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Abstract. We consider the problem of recovering a class of entire functions from their
values on a set of integer nodes. These results are applied to investigate two problems

involving heat equations: the first one is of solving a heat equation without either the

initial condition or the final condition, and the second one is of determining the heat
source of a backward heat problem.
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1. Introduction

For σ > 0, we denote by L2
σ the space of entire functions f ∈ L2(R) satisfying

|f(z)| ≤ const.eσ|z|, z ∈ C.

By Paley-Wiener theorem (see Rudin [10, Chapter 19]), each function f ∈ L2
σ

can be represented as the Fourier transform of a function g ∈ L2(−σ, σ), i.e.

f(z) =
σ∫

−σ

g(t)eitzdt, z ∈ C.
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We are interested in a problem of recovering a function in L2
σ from its values on

a certain subset of R, which is known when considering some partial differential
equations.

First, let us consider the heat equation
{

ut − uxx = f(x, t), (x, t) ∈ Q := (0, 1) × (0, T ),
ux(0, t) = ux(1, t) = u(1, t) = 0,

(1)

where u ∈ C1([0, T ]; L1(0, 1))∩L2(0, T ; H2(0, 1)) is unknown. Here we recall that
C1([0, T ]; L1(0, 1)) is the space of all continuous functions f : [0, T ] → L1(0, 1)
having f ′ : [0, T ] → L1(0, 1) continuous and that L2(0, T ; H2(0, 1)) is the space
of all f : (0, T ) → H2(0, 1) satisfying

∫ T

0
‖f(t)‖2

H2(0,1) < ∞.

This is a kind of the problems called “problems without initial conditions”. In
1935, Tikhonov [16] proved the uniqueness of the solution of the homogeneous
heat equation

ut − ∆u = 0,−∞ < t < ∞.

In 1990, Safarov [11] solved this homogeneous problem for the unbounded do-
main x > 0 and for the trip 0 < x < l. After that, the nonhomogeneous heat
equation without initial condition has been considered by many authors such
as Shmulev [15], Kirilich [8] and Guseinov [7]. These authors investigated the
problem in −∞ < t < ∞ or −∞ < t < T and they required some assumptions
on the behavior of the temperature at −∞ or a periodic condition in order to
obtain the solvability of the problem. In the present paper, we shall consider the
nonhomogeneous problem on a finite time 0 < t < T , which is more reasonable
for real applications. The lack of the initial condition u(., 0) is compensated by
adding the boundary condition u(1, .). We want to prove that the problem (1)
has at most one solution and solve it numerically.

For each α ∈ R, getting the inner product between the first equation of (1)
and v(x) = cos(αx), and using the integration by parts, one has

d

dt
F (u(., t))(α) + α2F (u(., t))(α) = F (f(., t))(α),

where F stands for the Fourier cosin transform in L2(0, 1), i.e.

F (w)(z) :=
1∫

0

w(x) cos(zx)dx, w ∈ L2(0, 1), z ∈ C.

It follows from the above equation that
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F (u(., T ))(α) = e−α2T F (u(., 0))(α) +
T∫

0

eα2(t−T )F (f(., t))(α)dt. (2)

The difficulty of finding u(., T ) is because the initial condition u(., 0) is not
available. However, from (2) we have a crucial observation that when |α| → +∞
then e−α2T → 0 very fast and it is reasonable to use the approximation

F (u(., T ))(α) ≈
T∫

0

eα2(t−T )F (f(., t))(α)dt. (3)

Formula (3) gives a good approximation for F (u(., T ))(α) if |α| is large enough.
Now the crux of the matter is to recover F (u(., T ))(α) for |α| small as well.
Thus we meet a problem of recovering a function in L2

1 from its values on a set
(−∞,−r] ∪ [r,∞), where r > 0 is a large number.

Now let us consider another heat problem called “inverse source problem”.
This is of finding a pair of function (u, f) satisfying






ut − uxx = ϕ(t)f(x), (x, t) ∈ Q = (0, 1) × (0, T )
ux(0, t) = ux(1, t) = u(1, t) = 0,

u(x, T ) = g(x),
(4)

where ϕ ∈ L1(0, T ) and g ∈ L2(0, 1) are given. This inverse source problem is ill-
posed, i.e. a solution may not exist, and even if it exists then it may not depend
continuously on the data. Therefore, an usual numerical treatment is impossible
and a regularization is necessary.

The problem of finding the heat source under separate form ϕ(t)f(x), where
one of the two functions ϕ and f is unknown, has been investigated for a long
time. The uniqueness and stability are considered by many authors such as
Cannon-Esteva [3, 4], Yamamoto [21, 22], Yamamoto-Zou [23], Saitoh-Tuan-
Yamamoto [12, 13] and Choulli-Yamamoto [5]. However, the regularization prob-
lem for unstable cases is still difficult. The regularization problem for the case
f ≡ 1 was investigated by Wang-Zheng [19] and Shidfar-Zakeri-Neisi [14], while
the case ϕ ≡ 1 was considered by Cannon [2], Wang-Zheng [20] and Farcas-
Lesnic [6]. Recently, Trong-Long-Dinh [17] and Trong- Quan-Dinh [18] regarded
the regularization problem in which ϕ is given and f is unknown. However, in
the two latter papers, both of the initial condition u(., 0) and the final condition
u(., T ) are required. This requirement is strict and unnatural. In the present
paper, we consider the same problem as in [17] but the requirement of the initial
temperature is removed completely.

Note that if f is already known then we obtain an usual backward heat
problem. Therefore, we shall focus only on finding of f . From (4), we have the
following formula, which comes from (2),
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F (g)(α) − e−α2T F (u(., 0)) = D(ϕ)(α)F (f)(α), α ∈ R, (5)

where

D(ϕ)(α) =
T∫

0

eα2(t−T )ϕ(t)dt.

If e−α2T /|D(ϕ)(α)| → 0 ”fast enough” when |α| → +∞ then we have the ap-
proximation

F (f)(α) =
F (g)(α)
D(ϕ)(α)

− e−α2T F (u(., 0))(z)
D(ϕ)(α)

≈ F (g)(α)
D(ϕ)(α)

. (6)

Thus we meet again the problem of recovering a function of L2
1, i.e. F (f), from

its values on a set (−∞,−r] ∪ [r,∞), where r > 0 is a large number.
In summary, two heat problems suggest us a “tool problem” of recovering

functions in L2
σ. The remainder of the paper is divided into three sections. In

Sec. 2, we give some results about this “tool problem”. In Sec. 3, we return to
the heat problems and apply the results in Sec. 2 to solve them. A numerical
experiment is presented in Sec. 4 to illuminate the effect of our method.

2. Recovering Functions in L2
σ from Integer Nodes

In this section, we consider only a special case of the “tool problem”. More
precisely, we consider the problem of recovering a function in L2

σ from its values
on a set {n ∈ Z, |n| ≥ r} for some r > 0 large.

The problem of finding an entire function from its value on a countable set A is
a typical problem in the theory of entire functions. In particular, the interesting
case A = Z has been considered for a long time (see [9, Lecture 20]). A classical
theorem (see [9, Section 20.2]) says that a function f ∈ L2

π can be determined
completely from its values on A = Z by the representation

f(z) =
∞∑

n=−∞
(−1)nf(n)

sin(π(z − n))
π(z − n)

,

and
‖f‖2

L2(R) =
∑

n∈Z

|f(n)|2.

However, if A = {n ∈ Z, |n| ≥ r} for some r > 0 then the uniqueness of the
determination of f ∈ L2

π does not hold. For example, the entire function

f(z) =
sin(πz)

z
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satisfies f(n) = 0 for all integers n -= 0. Hence, it is interesting to consider the
determination of a function f ∈ L2

σ from {f(n)}n∈A in the case that σ < π.
When 0 < σ < 2, we have the following stability theorem. In particular, it

implies the uniqueness result.

Theorem 2.1. (Stability) Let σ ∈ (0, 2) and A = {n ∈ Z, |n| > r} for some
r > 0. Then there exists a constant C = C(σ, r) > 0 such that

‖f‖L2(R) ≤ C

(
∑

n∈A

|f(n)|2
)1/2

, ∀f ∈ L2
σ.

Remark 2.2. Since ‖f‖2
L2(R) =

∑
n∈Z

|f(n)|2, the above stability theorem can be

said in other words that the mapping

f /→
(
∑

n∈A

|f(n)|2
)1/2

defines an equivalent norm in the space
(
L2

σ, ||.||L2(R)

)
.

Our main tool to prove Theorem 2.1 is the Lagrange interpolation polynomial.
Recall that if B = {x1, ..., xp} is a set of p mutually distinct complex numbers
then the Lagrange interpolation polynomial L[B; w] of a mapping w : B → C is

L[B; w](z) =
p∑

j=1




∏

k %=j

z − xk

xj − xk



w(xj).

We shall need the following interpolation inequality.

Lemma 2.3. (Interpolation inequality) Let σ0 ∈ (σ, 2). Then there exist k ∈ N
and C0 > 0 depending only on σ0 such that

sup
x∈[−r,r]

∣∣f(x) − L[Ak
r , f ]

∣∣ ≤ C0 ‖f‖L2(R)

(
σ

σ0

)2kr

, ∀f ∈ L2
σ, r ∈ N,

where Ak
r = {±(r + j)|j = 1, 2, ..., kr}.

Proof. Fix x ∈ [−r, r] and put xj = r + j for 1 ≤ j ≤ kr. According to the
remainder formula of the Lagrange interpolation polynomial (see, e.g., [1, Section
1.1, p. 9]), there exists ξ ∈ [−(k + 1)r, (k + 1)r] such that

f(x) − L[Ak
r , f ](x) =

1
(2kr)!

d2krf

dz2kr
(ξ)

kr∏

j=1

(x2 − x2
j ). (7)

Since f ∈ L2
σ, we have the representation
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f(z) =
σ∫

−σ

g(t)eitzdt

for some g ∈ L2(−σ, σ). Thus

∣∣∣∣
d2krf

dz2kr
(ξ)
∣∣∣∣ =

∣∣∣∣∣∣

σ∫

−σ

g(t)(it)2kreitξdt

∣∣∣∣∣∣
≤ ‖g‖L1(−σ,σ) σ2kr ≤ ‖f‖L2(−σ,σ) σ2kr , (8)

here we have used

‖g‖L1(−σ,σ) ≤
√

2σ ‖g‖L2(−σ,σ) =
√

σ

π
‖f‖L2(R) ≤ ‖f‖L2(R) .

On the other hand, since |x| ≤ xj ,

1
(2kr)!

kr∏

j=1

∣∣x2 − x2
j

∣∣ ≤ 1
(2kr)!

kr∏

j=1

x2
j

=
(r + 1)2(r + 2)2...((k + 1)r)2

(2kr)!
=: Ψk(r). (9)

We see that

Ψk(r + 1)
Ψk(r)

=
(k + 1)2((k + 1)r + 1)2...((k + 1)r + k)2

(2kr + 1)...(2kr + 2k)
→ (k + 1)2(k+1)

(2k)2k

as r → +∞.

Because
(

1 +
1
k

)
ln(k + 1) − ln(2k)→ ln

(
1
2

)
< − ln(σ0) as k → +∞,

we can choose k > 0 depending on σ0 such that
(

1 +
1
k

)
ln(k + 1) − ln(2k) < − ln(σ0).

The latter inequality is equivalent to

(k + 1)2(k+1)

(2k)2k
<

1
(σ0)2k

.

It follows from

Ψk(r + 1)
Ψk(r)

→ (k + 1)2(k+1)

(2k)2k
<

1
(σ0)2k

as r → +∞,
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that

Ψk(r) ≤ C0

(σ0)2kr
, ∀r = 1, 2, . . . (10)

for some constant C0 > 0 depending only on σ0. The desired result follows from
(7), (8), (9) and (10).

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first prove the uniqueness and then obtain the stability.
Step 1. We prove that if f ∈ L2

σ and f(n) = 0 for all n ∈ A then f ≡ 0.
In fact, choose σ0 ∈ (σ, 2) and k, C0 as in Lemma 2.3. Fix x ∈ R. Then

Ak
s ⊂ A for s > |x| large enough. It follows from Lemma 2.3 that

|f(x)| =
∣∣f(x) − L[Ak

s , f ](x)
∣∣ ≤ C0 ‖f‖L2(R)

(
σ

σ0

)2ks

→ 0 as s → +∞.

Thus f(x) = 0 for all x ∈ R, and hence f ≡ 0.
Step 2. Assume by contradiction that there is a sequence {fm} ⊂ L2

σ satisfying

‖fm‖L2(R) = 1 and lim
m→+∞

∑

n∈A

|fm(n)|2 = 0.

Since fm ∈ L2
σ, there exists gm ∈ L2(−σ, σ) such that

fm(z) =
σ∫

−σ

gm(t)eitzdt, ‖gm‖L2(−σ,σ) =
1√
2π

‖fm‖L2(R) =
1√
2π

.

It follows from the boundedness of the sequence {gm} in L2(−σ, σ) that there is
a subsequence {gmk} weakly converging to a function g0 ∈ L2(−σ, σ). Thus

lim
k→+∞

fmk(n) = f0(n), ∀n ∈ Z, where f0(z) =
σ∫

−σ

g0(t)eitzdt.

On the other hand, lim
k→+∞

fmk(n) = 0 for all n ∈ A. Therefore, f0(n) = 0 for all

n ∈ A, and we deduce from Theorem 2.1 that f0 ≡ 0. Thus lim
k→+∞

fmk(n) → 0

for all n ∈ Z, and hence

‖fmk‖
2
L2(R) =

∑

n∈Z

|fmk(n)|2 =
∑

|n|<r

|fmk(n)|2 +
∑

n∈A

|fmk(n)|2 → 0

as k → +∞. This contradiction completes the proof.

Now we sharp the interpolation inequality in Lemma 2.3 for the special case
σ = 1.
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Theorem 2.4. (Interpolation inequality) Let f ∈ L2
1 and w : Ar → C, where

Ar = {±(r + j), j = 1, 2, ..., 4r} for some integer r > 0. Then one has

sup
x∈[−r,r]

|f(x) − L[Ar; w](x)| ≤ ‖f‖L2(R) e−r/2 + 8re3.96r max
n∈Ar

|f(n) − w(n)|.

Proof. Fix x ∈ [−r, r] and put m = 4r, xj = r + j for 1 ≤ j ≤ m. We shall use
the triangle inequality

|f(x) − L[Ar; w](x)| ≤ |f(x) − L[Ar; f ](x)| + |L[Ar; (f − w)](x)|. (11)

We first estimate |f(x) − L(Ar; w)(x)|. Using (7), (8), (9) in the proof of
Lemma 2.3 with respect to k = 4 we get

|f(x) − L[Ar; f ](x)| ≤ ‖f‖L2(R) Ψ4(r), (12)

where
Ψ4(r) =

(r + 1)2(r + 2)2 . . . (5r)2

(8r)!
.

By direct computation, one has Ψ4(1) = 4/15 < e−1/2, and

Ψ4(r + 1)
Ψ4(r)

=
25 [(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

(8r + 1)(8r + 2)...(8r + 8)
<

510

88
< e−1/2

since

58(8r + 1)(8r + 2) . . . (8r + 8) − 88[(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

= 3276800000000r7 + 11345920000000r6 + 16117760000000r5

+ 12084267520000r4 + 5110135040000r3 + 1199880928000r2

+ 141123408000r + 6086323584
> 0.

It implies that Ψ4(r) < e−r/2 for all r ≥ 1. Thus (11) reduces to

|f(x) − L[Ar; f ](x)| ≤ ‖f‖L2(R) e−r/2. (13)

We next estimate |L(Ar; f − w)(x)|. We have

L[Ar; f − w](x) =
m∑

j=1




∏

k %=j

x2 − x2
k

x2
j − x2

k



x + xj

2xj
(f(xj) − w(xj))

+
m∑

j=1




∏

k %=j

x2 − x2
k

x2
j − x2

k



 x − xj

−2xj
(f(−xj) − w(−xj)).

Since |x| ≤ xj for 1 ≤ j ≤ m, the above equality implies
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|L[Ar; f − w](x)| ≤ 2δ
m∑

j=1




∏

k %=j

∣∣x2 − x2
k

∣∣
∣∣x2

j − x2
k

∣∣





≤ 2δm max
1≤j≤m




∏

k %=j

x2
k∣∣x2

j − x2
k

∣∣



 , (14)

where δ = max
n∈Ar

|f(n) − w(n)|. For all 1 ≤ j ≤ m,

∏

k %=j

x2
k∣∣x2

j − x2
k

∣∣ =
2
xj

.

m∏
k=1

x2
k

∏
k %=j

|xj − xk|.
m∏

k=1
(xj + xk)

=
2

r + j
.

(r + 1)2(r + 2)2...(5r)2

(j − 1)!(4r − j)!(2r + j + 1).(2r + j + 2)...(6r + j)

≤ 4(r + 1)2(r + 2)2...(5r)2

(2r − 1)!(6r + 1)!
=: Ψ̃(r)

since

2(r + j) × (j − 1)!(4r − j)! × (2r + j + 1).(2r + j + 2) . . . (6r + j)
≥ (2r + 1) × (2r − 1)!(2r)! × (2r + 2).(2r + 3) . . . (6r + 1).
= (2r − 1)!(6r + 1)!.

By direct computation, we have Ψ̃(1) < e3.96, and

Ψ̃(r + 1)
Ψ̃(r)

=
25[(5r + 1)(5r + 2)(5r + 3)(5r + 4)]2

2r(2r + 1)(6r + 2)(6r + 3)...(6r + 7)
<

510

22.66
< e3.96

since

58.2r(2r + 1)(6r + 2)...(6r + 7) − 22.66.[(5r + 1) . . . (5r + 4)]2

= 72900000000r7 + 265680000000r6 + 394065000000r5

+ 302946030000r4 + 125967060000r3 + 26004042000r2

+ 1698012000r− 107495424
> 0.

Thus Ψ̃(r) < e3.96r for all r ≥ 1. Therefore, (14) reduces to

|L[Ar; f − w](x)| ≤ 8re3.96rδ. (15)

The desired result follows inequalities (13) and (15).

Corollary 2.5. Assume that f ∈ L2
1 and lim

n∈Z,|n|→∞
f(n)e4|n| = 0. Then f ≡ 0.
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Proof. For each x ∈ R, using Theorem 2.4 for w ≡ 0 and r > |x|, one has

|f(x)| ≤ ‖f‖L2(R) e−r/2 + 8re3.96r max
n∈Ar

|f(n)|

≤ ‖f‖L2(R) e−r/2 + 8re−0.04r max
n∈Ar

∣∣∣f(n)e4|n|
∣∣∣→ 0 as r → ∞.

Thus f(x) = 0 for all x ∈ R and hence f ≡ 0.

3. Applications

In this section, we return to consider heat problems (1) and (4). Our aim is to
prove the uniqueness of the solution of each problem as well as to show a scheme
to compute the solution numerically.

We first consider the system (1).

Theorem 3.1. (Uniqueness) For each f ∈ L1(Q), the system (1) has at most
one solution

u ∈ C1([0, T ]; L1(0, 1)) ∩ L2(0, T ; H2(0, 1)).

Proof. Assume that u1 and u2 are two solutions of (1) corresponding to the same
data f . Then u = u1 − u2 satisfies (1) corresponding to f = 0. Then from (2)
one has

|F (u(., T ))(n)| e4|n| = |F (u(., 0))(n)| e−n2T+4|n|

≤ ‖u(., 0)‖L1(0,1) e−n2T+4|n| → 0 as |n| → ∞.

It follows from Corollary 2.5 that u(., T ) ≡ 0. Of course, we can replace T by
any t ∈ (0, T ] to get u(., t) ≡ 0. Thus u1 ≡ u2.

Note that the existence of a solution is not considered here. Instead, we assume
that there is an exact solution u ∈ C1([0, T ]; L1(0, 1))∩L2(0, T ; H2(0, 1)) of the
system (1) corresponding to the exact data f0 ∈ L1(Q). Our purpose in the next
theorem is to construct a numerical solution approximating u(., T ) from a given
data fε ∈ L1(Q), which satisfies ‖fε − f0‖L1(Q) ≤ ε. For x ∈ R, we shall denote
by 2x3 the integer in the interval (x, x + 1].

Theorem 3.2. (Numerical solution) Assume that u0(., T ) ∈ H2(0, 1). Define

Hε(y) =
T∫

0

1∫

0

fε(x, t)ey2(t−T ) cos(yx)dxdt, y ∈ R,

rε =
⌈

2
9

ln
(

1
ε

)⌉
, Mε =

√
1
ε
,

Aε = {±(rε + j)|j = 1, 2, ..., 4rε} ,
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Fε(n) =

{
L[Aε; Hε], if 0 ≤ nπ < rε,

Hε(nπ), if rε ≤ nπ ≤ Mε,

vε(x) = Fε(0) + 2
∑

1≤n≤Mε

Fε(n) cos(nπx).

Then we have the error estimate

‖vε − u0(., T )‖H1(0,1) ≤ C0

(
ln
(

1
ε

))3/2

ε1/9,

where C0 stands for a constant depending only on u0.

Proof. Denote by v0 the exact solution u0(., T ) for short. In the following, we
use C0 as a universal constant which depends only on u0 and T .
Step 1. Compare F (v0)(nπ) and F (vε)(nπ) for 0 ≤ nπ ≤ Mε.

Let y ∈ R, |y| ≥ rε. It follows from (2) that

|F (v0)(y) − H0(y)| = e−y2T |F (u0(., 0))(y)| ≤ C0ε

due to e−y2T ≤ e6T 2− 9
2 |y| ≤ e6T 2− 9

2 rε ≤ e6T 2
ε. Moreover |H0(y) − Hε(y)| ≤ ε.

Thus

|F (v0)(y) − Hε(y)| ≤ |F (v0)(y) − H0(y)| + |H0(y) − Hε(y)| ≤ C0ε.

In particular, one has

|F (v0)(nπ) − F (vε)(nπ)| ≤ C0ε if rε ≤ nπ ≤ Mε, (16)

and
max
n∈Aε

|F (v0)(n) − Hε(n)| ≤ C0ε.

We deduce from the latter inequality and Theorem 2.4 that if 0 ≤ y < rε then

|F (v0)(y) − L[Aε; Hε](y)| ≤ ‖F (v0)‖L2(0,1) e−rε/2 + 8rεe
3.96rε .C0ε.

Choosing y = nπ and using ε−2/9 ≤ erε ≤ eε−2/9, we get

|F (v0)(nπ) − F (vε)(nπ)| ≤ C0ε
1/9 if 0 ≤ nπ < rε. (17)

Step 2. Applying the Parseval-Plancherel equality, one has

‖v0 − vε‖2
H1(0,1)

= |F (v0)(0) − F (vε)(0)|2 + 2
∞∑

n=1

(1 + n2π2) |F (v0)(nπ) − F (vε)(nπ)|2



12 Dang Duc Trong, Phan Thanh Nam, and Mach Nguyet Minh

≤ 4π2
∞∑

n=0

n2 |F (v0)(nπ) − F (vε)(nπ)|2. (18)

It follows from (17) that
∑

0≤nπ<rε

n2 |F (v0)(nπ) − F (vε)(nπ)|2

≤ rε max
0≤nπ<rε

{
n2 |F (v0)(nπ) − F (vε)(nπ)|2

}

≤ rε.r
2
ε

(
C0ε

1
9

)2
= C2

0r3
εε

2
9 . (19)

Similarly, using (16) we have
∑

rε≤nπ≤Mε

n2 |F (v0)(nπ) − F (vε)(nπ)|2

≤ Mε max
rε≤nπ≤Mε

{
n2 |F (v0)(nπ) − F (vε)(nπ)|2

}

≤ Mε.M
2
ε (C0ε)2 = C2

0

√
ε. (20)

Since v0 ∈ H2(0, 1) and v′0(0) = v′0(1) = 0, we have

F (v0)(nπ) = − 1
nπ

1∫

0

v′0(x) sin(nπx)dx = − 1
n2π2

1∫

0

v′′0 (x) cos(nπx)dx.

The Parseval-Plancherel equality implies

‖v′′0 ‖
2
L2 =

∞∑

n=1

n4π4 |F (v0)(nπ)|2.

Therefore
∑

nπ>Mε

n2 |F (v0)(nπ) − F (vε)(nπ)|2 =
∑

nπ>Mε

n2 |F (v0)(nπ)|2

≤ 1
M2

ε

∑

nπ>Mε

n4 |F (v0)(nπ)|2

≤ 1
M2

ε π4
‖v′′0 ‖

2
L2(0,1)

≤ C0ε. (21)

From (18), (19), (20), (21) we conclude that

‖v0 − vε‖2
H1(0,1) ≤ C0r

3
εε

2
9 ≤ C2

0

(
ln(ε−1)

)3
ε

2
9 .

The proof is complete.
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Remark 3.3. If the condition v0 := u(., T ) ∈ H2(0, 1) is reduced to v0 ∈
H1(0, 1) only, we have

‖v0 − vε‖L2 ≤ C0

(
ln(ε−1)

) 1
2 ε

1
9 .

The proof is even simpler with some small changes in Step 2.

Now we return to consider the inverse source problem (4). Recall that the
approximation (6) only works if e−α2T /|D(ϕ)(α)| → 0 ”fast enough” as |α| →
+∞, where

D(ϕ)(α) =
T∫

0

eα2(t−T )ϕ(t)dt.

To keep |D(ϕ)(α)| → 0 ”slowly” as |α| → +∞, we shall need a slight condition
(H) on ϕ.
Condition (H) ϕ ∈ L1(0, T ) and either lim inf

t→T−
ϕ(t) > 0 or lim sup

t→T−
ϕ(t) < 0

holds.

Remark 3.4. The class of the functions satisfying (H) is very large. For example,
this condition holds if ϕ is continuous at t = T and ϕ(T ) -= 0.

Lemma 3.5. If ϕ satisfies (H) then

lim inf
|α|→∞

α2 |D(ϕ)(α)| > 0.

Proof. Assume that lim inf
t→T−

ϕ(t) > 0. Then there exist λ ∈ (0, T ) and C0 > 0

such that ϕ(t) > C0 for all t ∈ (λ, T ). Therefore

|D(ϕ)(α)| ≥
T∫

λ

eα2(t−T )ϕ(t)dt −

∣∣∣∣∣∣

λ∫

0

eα2(t−T )ϕ(t)dt

∣∣∣∣∣∣

≥
T∫

λ

eα2(t−T )C0dt −
λ∫

0

eα2(λ−T )|ϕ(t)|dt

≥ C0
1 − eα2(λ−T )

α2
− eα2(λ−T ) ‖ϕ‖L1(0,T ) .

Multiplying both sides of the latter inequality and then letting |α| → ∞, we
obtain the desired result.

Theorem 3.6. (Uniqueness) Assume that ϕ satisfies (H) and g ∈ L2(0, 1). Then
the system (4) has at most one solution

(u, f) ∈ (C1([0, T ]; L1(0, 1)) ∩ L2(0, T ; H2(0, 1)), L2(0, 1)).

Minh
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Proof. Let (u1, f1) and (u2, f2) be two solutions. Put u = u1−u2 and f = f1−f2.
Then (u, f) is a solution of (4) corresponding to ϕ and g ≡ 0. Therefore, (5)
reduces to

e−α2T F (u(., 0))(n) = D(ϕ)(α).F (f)(α), α ∈ R. (22)

In particular, choosing α = n ∈ Z, one has
∣∣∣e4|n|F (f)(n)

∣∣∣ .
∣∣n2D(ϕ)(n)

∣∣ = n2e−n2T+4|n| ‖F (u(., 0))‖L∞ → 0 as |n| → ∞.

On the other hand, lim inf
|n|→∞

∣∣n2D(ϕ)(α)
∣∣ > 0 due to Lemma 3.5. Thus

e4|n| |F (f)(n)| = 0 → 0 as |n| → ∞.

It follows from Corollary 2.5 that f ≡ 0. Therefore, Equation (22) reduces to
F (u(., 0))(α) = 0 for all α ∈ R, and hence u(., 0) ≡ 0. As known, the homo-
geneous heat equation with the trivial initial condition u(., 0) = 0 has only the
trivial solution u ≡ 0. Thus (u1, f1) = (u2, f2).

We mention that the problem (4) is severely ill-posed, and hence the regular-
ization is necessary. Assume that

(u0, f0) ∈ (C1([0, T ]; L1(0, 1)) ∩ L2(0, T ; H2(0, 1)), L2(0, 1))

is the exact solution of (4) corresponding to the exact data (ϕ0, g0), where ϕ0

satisfies (H) and g0 ∈ L2(0, 1). Let given data (ϕε, gε) ∈ (L1(0, T ), L2(0, 1))
satisfy

‖ϕε − ϕ0‖L1(0,T ) ≤ ε and ‖gε − g0‖L2(0,1) ≤ ε.

Our aim is to construct, from (ϕε, gε), a regularized solution fε approximating
f0. We shall use a scheme similar to the one in Theorem 3.2.

Theorem 3.7. (Regularization) Assume that f0 ∈ H1(0, 1). Define

Hε(y) =






F (gε)(y)
D(ϕε)(y)

, if D(ϕε)(y) -= 0,

0, if D(ϕε)(y) = 0,

rε =
⌈

2
9

ln
(

1
ε

)⌉
, Mε = π2 6

√
1
ε
,

Aε = {±(rε + j)|j = 1, 2, ..., 4rε} ,

Fε(n) =

{
L[Aε; Hε], if 0 ≤ nπ < rε,

Hε(nπ), if rε ≤ nπ ≤ Mε,

fε(x) = Fε(0) + 2
∑

1≤n≤Mε

Fε(n) cos(nπx).

Then we have the error estimate
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‖fε − f0‖L2(0,1) ≤ C0

√

ln
(

1
ε

)
ε1/9,

where C0 stands for a constant depending only on the exact data.

Proof. Since the main idea of the proof is similar to the one of Theorem 3.2 we
shall just give the sketch. It is of course sufficient to consider ε > 0 small enough.
Step 1. Compare F (v0)(nπ) and F (vε)(nπ) for 0 ≤ nπ ≤ Mε.

We first consider y ∈ R such that rε ≤ |y| ≤ Mε. Let ε > 0 be small enough,
due to Lemma 3.5 we have

|D(ϕ0)(y)| ≥ C1

y2
(23)

for some constant C1 > 0 depending only on ϕ0, and

|D(ϕε)(y)| ≥ |D(ϕ0)(y)|− |D(ϕ0)(y) − D(ϕε)(y)|

≥ C1

y2
− ε ≥ C1

2y2
. (24)

It follows from (5) and (23) that

|F (f0)(y) − H0(y)| = e−y2T

∣∣∣∣
F (u(., 0)(y))

D(ϕ0)(y)

∣∣∣∣

≤ y2e−y2T

C1
‖F (u(., 0)‖L∞ ≤ C0ε (25)

due to e−|y| ≤ e−|rε| ≤ ε
2
9 . Moreover, using (23), (24), one has the following

estimate from direct calculation

|H0(y) − Hε(y)| =
∣∣∣∣
F (g0)(y)
D(ϕ0)(y)

− F (gε)(y)
D(ϕε)(y)

∣∣∣∣ ≤ C0y
4ε. (26)

Employing (25), (26) and the triangle inequality, one has

|F (f0)(y) − H0(y)| ≤ C0y
4ε if rε ≤ |y| ≤ Mε.

In particular, one has

|F (f0)(nπ) − F (fε)(nπ)| ≤ C0M
4
ε ε = C0π

8ε1/3 if rε ≤ nπ ≤ Mε, (27)

and
max
n∈Aε

|F (f0)(n) − Hε(n)| ≤ C0(5rε)4ε.

It follows from Theorem 2.4 and the latter inequality that if 0 ≤ y < rε then

|F (f0)(y) − L[Aε; Hε](y)| ≤ ‖F (f0)‖L2(0,1) e−rε/2 + 8rεe
3.96rεC0(5rε)4ε.
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Choosing y = nπ and using ε−2/9 ≤ erε ≤ eε−2/9, we get

|F (f0)(nπ) − F (fε)(nπ)| ≤ C0ε
1/9 if 0 ≤ nπ < rε. (28)

Step 2. Applying the Parseval-Plancherel equality, one has

‖f0 − fε‖2
L2(0,1)

= |F (f0)(0) − F (fε)(0)|2 + 2
∞∑

n=1

|F (v0)(nπ) − F (vε)(nπ)|2. (29)

We have
∑

0≤nπ<rε

|F (v0)(nπ) − F (vε)(nπ)|2 ≤ C0rεε
2/9 (30)

due to (27), and
∑

rε≤nπ≤Mε

|F (v0)(nπ) − F (vε)(nπ)|2 ≤ C0
√

ε (31)

due to (28). Finally
∑

nπ>Mε

|F (f0)(nπ) − F (fε)(nπ)|2 =
∑

nπ>Mε

|F (f0)(nπ)|2

≤ 1
M2

ε

∑

nπ>Mε

n2π2 |F (f0)(nπ)|2

≤ ‖f ′‖2
L2 ε1/3. (32)

From (29), (30), (31), (32) we conclude that

‖f0 − fε‖2
L2 ≤ C2

0rεε
2
9 ≤ C2

0 ln(ε−1)ε
2
9 .

The proof is complete.

Remark 3.8. The error estimate in Theorem 3.7, which is of order
√

ln(ε−1)ε1/9,
is a significant improvement in comparison with the error estimate in the second
regularization theorem of [17], which is of order 1/ ln(ε−1). Moreover, in [17] the
authors had to require in addition the initial condition u(., 0).

4. Numerical Experiment

To see the effect of our method, let us consider an example for the inverse source
problem (4). Choose T = 1 and the exact data

ϕ0(t) = et−1, g0(x) = 2x3 − 3x2 − cos(πx).
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Then the exact solution of (4) is

u0(x, t) = et−1
(
2x3 − 3x2 − cos(πx)

)
,

f0(x, t) = 2x3 − 3x2 − 12x + 6 − (1 + π2) cos(πx).

For each integer n ≥ 1, consider the disturbed data

ϕn(t) = ϕ0(t), gn(x) = g0(x) +
√

8
3
· sin2(nπx)

n
.

Then the disturbed solution corresponding to the disturbed data is

ũn(x, t) = u0(x, t) + et−1

√
8
3
· sin2(nπx)

n
,

f̃n(x) = f0(x) +
√

8
3
· (4n2π2 + 1) sin2(nπx) − 2n2π2

n
.

We see that
‖gn − g0‖L2(0,1) =

1
n
→ 0 as n → +∞

but
∥∥∥f̃n − f0

∥∥∥
L2(0,1)

=
√

16π4n4 + 8π2n2 + 3√
3n

→ +∞ as n → +∞.

Thus if n is large then a small error of the data causes a large error of the
solutions. Therefore, the problem is ill-posed and a regularization is necessary.

Now we use our scheme in Theorem 3.7 with respect to ε = n−1 to compute
the regularized solution. Corresponding to εk = 10−k, we obtain the following
regularized solutions

fε1(x) = −0.448859− 5.513525 cos(πx) + 0.546463 cos(3πx),
fε2(x) = −0.5007813− 5.513525 cos(πx) + 0.546463 cos(3πx)

+0.195325 cos(5πx),
fε3(x) = −0.512356− 5.513525 cos(πx) + 0.546463 cos(3πx)

+0.195325 cos(5πx) + 0.099459 cos(7πx) + 0.060117 cos(9πx).

The errors between regularized solutions and the exact solution are given by
Table 1.

Fig. 4. gives a visual comparison between the regularized solution correspond-
ing to ε = ε1 := 10−1 and the exact solution.

Note that the disturbed solution corresponding to ε = ε1 := 10−1 causes a
large error

∥∥∥f̃ε1 − f0

∥∥∥
L2

≈ 227.9865.
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ε = n−1 ||f0 − fε||L2
||f0−fε||L2

||f0||L2

ε1 = 10−1 0.1742974617 0.04409277801
ε2 = 10−2 0.09321430861 0.02358082429
ε3 = 10−3 0.04569371374 0.01155933515
ε4 = 10−4 0.02675238031 0.006767664629
ε5 = 10−5 0.01374434647 0.003476966399

Table 1 The error between regularized solutions and the exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

x

regularized solution
exact solution

Fig. 1 The regularized solution fε1 and the exact solution
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