risk of poverty in the US 

perform nearly 1 SD below children not at–risk of poverty on achievement measures of verbal 

comprehension and math ability throughout middle childhood and early adolescence 

(Raffington, Prindle, & Shing, 2018). Achievement disparities are rooted in differences in 

psychological characteristics, including self–control and motivation (Belsky et al., 2018; 

Malanchini et al., 2017), as well as more basic cognitive processes such as executive 

functions (Lawson, Hook, & Farah, 2017), and episodic memory (Akshoomoff et al., 2014; 

Noble, McCandliss, & Farah, 2007), which show moderately sized linear association with 

SES indicators in middle childhood.   

A few studies have examined the repeated, time–lagged relationship of income and 

cognition with structural equation models to strengthen inferences on bivariate relationships 

(Hamaker, Kuiper, & Grasman, 2015). Indeed, longitudinal changes in income predict child 

cognition in early childhood (Dearing, McCartney, & Taylor, 2001) as well as in later 

childhood and early adolescence (Raffington, Prindle, & Shing, 2018), but only for children 

growing up at–risk of poverty. This could suggest that income losses are especially 

detrimental to child cognitive development at the lower end of the income spectrum. 

An increasing number of neuroscientific studies further suggest that SES indicators 

are positively correlated with children’s hippocampal volume (Brody et al., 2017; Ellwood-

Lowe et al., 2018; Hair, Hanson, Wolfe, & Pollak, 2015; Hanson, Chandra, Wolfe, & Pollak, 

2011; Jednoróg et al., 2012; Luby et al., 2013; Merz et al., 2019; Noble et al., 2015; Noble, 

Houston, Kan, & Sowell, 2012; Raffington, Prindle, Keresztes, et al., 2018; Yu et al., 2017), 
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with the association between SES and hippocampal volume growing from ages 5–to–25–

years (McDermott et al., 2019). Based on work in the animal literature, it is commonly 

theorized that smaller hippocampal volume in socioeconomically disadvantaged individuals 

may partially reflect differences in stimulating experiences and exposure to stress (Luby et 

al., 2013; Lupien, McEwen, Gunnar, & Heim, 2009). It is also known that hippocampal 

volume is partially heritable, thus SES–hippocampus volume associations could derive from 

passive gene–environment correlations (Sullivan, Pfefferbaum, Swan, & Carmelli, 2001). In 

either case, it is plausible to assume that SES disparities in hippocampal volume mediate SES 

disparities in memory performance, since learning and memory critically relies on the 

hippocampus and connected regions (Shing et al., 2010). However, evidence to suggest that 

hippocampal volume mediates SES–memory correlations is currently lacking.  

More generally, the developmental relationship of hippocampal volume and memory 

functioning is not well–understood. For instance, a meta–analysis suggests that hippocampal 

volume has a negative association with memory in children and adults (Van Petten, 2004). 

Recent evidence suggests that structural hippocampal development continues beyond middle 

childhood, is non–linear in some subfield regions, and is complexly linked to different 

memory functions (Daugherty, Bender, Raz, & Ofen, 2016; Keresztes et al., 2017; J. K. Lee, 

Ekstrom, & Ghetti, 2014). However, the overwhelmingly cross–sectional nature of these 

studies has been shown to obscure true longitudinal developmental patterns (Kievit, 

Frankenhuis, Waldorp, & Borsboom, 2013). Therefore, the coupling of hippocampal volume 

and memory is likely to differ along developmental time and remains largely obscure. Middle 

childhood is of particular interest given marked improvements in episodic memory 

performance (Ghetti & Bunge, 2012; Shing et al., 2010). 

Individual differences in cognitive development that are commonly found to correlate 

with SES are known to be both environmentally and genetically transmitted (Belsky et al., 

2018; Plomin & von Stumm, 2018; Tucker-Drob & Briley, 2014). Recently, the use of 

genome–wide polygenic scores (PGS) has been validated as a way to account for a small 

proportion of the variance in cognitive functioning that is due to genetic factors (Belsky et al., 



 5 

2018; Plomin & von Stumm, 2018). PGS aggregate the effects of thousands of genetic 

variants based on weights calculated from very large genome–wide association studies 

(GWAS) and can be applied in samples several orders smaller than necessary for GWAS (i.e., 

of 100 participants; Plomin & von Stumm, 2018). For example, PGS of educational 

attainment have been found to predict educational attainment, but also cognitive, 

psychological, and socioeconomic characteristics over the life course (Belsky et al., 2018). 

Indeed, the genetic factors associated with income and education may be very similar 

(Davies, Hemani, Timpson, Windmeijer, & Davey Smith, 2015; Hill et al., 2016). It remains 

unexplored whether PGS of educational attainment accounts for some of the covariance 

between SES and brain structure in children. 

The present study consists of (1) a preregistered confirmatory section that addresses 

whether family income predicts memory growth and hippocampal development in childhood 

to elucidate longitudinal dynamics and, (2) an exploratory section that explores whether these 

associations persist when adding children’s PGS of educational attainment as a control 

variable to examine whether the association is driven by a gene–environment correlation. 

Although parental education is a better predictor of children’s general cognitive ability than 

income and wealth (Rindermann & Ceci, 2018), income is the most volatile SES indicator 

over time (Duncan, Ziol-Guest, & Kalil, 2010) and change in income may be an important 

predictor of cognitive development (Raffington, Prindle, & Shing, 2018). Therefore, we focus 

on family income, due to its dynamic nature over time.  

In the first section, we examine our preregistered hypotheses (https://osf.io/7f42h) with 

one major deviation: Upon further consideration of statistical power necessary for interactions 

(Fan, 2003; McClelland & Judd, 1993), the present sample size, and expected effect sizes no 

larger than a standardized parameter estimate of 0.20 (Raffington, Prindle, & Shing, 2018), 

we did not test for the initially hypothesized moderating effects of poverty grouping. Rather, 

we followed a continuous approach and hypothesized that a higher income score at wave 1 

predicts a larger gain from wave–1–to–wave–2 in associative memory and hippocampal 

volume. We further expected hippocampal volume to mediate the income–memory 
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association. In addition, we performed non–preregistered exploratory analyses that add a PGS 

of educational attainment as a control variable and hypothesized that this would attenuate the 

income–memory and income–hippocampus associations, by having the PGS accounting for 

some of the variance that underlies these associations. 

 

2. Method 

2.1. Participants.  

142 children (66 girls) and their parents from 136 unique families (1 non–twin sibling 

pair, 4 dizygotic twin pairs, 1 monozygotic twin pair) participated in wave 1 of this 

longitudinal study (see Raffington, Prindle, et al. (2018) for more details on sample). The 

children were identified by their parents as being of European (88%), European–African 

(4%), or European–Asian (6%) geographical ancestry (2% missing). 15% of this sample (13% 

at wave 2) were at-risk of poverty (monthly family net income at or below the Berlin state 

poverty line of that year, adjusted for family size and composition; Statistische Ämter des 

Bundes und der Länder, 2018). This is slightly less than the 19.2% of Berliners who were at-

risk of poverty in 2017 (Statistische Ämter des Bundes und der Länder, 2018). 

 127 children (59 girls) from 121 unique families returned approximately two years 

later (mean, range) for wave 2 (see Table 1 for descriptive statistics). Inclusion criteria at 

wave 1 included the child attending first or second grade, no psychiatric, developmental and 

physical health disorders, no prolonged steroid medication use, no parent–reported 

maltreatment or severe illness, at least 37 weeks gestation, and at least one fluent German–

speaking parent. There were no exclusion criteria for wave 2. Nine children had a definite or 

probable medical diagnosis at wave 2 (e.g., ADHD, autism spectrum disorder). Excluding 

these children did not affect the results, thus they were retained. At wave 1, a subsample (n = 

90) of randomly selected children balanced by gender and willing to participate in MRI was 

invited to scanning. At wave 2, all children were invited to scanning and 104 accepted. At 

wave 1, all participants were invited to participate in genome–wide DNA extraction for 
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polygenic scoring and 118 contributed data. The study was approved by the ‘Deutsche 

Gesellschaft für Psychologie’ ethics committee (YLS_012015). 

 

2.2. Procedure 

At both waves, parents provided informed written consent and children verbal assent. While 

children completed the memory and other cognitive tasks not reported here, parents filled out 

a digitized questionnaire battery pertaining to SES and covariates. Children willing to 

participate in MRI were invited to scanning within 3 weeks.  

2.3. Measures 

2.3.1. Household income  

Parents self–reported their total combined monthly household income after taxes (see Table 1 

for descriptive statistics). There were no outliers over 5 SDs above or below the mean.  

 

Table 1 

Descriptive statistics and correlations across time (wave 1 and 2) of measures of interest. 

  Mean (SD) 
n 

2 3 4 5 6 7  8 9 

1 Income 1a 

(Euros) 
3634 (2087)  
n = 137 

0.81* 0.24* 0.07 0.21 0.14 0.02 -0.06 0.24* 

2 Income 2 
(Euros) 

4089 (2128)  
n = 124 

– 0.10 0.06 0.24* 0.21* -0.02 -0.03 0.14 

3 Memory 1 
(proportion 
correct) 

0.41 (0.15)  
n = 142 

 – 0.34* -0.08 -0.15 0.04 -0.03 -0.04 

4 Memory 2 
(proportion 
correct) 

0.5 (0.15)  
n = 127 

  – 0.02 0.07 0.17 0.15 0.02 

5 Hippo 1  
(mm3) 

7888 (709)  
n = 82 

   – 0.90* 0.34* 0.28* 0.12  

6 Hippo 2 
(mm3) 

8130 (8130)  
n = 99 

    – 0.28* 0.19 0.08 

7 Age 1 
(years) 

7.19 (0.46)  
n = 142 

     – 0.93* 0.13 

8 Age 2 
(years) 

9.25 (0.45)  
n = 127 

      – 0.08 

9 Polygenic 
Score 

1.94 (2.86)  
n = 118 

       – 

* Pearson’s correlation p < 0.05.  

 

2.3.2. Memory 
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Participants completed exactly the same item–association memory task at both waves. They 

had to remember at what location on a computer screen they had seen a black–colored 

sketched item (e.g., a shoe, lemon; adapted from Kessels, Hobbel, & Postma, 2007). The 

targets were randomly selected from the stimuli pool and targets versus new items were 

screened to not be categorically or semantically closely related. For encoding, they were 

instructed to name the item and memorize at what location in a grid of 36 gray boxes they 

saw it. All children saw the same 15 pictures shown consecutively for 3 sec at the respective 

same location with an interstimulus interval of 1 sec. The experimenter then distracted the 

child for 60 sec by asking them to name their favorite animals, foods, or toys. During 

retrieval, the child saw 30 items consecutively, of which 15 had been previously seen. They 

verbally responded whether they had seen the picture or not and, if yes, they pointed to the 

corresponding location. Prior to the task, participants completed a practice version with 3 

items, which was repeated until they correctly located 2 of 3 items. A correct item–location 

matching was scored as 1 and an incorrect one as 0. The outcome variable was proportion of 

correct locations from 15 trials. There were no outliers over 5 SDs above or below the mean 

at either wave. 

 

2.3.3. Hippocampal volume 

Structural MRI images were acquired on a Siemens Magnetom TrioTim syngo 3 Tesla 

scanner with a 12-channel head coil (Siemens Medical AG, Erlangen, Germany) using a 3D 

T1–weighted MPRAGE sequence (192 slices; field of view = 256 mm; voxel size = 1 mm3; 

TR = 2500 ms; TE = 3.69 ms; flip angle = 7°; TI = 1100 ms).  

Volumetric segmentation was performed with the Freesurfer 6.0.0 image analysis 

suite (http://surfer.nmr.mgh.harvard.edu/) described elsewhere (Fischl et al., 2002). Previous 

studies suggest that software tools based on adult brain templates provide inaccurate 

segmentation for pediatric samples, which can be improved through the use of study–specific 

template brains (Phan, Smeets, Talcott, & Vandermosten, 2017; Schoemaker et al., 2016). We 

created two study-specific template brains (one for each wave) using Freesurfer’s 
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“make_average_subject” command 

(https://surfer.nmr.mgh.harvard.edu/fswiki/make_average_subject). This pipeline utilizes the 

default adult template brain registrations of the “recon–all–all” command to average surfaces, 

curvatures, and volumes from all subjects into a study–specific template brain. All subjects 

were then re–registered to this study–specific template brain to improve segmentation 

accuracy. Segmented images were inspected for accuracy and 8 cases at wave 1 and 5 cases at 

wave 2 were excluded for inaccurate or failed registration due to excessive motion. The use of 

study–specific template brains was not preregistered. There were no outliers over 5 SDs 

above or below the mean. 

 

2.3.4. Polygenic score for educational attainment 

 Genotyping was performed using Illumina GSA chips following the manufacturer’s protocol. 

After genotyping, we performed a stringent quality control using PLINK (https://www.cog-

genomics.org/plink2, Chang et al., 2015) and removed any SNPs presenting with a call 

rate<98%, a minor allele frequency below 1%, or a p-value for Hardy-Weinberg-Equilibrium 

below 1x10-05. We calculated the identical-by-descent matrix (with a fraction of shared 

genotypes of at least 12.5%) and excluded the sibling sample with a lower call-rate from each 

sibling pair. We performed a MDS-analysis on the pruned genotypes (using the PLINK 

parameters  --indep-pairwise 200 100 0.2) and removed any samples and the respective sib-

pair identified as outliers (defined as presenting with a position on any of the first ten MDS-

components, which deviated with at least 4 SDs from the respective mean of this component). 

Furthermore, we removed samples which presented with a heterozygosity rate deviating by at 

least 4 SDs from the mean heterozygosity over all samples. 

Imputation was performed using shapeit2 

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html, O’Connell et al., 

2014) and impute2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html, Howie, Donnelly, 

& Marchini, 2009). After imputation, we only kept SNPs presenting with an info score metric 
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of at least 0.6. This resulted in a dataset containing 9,629,396 imputed SNP genotypes and 

118 samples. 

PGS were calculated using PLINK and were based on the summary statistics of a 

GWAS of educational attainment by Lee et al. (J. J. Lee et al., 2018). 

At first, we used LD-clumping on the best-guessed SNP genotypes based on these summary 

statistics and derived 464,967 independent SNPs. Afterwards, imputed genotype probabilities 

of these SNPs were extracted and PGS calculations were performed on these probabilities 

with the p-value threshold for inclusion of SNP being p=1 and using the effect-estimates 

reported by Lee et al. as weights.  

 

2.3.5. Missingness 

At wave 1, logistic regression analyses showed that the final MRI subsample (n = 82) 

did not differ from the full sample in income or memory (p’s > 0.14), but they were slightly 

older (mean difference 85 days, t = -3.12, p < 0.05). Those providing income data at wave 1 

did not differ from families that did not in terms of their children's wave 1 memory 

performance, hippocampal volume, or PGS (p’s > 0.79). Missingness in PGS was not 

predicted by age, sex, income, memory performance, or hippocampal volume at wave 1 (p’s > 

0.26). 

Longitudinally, missingness in income at wave 2 was not predicted by age, sex, 

income, memory, hippocampus, or PGS at wave 1 (p’s > 0.33). Similarly, missingness in 

memory at wave 2 was not predicted by age, sex, income, memory, hippocampus, or PGS at 

wave 1 (p’s > 0. 33). Lastly, missingness in hippocampus at wave 2 was not predicted by age, 

sex, income, memory, hippocampus, or PGS (p’s > 0.14).  

 

2.4. Data Analysis 

2.4.1. Confirmatory Analyses 

First, univariate latent difference score (LDS) structural equation models (SEM) of income, 

memory and hippocampus were compiled (Ferrer & McArdle, 2010; Kievit et al., 2018). 
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Aside from being a useful tool for longitudinal analyses, these SEMs also allowed the 

estimation of measurement error in hippocampal volume by building a latent hippocampal 

volume factor indicated by right and left volume. Individual growth is described by wave 1 

(i.e., the intercept exemplified by Income[1] in Figure 1) and a person’s change over time, 

which is directly modeled as the unobserved difference between the initial observation and 

subsequent observations (Δi). The random intercept is modeled with variance (si) to indicate 

between–person differences in intercepts. Similarly, the random latent change component is 

modeled with variance (sDi) to indicate between–person differences in change. The overall 

effect of change may be positive or negative depending on parameter estimates and the 

previously observed score. A group average trajectory is estimated by the mean latent change 

parameter (µΔi). Models included gender and age as covariates of memory and hippocampus 

intercepts. All variables were standardized to the measure of the first wave, hence the mean 

intercept is 0 and wave 2 measures represent the deviation from wave 1 (Raffington, Prindle, 

& Shing, 2018; Small, Dixon, McArdle, & Grimm, 2013). 

Second, bivariate models of income–memory (see Figure 1 for graphical depiction) 

and income–hippocampus were compiled. We also assembled a bivariate hippocampus–

memory model (this step was not explicitly preregistered, but is a necessary step to explore 

mediation). To test whether intercepts covaried, their covariance was estimated (ρmi). To 

examine whether income score at wave 1 predicts memory change from wave 1 to wave 2, 

change in memory was regressed on income at wave 1 (γiΔm). In reverse, to examine whether 

memory score at wave 1 predicts income change from wave 1 to wave 2, change in income 

was regressed on memory at wave 1 (ηmΔi). Thus, evaluation of score–onto–change coupling 

allow for inferences to be made between income at wave 1 being a leading indicator in time 

of wave–1–to–wave–2 changes in memory and vice versa (Ferrer & McArdle, 2004). These 

models also allowed for residual covariation between income and memory latent change 

variables (ρΔmΔi). The income–hippocampus and hippocampus–memory models were 

assembled in the same manner. 
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Figure 1. Graphical illustration of bivariate income–memory latent difference score model. 

Observed variables are depicted as squares, regressions as one–headed arrows, and (co–) 

variances (s) as two–headed arrows. Unmarked paths were fixed at 1. Figure compiled using 

Onyx 1.0 (http://onyx.brandmaier.de).  

 

Third, the preregistered trivariate mediation model, including an indirect path of 

income onto hippocampus onto memory, was not tested, because such links were not 

indicated in the bivariate models.  

All models were implemented in Mplus 8.2 and fitted using full information 

maximum likelihood (FIML) estimation to accommodate missing at random data. Models 

corrected standard errors for nesting of individuals within families (using the TYPE = 

COMPLEX feature in Mplus). Model fit was evaluated using the comparative fit index (CFI), 

root mean square error of approximation (Εa), and Chi–Squared (χ²) likelihood ratio test, 

where CFI values > .95 and Εa < 0.08 generally constitute good fit. Univariate and bivariate 

models showed good fit to the data (see Results Tables).  Given that statistical tests were 



 13 

preregistered, no adjustments for multiple comparisons were made. We report standardized 

parameter estimates as effect size estimates.  

 

2.4.2. Exploratory Analyses 

PGS of educational attainment was included as a predictor of intercepts and latent change in 

each domain in the bivariate models of income–memory and income–hippocampus. To test 

whether the covariance of income–memory was attenuated while controlling for PGS, a 

model fit comparison evaluated whether fit was significantly affected when the covariance 

parameter was free versus fixed to the parameter estimate from a model where the polygenic 

score paths were fixed to 0 (a 1 df Chi–square test). PGS of educational attainment were 

regressed on sex, age, parent–reported geographical ancestry (European, European–African or 

European–Asian), and the first 10 MDS-components of the principal components analysis to 

control for population stratification. 

 

3. Confirmatory Results 

3.1. Univariate models 

Income, memory performance and hippocampal volume showed average increasing 

trajectories over time (see Table 2 for fit indices and parameter estimates). Nevertheless, there 

were some decreasing individual trajectories in all domains (income: 22%, memory: 35%, 

hippocampus: 10%). Correspondingly, there was significant variability in intercepts and 

change in all domains.  
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Table 2. Parameter estimates from three separate univariate models.  

  Income Memory Hippocampus c 

Model Fit χ² (df) 0 (1) 2.17 (3) 13.18 (15) 

 CFI 1 1 1 

 Εa (CI) 0 (0-0) 0 (0.13) 0 (0-0.07) 

 SRMR 0 0.04 0.07 

Mean change µΔ  0.19* (0.06) 0.57* (0.09) 0.36* (0.05) 

Intercept variance σ b  1* (0.14) 1* (0.11) 0.33* (0.05) 

Change variance sD b  0.40* (0.13) 1.28* (0.16) 0.09* (0.03) 

Correlated intercept-change δ  -0.33* 
(0.09) 

 

-0.59* (0.06) -0.18 (0.14) 

Age onto Intercept   – 0.10 (0.07) 
 

0.19* (0.09) 
 

Girla onto Intercept   – -0.02 (0.11) -0.16 (0.22) 

ICV onto Intercept  – – 0.67* (0.11) 

Standardized regression estimates and bivariate correlations, unstandardized variance 

estimates. Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  

c Residual variances and residual correlations of left and right hippocampus as well as ICV 

variance and ICV correlations with gender are not shown. 

 

3.2.1 Bivariate income and memory 

Lower family income intercepts were associated with lower memory performance intercepts 

(see Table 3 for fit indices and parameter estimates). Accordingly, a 1 SD increase in family 

income (i.e. 2087 Euros/month; mean = 3634, range = 500 - 10000) was associated with 0.23 

SD better performance in memory. Contrary to our first hypothesis, income score at wave 1 

did not predict changes in memory or vice versa. Thus, while the association of income and 

memory remained stable over time, there was no dynamic longitudinal association between 

the two (see Figure 2a). 
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Table 3. Bivariate income–memory parameter estimates 

 Income Memory 

Model Fit χ² = 2.96, df = 10, CFI = 1, Εa = 0, CI = 0-0, SRMR = 0.03 

Mean change µΔ 0.19* (0.06) 0.57* (0.09) 

Intercept variance σ 1* (0.14) 1* (0.11) 

Change variance sD 0.39* (0.12) 1.26* (0.16) 

Correlated intercept–change δ -0.29* (0.09) -0.57* (0.06) 

Age onto Intercept  – 0.10 (0.07) 

Girla onto Intercept  – -0.01 (0.11) 

 Bivariate Couplings 

Intercept correlation ρmi  0.23* (0.09) – 

Income onto memory change γiΔm -0.12 (0.08) – 

Memory onto income change ηmΔi -0.17 (0.10) – 

Change–change correlation ρDmDi -0.01 (0.06) – 

Standardized regression estimates and bivariate correlations, unstandardized variance 

estimates. Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  
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(a) (b)  

(c)  

Figure 2. Individual raw monthly post–tax income in Euros (a), memory performance in 

proportion correct (b), and bilateral hippocampal volume in mm3(c) plotted over time. 

Average trajectories are plotted for families earning +1 SD above mean income (blue line) 

and -1 SD below mean income (red line), where income was averaged over wave 1 and 2. 

 

3.2.2. Bivariate income and hippocampus 

Lower family income intercepts were associated with smaller hippocampal volume intercepts 

(see Table 4 for fit indices and parameter estimates). Accordingly, a 1 SD increase in family 

income (i.e. 2087 Euros/month) was associated with 0.29 SD larger hippocampal volume, 

or 205 mm3. Contrary to our second hypothesis, income score at wave 1 did not predict 
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changes in hippocampus or vice versa. Thus, the association of income and hippocampal 

volume remained stable over time (see Figure 4a). 

 

Table 4. Bivariate income–hippocampal volume parameter estimates  

 Income Hippocampus 

Model Fit χ² = 14.48, df = 27, CFI = 1, Εa = 0, CI = 0-0, SRMR = 0.04 

Mean change µΔ 0.20* (0.05) 0.37* (0.05) 

Intercept variance σ 1* (0.14) 0.33* (0.05) 

Change variance sD 0.39* (0.13) 0.09* (0.03) 

Correlated intercept–change δ -0.35* (0.08) -0.13 (0.14) 

Age onto Intercept  – 0.17 (0.09) 

Girla onto Intercept  – -0.16 (0.14) 

ICV onto Intercept – 0.66* (0.08) 

 Bivariate Couplings 

Intercept correlation ρmi  0.29* (0.09) – 

Income onto hippocampus change γiΔm -0.15 (0.15) – 

Hippocampus onto income change ηmΔi 0.12 (0.09) – 

Change–change correlation ρDmDi -0.02 (0.15) – 

Standardized regression estimates and correlations, unstandardized variance estimates. 

Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  

c Residual variances and residual correlations of left and right hippocampal volume as well as 

ICV variance and ICV correlation with gender are not shown. 

 

3.2.3. Bivariate hippocampus and memory  

There were no bivariate relationships between hippocampal volume and memory 

performance, therefore hippocampal volume did not mediate memory differences (see Table 5 

for fit indices and parameter estimates).  
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Table 5. Bivariate hippocampus–memory parameter estimates 

 Hippocampus Memory 

Model Fit χ² = 22.34, df = 24, CFI = 1, Εa = 0, CI = 0-0.06, SRMR = 0.07 

Mean change µΔ 0.37* (0.05) 0.57* (0.09) 

Intercept variance σ 0.33* (0.06) 0.99* (0.11) 

Change variance sD  0.08* (0.03) 1.25* (0.16) 

Correlated intercept–change δ -0.19 (0.17)  -0.59* (0.06) 

Age onto Intercept  0.18* (0.09) 0.09 (0.08) 

Girla onto Intercept  -0.15 (0.23) 0.02 (0.11) 

ICV onto Intercept 0.67* (0.11) – 

 Bivariate Couplings 

Intercept correlation ρmi  0 (0.11) – 

Hippocampus onto memory change 
γiΔm 

0.11 (0.09) – 

Memory onto hippocampus change 
ηmΔi 

-0.31 (0.17) – 

Change–change correlation ρDmDi 0.01 (0.09) – 

Standardized regression estimates and correlations, unstandardized variance estimates. 

Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  

c Residual variances and residual correlation of left and right hippocampal volume as well as 

ICV variance and ICV correlation with gender are not shown. 

 

1. Exploratory Results 

Contrary to our fourth hypothesis, adding children’s PGS of educational attainment did not 

attenuate the income–memory association (correlation with PGS control = 0.25 (0.09), p < 

0.05 versus correlation without PGS control = 0.23 (0.09), p < 0.05, difference in correlation 

Chi–square (1) = 0.06, ns). In addition, PGS significantly predicted family income intercepts, 

but not income change, memory intercepts or memory change (see Table 6 for parameter 

estimates). Accordingly, a 1 SD increase in the children’s genetic predisposition to higher 

educational attainment was associated with living in a family that earned 536 Euros (0.26 
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SD’s) more per month. The association of family income intercepts and PGS persisted when 

constrained to participants of European descent (0.23 (0.09), p < 0.05).  

 

Table 6. Income–memory parameter estimates for whole sample with polygenic scores for 

educational attainment 

 Income Memory 

Model Fit χ² = 84, df = 131, CFI = 1, Εa = 0, CI = 0-0, SRMR = 0.07 

Mean change µΔ 0.19* (0.05) 0.57* (0.09) 

Intercept variance σ 0.94* (0.14) 1* (0.11) 

Change variance sD 0.38* (0.12) 1.24* (0.17) 

Correlated intercept–change δ -0.27* (0.09) -0.56* (0.06) 

Age onto Intercept  – 0.11 (0.07) 

Girla onto Intercept  – -0.02 (0.11) 

 Bivariate Couplings 

Intercept correlation ρmi  0.25* (0.09) – 

Income onto memory change γiΔm -0.14 (0.08) – 

Memory onto income change ηmΔi -0.17 (0.09) – 

Change–change correlation ρDmDi -0.01 (0.06) – 

 Polygenic Scores   

Polygenic scores on income intercept 0.23* (0.08) – 

Polygenic scores on income change -0.14 (0.07) – 

Polygenic scores on memory intercept -0.06 (0.09) – 

Polygenic scores on memory change 0.10 (0.10) – 

Girl on polygenic scores 0.10 (0.20) – 

Age on polygenic scores 0.13 (0.08) – 

Geographical ancestry on polygenic 
scoresb 

0.15 (0.15) – 

Standardized regression estimates and correlations, unstandardized variance estimates. 

Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  
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b Principal components correcting for population stratification onto polygenic scores are not 

shown for brevity. 

 

Contrary to our fifth hypothesis, adding children’s PGS of educational attainment did 

not attenuate the income–hippocampus association (correlation with PGS control = 0.29 

(0.10), p < 0.05 versus correlation without PGS control = 0.29 (0.00), p < 0.05, difference in 

correlation Chi-square (1) = 0.11, ns). In addition, PGS did not significantly predict 

hippocampus intercepts or change (see Table 7 for parameter estimates). 
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Table 7. Income–hippocampus parameter estimates for whole sample with polygenic scores 

for educational attainment 

 Income Hippocampus 

Model Fit χ² = 143, df = 184, CFI = 1, Εa = 0, CI = 0-0, SRMR = 0.09 

Mean change µΔ 0.20* (0.05) 0.37* (0.05) 

Intercept variance σ 0.94* (0.13) 0.32* (0.05) 

Change variance sD 0.38* (0.13) 0.08* (0.03) 

Correlated intercept–change δ -0.33* (0.09) -0.13 (0.13) 

Age onto Intercept  – 0.18* (0.09) 

Girla onto Intercept  – -0.16 (0.13) 

ICV onto Intercept – 0.66* (0.08) 

 Bivariate Couplings 

Intercept correlation ρmi  0.29* (0.10) – 

Income onto hippocampus change γiΔm -0.13 (0.15) – 

Hippocampus onto income change ηmΔi 0.13 (0.09) – 

Change–change correlation ρDmDi -0.03 (0.16) – 

 Polygenic Scores   

Polygenic scores on income intercept 0.23* (0.08) – 

Polygenic scores on income change -0.14 (0.08) – 

Polygenic scores on hippocampus intercept 0 (0.09) – 

Polygenic scores on hippocampus change -0.14 (0.16) – 

Girl on polygenic scores 0.08 (0.20) – 

Age on polygenic scores 0.13 (0.08) – 

Geographical ancestry on polygenic 
scoresd 

0.16 (0.15) – 

Standardized regression estimates and correlations, unstandardized variance estimates. 

Standard errors in parentheses.  

*Asterisks denote significance at the α level of 0.05.  

a Gender dummy coded as 1 = girls.  

c Residual variances and residual correlations of left and right hippocampus as well as ICV 

variance and ICV correlation with gender are not shown. 
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d Principal components correcting for population stratification onto polygenic scores are not 

shown for brevity. 

 

2. Discussion 

Despite evidence that the association of SES and child cognitive performance is driven by 

both environmentally– and genetically– mediated transactional pathways, there has been little 

longitudinal and genetically informed research on this topic. Motivated by a lack of 

longitudinal research examining change and recent advances in using PGS derived from large 

GWAS, we applied longitudinal models to estimate dynamic associations of family income 

with children’s memory performance and hippocampal volume whilst controlling for genetic 

predispositions for educational attainment. 

Our results indicate that the association of family income with children’s memory 

performance and hippocampal volume remains stable from ages 6 to 8 years. Contrary to 

hypotheses, change in hippocampal volume and associative memory was not predicted by 

family income. This null result could be due to sample composition, given the limited number 

of families living in poverty. On the other hand, widening socioeconomic differences over 

age across different cognitive and academic domains are often (Harden et al., 2019; Tucker-

Drob, 2013), but not always found in middle childhood and adolescence (Hackman et al., 

2015; Hair et al., 2015; Lawson & Farah, 2017; Raffington, Prindle, & Shing, 2018; von 

Stumm & Plomin, 2015; Wang et al., 2017).  

Yet, it should be noted that in studies with larger samples that allow an exploration of 

poverty moderation and more waves of data collection, it has been reported that changes in 

income predict child cognition in early childhood (Dearing et al., 2001) and later childhood 

and early adolescence (Raffington, Prindle, & Shing, 2018), but only for children growing up 

at–risk of poverty. This could suggest threshold effects of the income–cognition association, 

such that being at–risk of poverty is a moderator in the longitudinal association of family 

income and children’s cognitive development. In the present study, we were not able to 

explore coupling effects of income changes onto cognitive development, for which at least 
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three waves of data are necessary. We recommend future studies to consider a minimum of 

three data collection waves. Of note, intervention research has shown that positive outcomes 

in noncognitive domains (e.g., motivation, school achievement) may be present despite a lack 

of cognitive effects (Heckman, 2006). Hence, family income could have effects on change in 

noncognitive domains, even in children not at–risk of poverty.  

Why do children from socioeconomically disadvantaged background show stably 

lower memory performance and a smaller hippocampal volume in middle childhood? One 

potential explanation is that shared genes predisposing the parents to make more earnings and 

the children to have a larger hippocampal volume and perform better on cognitive tasks 

account for their association, a phenomenon called gene–environment correlation (Plomin, 

DeFries, & Loehlin, 1977). Contrary to expectations, we found no evidence that genetic 

variance captured by PGS of educational attainment account for the correlation of income 

with children’s associative memory and hippocampal volume in middle childhood. This null 

result is surprising, given that those same genetic differences did predict family income, 

which previous studies suggest is partially, but not fully, mediated by parental education 

(Belsky et al., 2016). Put simply, children with a higher genetic predisposition to attain more 

education tend to have parents with a higher genetic predisposition to more education, and 

these parents are more highly educated, which results in higher family income (Belsky et al., 

2018). Thus, our results provide no evidence for the notion that the correlation of family 

income with memory performance or hippocampal volume is driven by a gene–environment 

correlation captured by PGS of educational attainment. 

We believe two other mechanisms are likely to be involved in the relationship of 

family income with children’s hippocampal volume and memory performance in middle 

childhood: First, genetic variance not captured by PGS of educational attainment, such as 

genetic variance of hippocampal structure, confer a gene–environment correlation and, 

second, socioeconomic disadvantage occurring earlier in development offsets a lower 

trajectory that results in a fairly stable difference in later childhood. For instance, 

socioeconomic–related stress in prenatal and early childhood development may initiate long–
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lasting maturational neural processes along a different course to maximize functioning in 

those environments, potentially at the cost of certain cognitive functions preferred in 

cognitive testing and academic contexts. Correspondingly, intervention efforts have a 

substantially larger impact on cognitive and school achievement when they target children in 

early compared to later childhood (Duncan, Brooks-Gunn, & Klebanov, 1994; Duncan, 

Yeung, Brooks-Gunn, & Smith, 1998; Heckman, 2006). Indeed, both genetically and 

environmentally–mediated effects transferred through family and neighborhood environments 

influence children’s cognitive development and academic attainment (Belsky et al., 2018; 

Engelhardt, Church, Paige Harden, & Tucker-Drob, 2019; Harden et al., 2019; Koellinger & 

Harden, 2018). Thus, PGS of educational attainment combine genetic effects mediated via the 

home environment and transactional gene-environment correlations (Cheesman et al., 2019). 

Interestingly, these transactional mechanisms may differ across the socioeconomic spectrum, 

for instance by school quality (Harden et al., 2019).  Future research should investigate 

intervention or quasi–experimental effects in combination with PGS as a powerful way to 

explore the ways in which socioeconomic disadvantage and genetic predispositions contribute 

to individual differences in cognitive development. 

Furthermore, there was no evidence to suggest that differences in memory 

performance were mediated by differences in hippocampal volume, since both intercepts and 

change over time were unrelated to each other. Another study reports null associations of 

changes in episodic memory allowed to correlate with changes in the gray matter volume of 

frontal and parietal cortex areas in 8–to–38–year–olds (Breukelaar et al., 2017). The lack of 

mediation may arise from partially non–linear linkages between hippocampal subfield 

structure and memory performance (Keresztes et al., 2017; Keresztes, Ngo, Lindenberger, 

Werkle-Bergner, & Newcombe, 2018), or brain and cognition more generally (Wenger, 

Brozzoli, Lindenberger, & Lövdén, 2017). Therefore, it is possible that longitudinal 

trajectories of subregions of the hippocampus are related to specific memory functions not 

captured in our memory task. Alternatively, hippocampal function may be more closely 

related to associative memory than its structure, and its functional engagement may be 
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moderated by SES (Farah, 2017; Leonard, Mackey, Finn, & Gabrieli, 2015; Sheridan, How, 

Araujo, Schamber, & Nelson, 2013).  

We acknowledge further limitations of this study. First, our sample was somewhat 

biased in attracting parents that were more highly educated than the population average, and 

only included children that passed stringent exclusion criteria (see Raffington, Prindle, 

Keresztes, et al., 2018). Second, the moderate sample size did not allow us to explore 

threshold effects of growing up in poverty. These limitations are likely to underestimate 

effects of SES and poverty on child development. Similarly, a lack of power could be a 

potential factor contributing to null results, since all tested factors only explain a low amount 

of the total variance. Third, our analyses were restricted to income–hippocampus–memory 

associations and may not generalize to parental education (Duncan & Magnuson, 2012) or 

other cognitive functions that the hippocampus is known to be involved in, such as emotion 

regulation (Lupien et al., 2009). Lastly, our analysis was restricted by only having two waves 

of data, which limits the reliability of change and understanding of longitudinal dynamics 

(Willett, 1989). Nevertheless, representing longitudinal assessments of change in each 

variable as an outcome of the other variable’s prior score or vice versa informs our 

understanding of bivariate relationships far beyond cross–sectional or longitudinal 

correlations. 

In conclusion, we found the association of family income with children’s memory 

performance and hippocampal volume to be stable from ages 6–to–8–years without bivariate 

effects on change. Accordingly, children from economically disadvantaged background on 

average showed lower memory performance and had smaller hippocampal volumes. There 

was no evidence to suggest that differences in memory performance were mediated by 

differences in hippocampal volume. The relationship of income with hippocampal volume 

and memory in middle childhood was not driven by genetic variance captured by PGS of 

educational attainment, despite the fact that PGS significantly predicted family income. 

Furthermore, change in hippocampal volume and memory performance observed in middle 

childhood seems largely independent of family income, at least in samples of moderate SES 
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variation. Their stable association may derive from socioeconomic disadvantage occurring in 

earlier childhood and genetic variance not captured by PGS of educational attainment. This 

study also highlights the utility of including DNA–based PGS as control variables to zero–in 

on explanatory mechanisms involved in the study of childhood adversity and development to 

promote positive development. 
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