

5. Übungsblatt (erschienen am 07.06.2017)

Aufgabe 1 (Unendlich dimensionale Matrizen) Gegeben sei eine unendlich dimensionale Matrix

$$(m_{ij})_{i,j\in\mathbb{N}}\in l^2(\mathbb{N}\times\mathbb{N})$$

wobei $l^2(\mathbb{N} \times \mathbb{N})$ analog $l^2(\mathbb{N})$ definiert ist, also

$$l^{2}(\mathbb{N}\times\mathbb{N}):=\{(m_{ij})_{i,j\in\mathbb{N}}, \sum_{i,j=1}^{\infty}|m_{ij}|^{2}<\infty\}, \quad \|(m_{ij})_{i,j\in\mathbb{N}}\|_{l^{2}(\mathbb{N}\times\mathbb{N})}:=\left(\sum_{i,j=1}^{\infty}|m_{ij}|^{2}\right)^{1/2}.$$

Wir definieren damit den Operator $M:\ l^2(\mathbb{N}) \to l^2(\mathbb{N})$ gemäß der Vorschrift

$$Mv := \left(\sum_{j=1}^{\infty} m_{ij} v_j\right)_{i \in \mathbb{N}}.$$

(a) Zeigen Sie, dass $M \in \mathcal{L}(l^2(\mathbb{N}))$ und dass

$$||M||_{\mathcal{L}(l^2(\mathbb{N}))} \le ||(m_{ij})_{i,j\in\mathbb{N}}||_{l^2(\mathbb{N}\times\mathbb{N})}.$$

Berechnen Sie außerdem die Adjungierte M^* .

(b) Sei $(m_{ij})_{i,j\in\mathbb{N}} \in l^2(\mathbb{N} \times \mathbb{N})$ eine Diagonalmatrix, also $m_{ij} = 0$ für $i \neq j$. Zeigen Sie, dass dann $(m_{ii})_{i\in\mathbb{N}}$ eine Nullfolge ist und dass M kompakt ist.

Aufgabe 2

Betrachten Sie den Operator

$$A: L^2(0,1) \to L^2(0,1), \quad (Af)(x) := \int_0^x f(y) \, dy.$$

- (a) Geben Sie den adjungierten Operator A^* an.
- (b) Zeigen Sie, dass für alle $j \in \mathbb{N}$ gilt:

$$Av_j(x) = \sigma_j u_j(x)$$
 und $A^* u_j(x) = \sigma_j v_j(x)$ (1)

mit $\sigma_j := ((j - \frac{1}{2})\pi)^{-1}$,

$$v_j(x) := \sqrt{2}\cos\left(\left(j - \frac{1}{2}\right)\pi x\right)$$
 und $u_j(x) := \sqrt{2}\sin\left(\left(j - \frac{1}{2}\right)\pi x\right)$.

(c) Zeigen Sie, dass $(u_j)_{j\in\mathbb{N}}$ und $(v_j)_{j\in\mathbb{N}}$ Orthonormalsysteme in $L^2(0,1)$ sind. (Tipp: Sie können dies aus (1) ohne partielle Integration folgern.)

Abgabe: 20.06.17, bis 12:00 Uhr. Zu schriftlichen Aufgaben soll eine Lösung in Kasten 42, Robert-Mayer-Str. 6-8 dritter Stock eingeworfen werden. Zu Programmieraufgaben soll eine kommentierte Ausarbeitung in MATLAB-Code an **jahn@math.uni-frankfurt.de** geschickt werden.