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Efficient processing of the visual environment necessitates the integration of incoming sensory evidence with 

concurrent contextual inputs and mnemonic content from our past experiences. To examine how this integration 

takes place in the brain, we isolated different types of feedback signals from the neural patterns of non-stimulated 

areas of the early visual cortex in humans (i.e., V1 and V2). Using multivariate pattern analysis, we showed that 

both contextual and time-distant information, coexist in V1 and V2 as feedback signals. In addition, we found 

that the extent to which mnemonic information is reinstated in V1 and V2 depends on whether the information 

is retrieved episodically or semantically. Critically, this reinstatement was independent on the retrieval route in 

the object-selective cortex. These results demonstrate that our early visual processing contains not just direct and 

indirect information from the visual surrounding, but also memory-based predictions. 
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. Introduction 

Successful navigation through our world requires the efficient inte-

ration of sensory inputs with existing knowledge. The predictive pro-

essing framework ( Clark, 2013 ; Friston, 2005 ; Rao and Ballard, 1999a )

xplains how this integration could take place within the visual domain

n the context of a hierarchically organized system. Within this frame-

ork, pre-existing knowledge exerts its influence in the form of top-

own (i.e., feedback) signals sent from higher to lower levels in the

ierarchy (with “feedback ” denoting the directionality of the underly-

ng anatomical connections); these signals are then contrasted against

ncoming (i.e., feedforward) information initiated at the retinas. How-

ver, to what extent feedback signals represent only low-level visual fea-

ures of neighbouring locations (e.g., extensions of lines) or also features

rawn from higher-level knowledge about expected scene content (e.g.,

bjects typically found in a scene) is not still fully understood. A full

haracterization of the content in feedback signals, understood as the

op-down requires their decomposition into at least two types of infor-

ation, namely, concurrent and mnemonic ( Fig. 1 ). Concurrent refers

o information about the contextual surrounding of a given stimulus

 Fig. 1 , red portion). This type of information aids visual processing by
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roviding features from the context that can inform less detailed inputs,

uch as poorly illuminated or partially occluded objects ( Bar, 2004 ).

n contrast, mnemonic denotes information that is no longer available

rom the environment, but which may be retrieved internally. One of

he main candidate mechanisms for providing time-distant content is

emory retrieval. Indeed, if a memory trace is retrieved (e.g., from a

revious visit to a place; Fig. 1 , blue cloud), information stored in that

race can be sent down to perceptual regions and help to disambiguate

he percept based on previous knowledge ( Bar, 2004 ; Friston, 2005 ).

owever, the precision of this disambiguation could depend on the na-

ure of the information that is retrieved and on the neural substrates

ecruited to do so. On the one hand, episodic memories, defined as

nformation about past experiences that is bound to a specific spatio-

emporal context, are assumed to be rich in perceptual details from

he event that generated the episode (e.g., your breakfast this morn-

ng; ( Squire, 1998 ; Tulving, 1985 )) and to rely critically on parietal

nd medial temporal structures ( Ritchey and Cooper, 2020 ; Tulving and

arkowitsch, 1998 ). On the other hand, semantic memories reflect gen-

ralized real-world knowledge acquired through a life-long set of expe-

iences and convey more abstract information (e.g., the general con-

ept of breakfast; ( Squire, 1998 ; Tulving, 1985 )). Accessing these latter
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Fig. 1. Schematic decomposition of the modulation of activity in occluded EVC areas. This schematic shows the hypothesized origins of information fed to brain 

regions with receptive fields located in the occluded, bottom right corner of the image. Green: activity is predominantly modulated by direct sensory information from 

the eyes (i.e., feedforward information). In this example, it would be uninformative white light. Red: content that is concurrently reaching other visual regions (i.e., 

concurrent information) biases activity via lateral connections by providing contextual information. In the example picture, this would be the edges of the building, 

the sea behind it, and the bushes and ground in front of the building. Blue: time-distant information that is not currently presented but that can be accessed through 

memory (i.e., mnemonic information) can provide further details from previous encounters. In the example picture this would be a memory from the fountain at the 

Miramare Castle (Trieste). These three sources of modulation jointly contribute to perceptual disambiguation. 
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epresentations involves a much more distributed network of multi-

odal regions including posterior (e.g., inferior parietal lobe, middle

emporal gyrus and fusiform cortex), medial (e.g., parahippocampal gyri

nd posterior cingulate gyrus) and prefrontal (e.g., dorso- and ventro-

edial prefrontal cortex) regions ( Binder et al., 2009 ). In spite of their

otential to serve as sources of content for visual processing, so far, no

tudy has directly compared episodic and semantic retrievals as poten-

ial mechanisms through which the information serves as feedback in

he brain. 

In the current study, we combined partial occlusion with a mem-

ry task to characterize the content of feedback signals in the early vi-

ual cortex (EVC). More specifically, we intended to 1) isolate separate

ontributions of concurrent and mnemonic information to feedback sig-

als and 2) to assess the extent to which the mnemonic contribution

iffers depending on whether the information is accessed episodically

r semantically. To do so, we recorded brain activity from a group of

uman participants while they were exposed to a set of room images.

he images were overlaid with a white rectangular patch covering the

ottom-right corner and the centre of the images; critically, the occluder

id a target object ( Fig. 2 A). Participants were instructed to mentally

epresent the entire room including the target object behind the oc-

luder without moving their eyes from the centre of the screen. This
2 
etup, akin to those used in the mental imagery literature ( Albers et al.,

013 ; Kosslyn and Thompson, 2003 ), allowed us to track the representa-

ion of the target objects without ever showing them inside the scanner.

he target object for each room was non-ambiguous, and could be ac-

essed either entirely episodically (i.e., based on associative memory

f object-room pairings that were studied the day before) or relatively

ore semantically (i.e., no associative memory, rather using their real-

orld knowledge to retrieve the specific object that fits the room). See

ig. S1 for participants’ training performance of the object-room asso-

iative memory and Supplementary Text for more details. Using func-

ional retinotopy and field-of-view mapping, we identified brain vox-

ls in V1 and V2 that represented the portion of the visual field where

he white patch was placed. By doing so, we isolated activity patterns

rom non-stimulated regions of the visual cortex where the target ob-

ects were mentally placed (see Smith and Muckli 2010 , for a similar

pproach). We used multivariate pattern analysis to decode concurrent

nd mnemonic content from these non-stimulated voxels. In addition,

e assessed whether the representation of mnemonic content in these

oxels depended on the target object being accessed based on associative

pisodic memory or semantic knowledge of the object. Finally, to ascer-

ain the involvement of non-visual regions in our task, we performed

 whole-brain psychophysiological interaction (PPI) analysis to identify
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Fig. 2. Basic experimental schematics. (A) Four example trials. Each object was assigned to two different rooms for each memory condition. (B) Experimental 

paradigm. On episodic trials participants retrieved the object studied on day 1; on semantic trials participants retrieved the object that would semantically fit the 

room (C) Occlusion task. Top panel: Participants were shown a sequence of flickering rooms with one occluded quadrant. Bottom panel: Field of view mapping was 

used to isolate voxels responding to the occluded region (purple); voxels with receptive fields close to the edge of the occluded region (green) were removed from 

the analysis. 
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hanges in effective connectivity between early visual regions and the

est of the brain as a function of task condition. 

. Materials and methods 

.1. Registration 

Prior to data collection, a registration was created and is available

t https://osf.io/va6fc ; deviations from this registration are indicated in

he corresponding sections. 

.2. Participants 

The initial targeted sample size of forty participants had to be ad-

usted due to the COVID-19 pandemic. Thirty healthy young adults were

ecruited through advertisements placed across the three campi of the

oethe University in Frankfurt. They all gave written informed consent

o participate in this study, in accordance with the Ethics Committee

B05 of the Goethe University (Protocol number: 2019-38). In exchange

or participation, they received either course credits (for Psychology ma-

ors) or honorarium (for all other majors). All participants had normal or
3 
orrected-to-normal vision. One of the participants had to be excluded

ue to excessive movement during three out of the four functional runs

n the scanning session. Thus, the final sample size was twenty-nine

18 female; age: mean = 22.61, sd = 2.12). 

.3. Stimuli and materials 

Previous studies using partially occluded images have used real-

orld photographs as stimuli ( Morgan et al., 2016 , 2019 ; Smith and

uckli, 2010 ). When using this kind of stimuli, the location of the oc-

luder bears no relation to the structure of the image content itself, thus

esulting in seemingly random cuts in the picture. These random cuts

enerate abrupt stops of lines right at the edge of the occluder (e.g., tree

runks or traffic lights) that randomly vary from photograph to photo-

raph but that are constant for all the repetitions of the same photo-

raph. As a consequence, differences in neural representation between

hotographs could reflect differences in responses to line stops without

he need for any top-down influence. Since one of our goals was to study

nemonic content, we created a novel stimulus set that did not include

ny meaningful line stop using an online platform ( Animaker, 2018 ).

https://osf.io/va6fc
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his set consisted of sixteen cartoon images depicting common indoor

ocations and four cartoon images of commonly used objects. Impor-

antly, all pictures were adjusted so that the location that the occluder

ould cover included only one line (i.e., a straight line that separated

he floor from the wall) which was held constant across all pictures. All

aterials are available at https://github.com/ortiztud/feedbes . 

Our stimulus set comprised sixteen rooms and four objects. Room

mages depicted eight indoor locations, namely, kitchen, bathroom, liv-

ng room, bedroom, kitchen supplies store, electronic store, furniture

tore and bath supplies store, and two instances of each location were

sed. Object images depicted an oven, a bathtub, a bed and a tv. The full

et was divided into two subsets. For the episodic subset, eight room-

bject pairs were built so that the two elements had a minimal semantic

elation (e.g., "TV" in a "bathroom"). The remaining eight rooms were

sed for the semantic subset, and they were paired with objects that

ad a strong semantic relationship (e.g., "oven" in a "kitchen"). Criti-

ally, every object was paired with two rooms in each retrieval condition

 Fig. 2 A). For episodic trials, every participant was assigned to a given

ombination of objects and rooms. These combinations were counterbal-

nced across participants so that across the entire sample every object

as seen in every possible room. Counterbalancing was only possible

or episodic trials since the real-world association between rooms and

bjects was 1:1. In order to maximize the differences between episodic

nd semantic retrievals, rooms and objects were chosen so that each

bject was uniquely associated with one room. For instance, the “bath-

ub ” for which the “bathroom ” was chosen as its associated semantic

air, would not semantically fit in any of the other rooms (i.e., bed-

oom, kitchen and living room). This arrangement not only ensured the

ccuracy of the semantic retrievals but also avoided semantic influence

n episodic retrievals. Namely, since all episodic combinations were se-

antically incongruent (e.g., “bathtub ” in “kitchen ”), the only retrieval

oute through which participants could access the object was episodic

n nature. We, therefore, exploited semantic congruity to increase the

elative weight of episodic and semantic components in our two corre-

ponding retrieval conditions. Of course, in real-world settings, episodic

etrievals can also be performed on semantically congruent memories,

ut for the sake of orthogonalization of our conditions, we restricted

pisodic retrievals to incongruent associations. 

During the tasks outside the scanner, stimuli were displayed using a

0 Hz monitor (resolution: 1680 x 1050, full HD) placed approximately

0cm away from participants’ heads. During the tasks inside the scan-

er, stimuli were displayed using a 60 Hz monitor (resolution 1920 x

080, full HD) placed 162cm away from participants’ eye (eye to mir-

or + mirror to monitor distance). Stimuli spanned 16.4º x 12.1º of visual

ngle. 

.4. Procedure 

.4.1. Day 1 

Learning phase (for episodic trials): Participants were presented with

ve learning blocks during which the pairs from the episodic set were

hown sequentially in a computer screen and repeated ten times. Par-

icipants were instructed to memorize as many details as possible from

he entire image and to pay special attention to the target object (i.e.,

he object that was placed on the bottom-right corner of the image). In

his learning phase, participants were free to move their eyes so that

hey could form a rich memory trace of both the room and the objects.

t the end of each block, memory about the room-object pairings was

ested with two tests. Namely, memory for the object identity was mea-

ured with a four-alternative forced choice test with the room as cue

nd the four objects as options; memory for the precise object position

as measured by presenting the object misplaced ( + /- 100 pixels either

orizontally or vertically) and asking participants to place it back into

ts original position using the arrow keys in the keyboard. The displace-

ent of the objects was randomly chosen from either + 100 or -100 pix-

ls either vertically or horizontally so that even with the displacement,
4 
he object never fell outside the to-be-occluded region. Note that these

isplacements were perceived as very small and difficult to notice, and

hey were included to prompt participants to pay attention to details of

he room-object combination. After completing the learning blocks, par-

icipants were given a printed version of the images with a white patch

ccluding the target area and they were asked to draw the target ob-

ects from memory. The between-blocks memory tests and the drawing

ask were included here to ensure that participants formed distinctive

nd detail-rich memories (e.g., spatial precision, colour palette, texture

atterns, etc.) for each pair. 

After the learning phase, participants performed one block of the

cclusion task (equivalent to one scanning run; see below) to familiarize

hemselves with the timing and structure of the scanner task. The only

ifference between this familiarization block and the scanner blocks is

hat a trial-by-trial ef rating was performed to further promote the rich

ental visualization of the objects. On every trial, participants were

sked to report their subjective vividness of the retrieved object on a

our-point Likert scale. 

Finally, at the end of the session, one last learning block, identical

o those at the beginning, was conducted as a reminder of the studied

timuli. 

.4.2. Day 2 (24h after day 1) 

Pre-scan phase: Right before entering the scanner, participants were

riefly shown the rooms in the semantic set to familiarize them with the

ew stimuli. They were asked to remember the objects studied on day 1

nd to mentally select the one that would best fit each room (i.e., those

hat would be typically found in each location in the real world) and to

erbally report it. If they selected the wrong object, the correct answer

as provided by the experimenter. This only happened once across the

ntire sample due to a speeded response from one participant. Note that

he actual objects were never shown together with these rooms. 

Scanning phase: In order to avoid fatigue and to reduce unwanted

ovements, we distributed our scanning sequences over two sessions

 ∼50 min each) with a break of roughly 10 min in between; participants

ere allowed to use the toilet, stretch and walk to prevent neck and

houlders stiffness. Both scanning sessions included one T1 weighted

natomical image, two object retrieval runs and one visual mapping run.

n addition, the first session included a high-resolution scan of the hip-

ocampal area and an extra visual mapping run, and the second session

ncluded an extra functional run not used for the current project. 

.4.3. Occlusion task 

This task consisted of two types of trials: episodic and semantic. On

pisodic trials, participants were presented with the rooms studied dur-

ng the learning phase on day 1; on semantic trials, participants were

resented with a new set of rooms, which were first introduced on day

 pre-scan phase. In both trial types, a white patch occluded the bot-

om right corner of the image, thus hiding the target object and another

maller patch hid the foveal region (see Target mapping section below).

or each room, participants’ task was to mentally select the correspond-

ng object and to vividly retrieve it. When presented with a “studied ”

oom, participants were asked to access the room-object pairs from the

revious day (i.e., episodic access); when presented with a “not studied ”

oom, participants were asked to access the room-object pair that would

aturally occur in the real world (i.e., semantic access). Note that only

our objects were used in the task and that these were shared between

pisodic and semantic trials. That is, in both conditions participants had

o access the same objects but through different operations (i.e., through

pisodic retrieval of the events on day 1 or through semantic matching

f the room category to the object). As a consequence, the exposure of

he to-be-retrieved objects was equal for both trial types. Participants

ere not explicitly cued in advance about the nature of the upcoming

rial, but the extensive training on day one made the identification of

he images as “studied ” or “not studied ” trivial. Trial order transitions

https://github.com/ortiztud/feedbes
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ere optimized ( Spunt, 2016 ) to allow for maximum separation of trial

ypes. 

Each of the sixteen occluded rooms was shown six times over the

ourse of each run and each presentation lasted 4 s with a blank inter-

rial interval of 2 s. During the 4 s of the trial, the image flashed at

 5Hz frequency. For the entire duration of the trial a special type of

xation cross was used to minimize eye movements; see below for an

xtended description of this. The total duration of the task runs was 576s

nd participants completed four runs. At the beginning of each run, the

xperimenter reminded participants to maintain fixation and to “vividly

etrieve the entire image by thinking about the color of the objects, their

atterns or where they were positioned on the screen ”. 

.4.4. Retinotopic mapping 

To map our participants’ visual cortex activity to on-screen positions

e used standard stimulation procedures of eccentricity and polar angle

apping. For eccentricity mapping, a contrast-reversing checkerboard

xpanding ring was displayed at the center of the screen; one full cycle

f expansion lasted 56 s and a total of 9 cycles were shown. For polar

ngle mapping, a contrast-reversing checkerboard rotating wedge was

resented centered in the screen; the wedge rotated clockwise to cover

he entire screen after 64 s for a total of 8 complete rotations. 

.4.5. Target mapping 

We used contrast-reversing flashing checkerboards (flashing fre-

uency 5Hz) to functionally locate the voxels in V1 and V2 responding to

ur target region (i.e., bottom-right corner of the screen). Previous stud-

es have shown that successfully representing peripherally presented ob-

ects can recruit foveal voxels ( Williams et al., 2008 ). Since our objects

ere initially presented peripherally and participants were asked to re-

rieve them in their original position, we also included a checkerboard

atch that spanned 2º of visual angle from the center of the screen to

ap the foveal region. By also occluding the foveal region, we were able

o later test for the recruitment of foveal voxels when representing our

arget objects. Analysis of the foveal ROIs are not included in the main

ext for the sake of conciseness but are included in the Supplementary

ext. 

For each to-be-mapped region two checkerboard patterns were used.

ne of the patterns covered 1º of visual angle along the inner boundaries

f the occluded regions directly adjacent to rest of the image; the other

attern covered the remaining region. The final region considered for

nalysis was therefore always smaller than the occluder patch shown on

he screen. This procedure was used to prevent any voxel with receptive

elds lying close to the boundaries from entering our analysis and also

o guard against potential small misalignments between functional scans

see Smith and Muckli 2010 , for a similar approach). 

Each pattern was repeated 6 times following a 12s on/12s off block

esign. A central fixation cross was shown during the entire duration of

he task. To ensure fixation, participants were asked to monitor the color

f the fixation cross and to press a button every time that it changed

olor; color changes were randomly presented during the on periods a

aximum of three times. 

.4.5. Post-scan phase 

Participants performed a memory test (identical to the one in the

earning phase) that checked for room-object associations (both for

pisodic and semantic pairings). In addition, in the case of the episodic

rials, we checked for correct positioning of the objects in the image. 

.5. MRI data acquisition 

MRI data was acquired using a 3 Tesla MR scanner (SIEMENS

risma) with a 32-channel head coil at the Brain Imaging Center (BIC) of

he Goethe University (Frankfurt, Germany). In both scanning sessions,

 3D anatomical scan (3D MPRAGE; 1 x 1 x 1 mm resolution; iPAT

actor: 2) was acquired. In addition, a high-resolution Turbo Spin Echo
5 
can (TSE; 0.4 x 0.4 x 2 mm resolution; TE = 16ms; TR = 6500ms) was ac-

uired during the first session; the 206mm field of view was placed over

ach participant’s hippocampus (HC) by first locating the left HC and

ligning the shorter axis of the field of view to the long axis of the HC.

lood oxygen level-dependent (BOLD) signals were measured with an

cho-planar imaging sequence (EPI; TE = 38ms; TR = 800ms; resolution =
 x 2 x 2 mm; MB factor = 8; flip angle = 52º field of view = 208 mm; 72

xial slices; phase encoding direction = AP). Finally, two extra sets of

 volumes of the EPI sequence were acquired in each phase encoding

irection to allow for susceptibility distortion correction. 

.6. MRI data processing 

.6.1. Preprocessing 

All structural and functional MRI images, apart from the TSE and

unctional scans from the retinotopic mapping run, were preprocessed

sing fMRIPREP 20.0.1 ( Esteban et al., 2019 ) and all multivariate analy-

es were conducted in native non-smoothed space. A boilerplate text re-

eased under a CC0 license describing preprocessing details can be found

n the Supplementary Text. For further information about the pipeline,

ee fMRIPREP´s documentation. Functional scans from the retinotopic

apping run were slice time corrected, 3D motion corrected and tem-

orally filtered (high-pass filtered at 0.01 Hz and linearly detrended)

sing Brain Voyager 21.4 for Linux (Brain Innovation). 

.6.2. ROI definitions 

A detailed report of the ROI definition can be found in the Supple-

entary text. In short, functionally delineated V1 and V2 ROIs were ob-

ained using a standard retinotopic mapping procedure. Each of these

OIs was further restricted to include only voxels responding to the cen-

ral and peripheral occluded portions of the visual field using the target

apping run. In addition, atlas-based ROIs for the ventromedial pre-

rontal cortex and for the object selective cortex were obtained from

eurosynth ( Yarkoni et al., 2011 ). Note that only the delineated subre-

ions of V1 and V2 were restricted to occlusion and the rest of the masks

ere used in their entirety. In what follows, we will be interested in test-

ng for different types of information in occluded subregions of central

nd peripheral V1 and V2. Unless otherwise stated, all the results be-

ow pertain to ROIs that respond exclusively to the occluded part of the

isual scene (i.e., ROIs which do not receive meaningful feedforward

nformation). 

.6.3. Generalized linear model 

For our multivariate analysis, single-trial beta estimates were ob-

ained by modelling BOLD time course with a series of General-

zed Linear Models (GLM) using the Least Squares Separate method

 Abdulrahman and Henson, 2016 ; Mumford et al., 2012 ) with LSS-16

o obtain trial-specific estimates. The GLM for a given trial contained a

otal of 32 regressors: one for the onset of the trial, 16 regressors for the

nsets for the 16 different rooms, 6 regressors for head motion (3 for

isplacement and 3 for rotation), 3 regressors for global, WM and CSF

ntensity, and 6 regressors for eye movements (3 for displacement and

 for rotation; see Supplementary Materials ). A total of 96 GLMs per run

ere computed for every participant and only the single-trial estimates

ere used further. 

.6.4. Multi-voxel pattern analysis 

Single-trial beta estimates for each ROI were used to train and test

ur classifiers using a leave-one-run-out cross-validation scheme and

ence using four cross-validation folds, i.e. training on three runs and

esting on the left-out run (full summary of results can be seen in Ta-

le S1); note that our GLM approach rendered one beta estimate per

rial and hence, our leave one-one-run-out procedure effectively held out

6 observations for testing on each cross-validation fold. All classifica-

ion analyses were performed with The Decoding Toolbox ( Hebart et al.,

015 ) and were carried out separately for episodic and semantic trials.
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n order to test for the presence of concurrent information, a set of bi-

ary classifiers was trained and tested with different rooms paired with

he same objects (e.g., room 1-object A vs room 2-object A). To get a

easure of mnemonic information, we tested our classifiers with differ-

nt rooms paired with different objects (e.g., room 1-object A vs room

-object B) and tested them on a different subset of rooms that were

aired with the same objects as the train set (e.g., room 3-object A vs

oom 4-object B). Both procedures rendered 12 ∗ 3 training samples and

2 test samples in each cross-validation fold. The results of the binary

lassifiers were then averaged to get a single estimate for each partici-

ant. Classifier performance was evaluated with bootstrapping in a two

teps procedure ( Stelzer et al., 2013 ). Namely, for each participant trial

abels were randomly permuted 100 times, and classification accuracy

as assessed for each iteration thus creating 29 accuracy distributions

f 100 random classifiers each. In a second step, we randomly selected

with replacement) one sample from each participant’s null distribution

nd average them across participants. This second step was repeated

000 times to create a null distribution of average accuracies at the

roup-level. Statistical significance was declared when the sample’s true

verage accuracy was larger than the 99.9% of the observations of the

ull distribution of average accuracies (i.e., p < .001). 

.6.5. Representational (dis)similarity analysis 

Neural Representational Dissimilarity Matrices (RDMs): Single-trial

eta estimates for each run were used to compute a neural RDM

 Kriegeskorte et al., 2008a ) for each ROI using The Decoding Toolbox

 Hebart et al., 2015 ) and all subsequent analysis were performed with

omebrew scripts available at https://github.com/ortiztud/feedbes .

DMs were computed with cross-nobis distance and capture the sim-

larities among the multivoxel patterns in each ROI with higher values

ndicating less correlation (i.e., more representational distance). 

Model correlation and variance partitioning: Two ideal binary RDMs

ere simulated to predict what the neural RDMs should look like in

he presence of concurrent or mnemonic information. For the concur-

ent model, the same room-same object cells contained zeros and the rest

f the cells contained ones; for the mnemonic model, all same object

ells (i.e., including same room and different room) contained zeros and

he rest of the cells contained ones (see Fig. 4 ). In these model RDMs,

ero represents minimal dissimilarity and one represents maximal dis-

imilarity. Since the resulting model RDMs overlap in their predictions

bout the same room-same object trials, when computing the neural

DM to object model RDM correlation, those cells were not included.

inally, in order to assess the unique contribution of each model RDM

o explaining the ROI RDMs, a variance partitioning method was ap-

lied ( Legendre, 2008 ). A group-level RDM was computed by averaging

ndividual RDMs (after normalization) and separate regression models

ere fit using either each model separately or both models as regressors;

hen, the unique contribution of each model was computed by subtract-

ng the explained variance (r 2 Adj ) for the other model in isolation from

he estimate of both models combined. Significance testing on the frac-

ions was performed by running 1000 permutations of the columns in

he ROI RDM and comparing the resulting distribution with the original

alue. 

.6.7. Object specific index 

To obtain a distance measure for each object, an object-specific re-

nstatement index was computed for each neural RDM. We assessed the

istance across different room-same object pairs and subtracted it from

he distance across different room-different object pairs (see Fig. 5 ). All

istance measures were Fisher-transformed before averaging across tri-

ls. For any given pair of rooms, this index reflects the extent to which

etrieving the same object decreases the representational distance when

ompared to retrieving a different object . The object-specific reinstate-

ent index was averaged across objects to obtain a single value per ROI

er participant. Differences from chance performance were evaluated

ith one-side Wilcoxon tests against zero. 
6 
.7. Psycho-physiological interaction (PPI) 

All PPI analyses were conducted with FEAT (FMRI Expert Anal-

sis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,

ww.fmrib.ox.ac.uk/fsl) ( Woolrich et al., 2001 ). Our registered anal-

sis plan for PPI included V1 as seed region; however, since the ob-

ect reinstatement analysis revealed unequal reinstatement between trial

ypes in EVC ROIs but an equivalent reinstatement in LOC, we run ad-

itional PPI analyses with LOC as seed region to enable a fair compar-

son between conditions. Therefore, we performed four PPI analyses,

ne for each seed region and each contrast direction of episodic and se-

antic trials, i.e., PPI-V1 EPISEM 

, PPI-V1 SEMEPI , PPI-LOC EPISEM 

, and PPI-

OC SEMEPI . Only the LOC results are reported in the main text but see

upplementary Text for the originally registered analyses. 

In addition to the nuisance regressors that had been described above

or the multivariate GLM, our PPI models included three additional re-

ressors. The first regressor (PHYS) represents the physiological signal of

he corresponding seed region, the second regressor (PSY) codes for the

espective contrast of conditions, and the third regressor (PHYS ∗ PSY)

s the interaction between physiological signal and the psychological

ondition. 

.7.1. PHYS 

For every subject and every run, the average timeseries of both seed

OIs was extracted with FSL’s function fslmeants. The resulting vector

as entered into the corresponding first-level regression model as a re-

ressor that represents the physiological variable. 

.7.2. PSY 

In order to partial out any changes in connectivity that might be

riven by main effects of the task, we included in all PPI analyses

wo psychological regression vectors (PSY_A-B and PSY_A + B) for mean-

entering purposes. For PPI-V1 EPISEM 

and PPI-LOC EPISEM 

, PSY_A-B coded

pisodic trials as 1 and semantic trials as -1, whereas for PPI-V1 SEMEPI 

nd PPI-LOC SEMEPI the coding was reversed. PSY_A + B coded both,

pisodic and semantic trials, as 1. All psychological regressors were con-

olved with a standard gamma hemodynamic response function (HRF)

efore they were entered into the PPI models. 

.7.3. PHYS ∗ PSY 

The interaction regressor of interest was created by multiplying the

emeaned timecourse of the seed region, i.e., PHYS, with the mean-

entered psychological vector A-B, i.e., PSY. 

All data were high-pass filtered with a cut-off of 100 s. For the first

evel analysis, three contrasts were specified, i.e. [1 0 0], [0 1 0], and

0 0 1]. All contrasts were computed voxelwise for the four runs (voxel

hreshold z > 3.1). The resulting estimates were passed on to the second

evel mixed effect analysis (FLAME, FMRIB’s Local Analysis of Mixed Ef-

ects), to combine the results across runs. Lastly, second level estimates

ere brought up to the third level between-subjects group analysis, re-

ulting in the final effective connectivity maps. Group level maps were

luster corrected to an alpha value < .05. 

. Results 

.1. Do feedback signals in EVC contain both concurrent and mnemonic 

nformation? 

Previous studies using occlusions in naturalistic images have re-

ied on linear support vector machine (SVMs) classifiers to success-

ully decode information surrounding the occluder ( Morgan et al., 2019 ;

uckli et al., 2015 ; Smith and Muckli, 2010 ). To validate our novel

aradigm and stimulus set, we mimicked previously reported analysis

y attempting to decode room category from non-stimulated brain re-

ions (full summary of results can be seen in Table S1). The first set of

VMs classified between different rooms paired with the same objects,

https://github.com/ortiztud/feedbes
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Fig. 3. Classification analysis in functionally delineated EVC ROIs. (A) Classifier arrangement. Two different sets of SVMs were used. The first set classified between 

different rooms paired with the same objects (top panel) and the second one between different rooms paired with different objects (bottom panel); critically, this 

second set of SVMs was tested on a different set of rooms that only shared the to-be-remembered object. Note that the objects are only shown here for visualisation 

purposes and that these were never shown inside the scanner. (B) Cross-validated classification accuracy for concurrent information SVMs (top panel) and mnemonic 

information SVMs (bottom panel). Each dot represents one participant, and the colour of the box plots denotes the retrieval type (i.e., episodic or semantic). Red 

asterisks indicate above chance (.50) performance; whiskers represent + -1 standard error of the mean. 
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uch that only the room content (i.e., concurrent information) could dif-

er between classes ( Fig. 3 A, top panel). Our classifiers performed above

hance level (.50) for both episodic and semantic trials (episodic trials:

ccuracy on V1 = .67 and accuracy on V2 = .62; semantic trials: accu-

acy on V1 = .64 and accuracy on V2 = .60, all ps < .001; Fig. 3 B, top

anel). This pattern of results replicates and extends previous findings

 Morgan et al., 2016 , 2019 ; Smith and Muckli, 2010 ) by showing that

) EVC regions that did not receive any meaningful feedforward signals

epresent surrounding information (i.e., the different rooms), 2) that

his pattern is not restricted to real-world pictures but also extends to

implified cartoon stimuli without sudden line stops (see Methods for

ationale of creating the stimuli set) and 3) that when memory content

s kept constant, concurrent visual information is a constituent part of

ctivity in V1/V2. 

In addition to the modulation of EVC activity by concurrent feedback

ignals, we attempted at finding the effect of memory-driven feedback

y classifying between different object retrievals. We set up a cross-
7 
lassification scheme in which we trained our classifiers in a subset

f different room-different object trials (e.g., room1-objectA vs room2-

bjectB) and tested them in a different subset of trials that maintained

he same object association structure (e.g., room3-objectA vs room4-

bjectB; Fig. 3 A, bottom panel). This cross-classification scheme pre-

ented concurrent information from biasing our classifiers performance.

n contrast to previous analysis, cross-classification performance did not

iffer from chance in either memory condition (all p > .05; Fig. 3 B, bot-

om panel), suggesting no memory-related reinstatement which could

e generalized between room-object combinations. 

The lack of transfer between training and test sets in our cross-

lassification analysis was unexpected. We reasoned that the decision

oundaries learned by our SVMs during the training process might

ave been driven mostly by concurrent information. If that is the case,

ur SVMs would not be able to correctly classify mnemonic content

n a new set of scenes even if it was present in our ROIs. In order to

est this hypothesis, we used Representational (Dis)Similarity Analysis
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 Kriegeskorte et al., 2008b ), which although it was not initially included

n our registered analysis plan, enable the estimation of the relative con-

ributions of each type of information. We computed separate neural

DMs for each ROI in the EVC and created two model RDMs - one for

ach type of information ( Fig. 4 A). The model RDM for concurrent infor-

ation had minimal values in pairs of trials that shared the same room,

hereas the model RDM for mnemonic information had minimal values

or pairs of trials that shared the same object. 

Neural and model RDMs were correlated across ROIs and memory

onditions using Spearman’s rho ( Fig. 4 B, top panel). The results re-

ealed a strong correlation between the neural RDMs and the concur-

ent model for episodic trials (V1rho = .510 and V2rho = .419, both

s < .001) and for semantic trials (V1rho = .511 and V2rho = .416, both

s < .001; Fig. 4 B, bottom panel), thus further confirming the previous

esult from the classification analysis above. More interestingly, the

nemonic model also showed a significant correlation in both ROIs for

pisodic trials (V1rho = .167 and V2rho = .148, all ps < .001), but not for

emantic trials (V1rho = -.06 and V2rho = -.023, all ps > .05). This result

uggests that there was in fact memory-driven pattern reinstatement in

VC, but only when object memories were accessed through a purely

pisodic route with associative memory and not through a route that

equired semantic knowledge. However, since the correlation with the

nemonic model was weaker than the correlation with the concurrent

ne, the mnemonic model could be explaining a part of the variance

hat was already explained by the concurrent model. 

To formally address this hypothesis, we used variance partitioning

o isolate the unique contribution of each model to the group level

DM ( Dwivedi et al., 2020 ; Groen et al., 2018 ; Hebart et al., 2018 ;

egendre, 2008 ). We conducted three linear regressions (one for each

ype of information separately and another one for both together) with

odel RDMs as predictors and the neural RDMs as predictands. Then, to

nfer the amount of unique variance explained by each model, we sub-

racted the explained variance of each single-model regression from the

xplained variance of the multi-model regression ( Fig. 4 C). As expected,

he concurrent model uniquely explained a significant portion of the

ariance in both ROIs across both trial conditions (see Fig. 4 D; average

xplained portion on episodic trials, V1 = .061, V2 = .042, both ps < .001;

verage explained portion on semantic trials, V1 = .134, V2 = .079 = ,

oth ps < .001). More importantly, once the variance explained by the

oncurrent model was accounted for, the mnemonic model was still able

o explain a significant portion of the remaining variance in EVC for

pisodic trials (average explained portion on episodic trials, V1 = .026,

2 = .021, both ps < .001). In contrast, for semantic trials, the mem-

ry model was unable to capture any variance that was not already

xplained by the concurrent model (average explained portion on se-

antic trials, V1 = .007, V2 = .004 = , both p > .05). Taken together,

he variance partitioning result confirmed that, when accounting for

he contribution of concurrent information, feedback predictions to oc-

luded regions of EVC contain mnemonic information when the infor-

ation was accessed episodically. This was not the case when the in-

ormation was retrieved semantically. Importantly, while our results

how that a concurrent vs. mnemonic parcellation can be performed

n feedback signals, concurrent information is very likely to be in turn

 mixture of low-level perceptual features (e.g., lines and colors, etc.),

id-level categorical information (e.g., kitchen as a general context)

nd even image-specific attentional patterns ( Peelen and Kastner, 2014 ;

tokes et al., 2012 ). Although this distinction cannot be addressed by

he current study, our findings lay the groundwork for future studies to

elineate the specific content levels within concurrent feedback signals

n EVC. 

It should be noted that the asymmetric pattern of results between

pisodic and semantic trials could be reflecting a lack of sensitivity to

apture representational similarities in semantic trials with our current

aradigm. It is possible that, even if there was actual reinstatement from

emantic access, our current experimental or analytical implementation

ould not be able to find the corresponding brain signatures. To dis-
8 
ard this possibility, we used a new ROI that was not part of the regis-

ered analysis plan. Since our target memories were cartoon versions of

eal-world objects, we selected an ROI in the occipital cortex that has

een shown to be critically involved in object processing, namely the

bject-selective cortex (LOC; ( Grill-Spector et al., 2000 )). We created

n RDM in LOC following the same procedure as for V1 and V2, and

omputed an object-specific reinstatement index for each participant.

he index was computed by subtracting the dissimilarity measures of

ifferent room-same object trials from those of different room-different ob-

ect trials ( Fig. 5 A). Since this index is computed directly from distance

easures in the RDMs, it has a straightforward interpretation in terms

f representational change: any above zero value indicates that the re-

rieval of the same object from two different rooms increased the rep-

esentational similarity in that ROI. Note that as occlusion is not effec-

ive for LOC, the computation of this index could theoretically reflect

ome high-order regularities across rooms. However, this is very un-

ikely to have a meaningful impact in practice as the specific scenes in-

luded different objects and these were counterbalanced across objects,

etrieval conditions and participants. The analysis revealed significant

bject reinstatement in LOC for both episodic and semantic trials (both

s < .001), thus suggesting that objects retrieved semantically as well as

pisodically were represented in LOC. Moreover, we did not find dif-

erences in the index between trial conditions, z = 0.638, p = .523 (two-

ided Wilcoxon test), with modest evidence for the absence of a true

ffect BF10 = .35 (two-sided Bayesian t test), thus suggesting that ob-

ect reinstatement in LOC was equivalent in both episodic and semantic

onditions. 

To compare LOC and EVC results more easily, we extended this in-

ex to the occluded portions of V1 and V2. As can be seen in Fig. 5 B,

nd in line with the variance partitioning results, we observed object

einstatement in occluded V1 and V2 for the episodic condition (V1:

verage index value = .125, z = 4.65, V2: average index value = .115,

 = 4.69, ps < .001). In contrast, there was no reinstatement in either ROI

or semantic trials (V1: average index value = -.05, z = -3.84, V2: av-

rage index value = -.01, z = -1.70, ps > .05). We submitted the object

einstatement indices to a repeated-measures ANOVA with ROI (i.e.,

OC, V1 and V2) and trial type (i.e., episodic and semantic) as within-

articipants factors to quantitatively describe this comparison. We ob-

erved a main effect of both ROI and trial type, F(2,56) = 48,039, p < .001

nd F(1,28) = 62,447, p < .001, respectively. More interestingly, the sig-

ificant interaction, F(2,56) = 47,963, p < .001, further supported the ob-

ervation above, namely that participants were able to access and rep-

esent in LOC the objects retrieved under both trial types. However,

nly episodically retrieved information reached the EVC as a feedback

ignal ( Fig. 5 B and see also Supplementary Materials for tests of spatial

pecificity on the fovea ROIs). 

.2. Different potential sources for feedback signals during semantic and 

pisodic trials 

Our results thus far have showed that memory content can inform

eedback signals in the EVC depending on whether this content is episod-

cally or semantically accessed. To shed light on this differentiation, we

ostulated that the two routes should rely on different neural computa-

ions and brain structures ( Binder et al., 2009 ; Rosenbaum et al., 2016 )

s sources for the long-term representations that were fed back to lower

evels ( Barron et al., 2020 ). To locate these potential source regions,

e planned a classification-based approach following previous reports

elating EVC with distant brain regions ( Bosch et al., 2014 ), with hip-

ocampus and ventromedial prefrontal cortex as our candidate regions

or episodic and semantic trials, respectively. However, the analysis

bove revealed that our SVMs were learning only concurrent informa-

ion, thus making this analysis uninformative. Instead, we conducted a

hole-brain PPI analysis ( Friston et al., 1997 ), which can uncover mod-

lations of effective connectivity between two brain regions as a func-

ion of a psychological variable. This analysis included the two retrieval
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Fig. 4. Representational Similarity Analysis in occluded regions of the EVC. (a) Schematic depicting of how neural RDMs (of different ROIs) and model RDMs were 

constructed. Every RDM included a simplified representation of the stimuli as column and row headers. Every object (depicted with letters here) featured in two 

different rooms (depicted with colour of the background in the schematic stimuli) and was repeated six times. Note that for the sake of simplicity, only two objects 

and two repetitions are shown, rather than the four objects and six repetitions of the actual experiment. For neural RDMs, cross-nobis distances were computed for 

every pair of trials separately for episodic and semantic retrievals; for the concurrent RDM, minimal values (blue) were used for same-room trials and maximal values 

(yellow) for different-room trials; for the mnemonic RDM, minimal values (blue) were used for same-object and maximal values (yellow) for different-object trials. 

(b) Each model RDM was correlated with the ROI RDMs for episodic and semantic trials. Group averaged RDMs are shown in the top row; object names label the six 

repetitions of each object in a given room. Note that whereas the true diagonal is uninformative in these figures, a substructure clustering trials with the same rooms 

is evident to visual inspection; this substructure reflects the presence of concurrent information in occluded areas (confirmed by the model correlations in the bottom 

row). In the bottom row, each dot represents one participant and average scores are shown in black; red asterisks indicate correlations significantly different from 

zero (p < .05); black asterisks indicate significant differences between episodic and semantic trials (p < .05). Box whiskers represent + -1 standard error of the mean. (c) 

Schematic representation of the variance partitioning analysis. Three regression models were fitted with the ROI RDM as the predictand and the different models as 

predictors. The first regression (top panel) included both models as predictors, the second and third regressions included only one of the models (middle and bottom 

panels). The Venn diagram depicts the rationale of the variance partitioning analysis for the concurrent and the mnemonic models. (d) Variance partitioning results 

for episodic and semantic trials. The colour and the pattern of the bars denote the retrieval type and the model tested, respectively. Red asterisks indicate non-zero 

uniquely explained variance (p < .05); black asterisks indicate significant differences in the amount of explained variance by each model ( ∗ = p < .05; ∗ ∗ = p < .001). 

Note that, when the variance explained by the concurrent model was removed, the mnemonic model was only able to explain a significant portion of variance for 

episodic but not for semantic trials. Error bars represent + -1 standard error of the mean. 

9 
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Fig. 5. Object-specific reinstatement index. (a) An object-specific reinstatement index was computed by assessing the average dissimilarity between same-object 

pairs (rightmost pair) and subtracting it from the average dissimilarity between different-object pairs (leftmost pair). Non-zero values in this index represent an 

increase in similarity during the retrieval of the same object. (b) Object reinstatement in visual cortex ROIs. Red asterisks indicate significant object reinstatement 

( < .05); black asterisks indicate significant differences in the amount of reinstatement in each ROI ( ∗ = p < .05; ∗ ∗ = p < .001). While object reinstatement was similar 

in LOC for both episodic and semantic retrievals, in V1 and V2 we saw object reinstatement only in episodic but not semantic trials. 
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(  
onditions as main psychological modulators of effective connectivity.

lthough our pre-registered plan included the EVC ROIs as seed regions,

he lack of object reinstatement in semantic trials would obscure the in-

erpretation of any potential finding. Therefore, since we were able to

easure object reinstatement in LOC for both memory conditions, we

elected LOC as the seed region to be able to establish a fair comparison

see Supplementary Text for planned analysis with V1). As can be seen in

ig. 6 , the results of this analysis revealed increased effective connec-

ivity between LOC and a cluster in the right posterior parietal cortex

uring episodic trials (cluster corrected, voxel threshold z > 3.1, cluster

hreshold p < .05). In contrast, semantic trials increased functional cou-

ling between LOC and fusiform gyrus (p < .05, cluster corrected; see Sup-

lementary Table S2 for a summary of all clusters with increased connec-

ivity). Since PPI does not allow directional inferences, and the pattern

f regions observed was not anticipated, we restrict our interpretations

o a differential pattern of connectivity for our two memory conditions.

he observation that LOC differed in its effective connectivity with dis-

ant brain regions as a function of retrieval type supports the notion

hat episodic and semantic trials required qualitatively different cogni-

ive operations to access the same information (i.e., the target objects).

he extent to which these different operations are causally responsible

or the lack of reinstatement in EVC during semantic trials will need to

e explored in future studies. 

. Discussion 

Our study characterizes the content of feedback signals by (1) repli-

ating previous findings of feedback predictions in occluded portions of

1 and V2 and extending them to minimalistic stimuli which allow for

areful control of low and high level features, (2) revealing that these

eedback predictions can simultaneously represent information about

he current surrounding context and mnemonic content that was formed

n the past, (3) uncovering that the extent to which mnemonic informa-

ion is fed down to EVC critically depends on the access mode for that

nformation, and (4) showing that episodic and semantic access differ-

ntially engage dorsal (posterior parietal cortex) and ventral (fusiform

yrus) brain regions, respectively. While in predictive processing models

riors are often assumed to be based on acquired knowledge about low-

evel features (e.g., line orientations; ( Rao and Ballard, 1999b )), here
10 
e showed that higher-order mnemonic information can inform feed-

ack signals as well in a nuanced way ( Muckli et al., 2015 ; Quek and

eelen, 2020 ; Rademaker et al., 2019 ; Smith and Muckli, 2010 ). These

esults bring together predictive processing and memory systems, two

ajor fields in cognitive neuroscience that are in principle closely re-

ated but are often considered in isolation. 

.1. Feedback signals carry different informational content 

Occlusions happen constantly in our daily life and achieving ob-

ect recognition from partially occluded inputs is one of the challenges

hat our perceptual system needs to overcome. In addition, perceptual

isambiguation is not restricted to partial occlusions, since any per-

eptual experience can be understood as a form of probabilistic infer-

nce about the most likely stimuli to have caused the input ( Bar, 2004 ;

on Helmholtz, 1866 ). In order to efficiently and accurately disam-

iguate sensory inputs, our brains need to integrate contextual infor-

ation with pre-existing knowledge. Previous studies have successfully

hown mnemonic information being replayed in EVC in the absence of

 meaningful stimulation (i.e., in front of a blank display ( Albers et al.,

013 ; Rademaker et al., 2019 ; Rahnev et al., 2011 ; Wimber et al.,

015 )). Here, we extended these results by showing that mnemonic in-

ormation is also present when the visual cortex is actively engaged

n perception. Moreover, we show that during perception, mnemonic

nformation coexists also with contextual information that is fed back

rom other early visual areas (in our paradigm, the non-occluded ar-

as), presumably via lateral connections. The coexistence of concurrent

nd time-distant information enables the disambiguation of perceptual

nputs and prevents inappropriate inferences drawn exclusively from

emory. A rather ambiguous input (e.g., a drill in a poorly lit basement)

an be clarified based on its surrounding information (e.g., it is placed on

 workshop table next to other tools; ( Bar, 2004 ; Quek and Peelen, 2020 ;

erences, 2016 ; Torralba, 2003 )) and/or from memories of previous ex-

eriences (e.g., the last time you used it in your basement; ( de Lange

t al., 2018 ; Press et al., 2020 )). Here we show that both types of in-

ormation can coexist in time and place ( Bar, 2004 ; Rademaker et al.,

019 ; Von Helmholtz, 1866 ). 

In line with this idea, a recent study by Rademaker et al.

2019) showed that single-feature content held in working memory
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Fig. 6. Relating activity in distant brain regions to feedback signals. Whole-brain PPI analysis with LOC as seed region and retrieval type as psychological variable. 

The results revealed increased effective connectivity between LOC and right posterior parietal cortex during episodic trials and between LOC and bilateral fusiform 

for semantic trials. 
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i.e., line orientation in a delayed-match-to-sample task) can be found in

VC. Interestingly, the disruption of the replayed pattern was mirrored

y a decline in behavioral performance thus supporting the notion that

eedback signals are causally involved in visual perception. Our results

re compatible with the findings of Rademaker et al. and critically ex-

end them by including content from consolidated episodic memories

hich are highly dimensional and naturalistic. 

Several previous reports of top-down influences in EVC could also

e interpreted as some form of concurrent information ( Harrison et al.,

007 ; Lawrence et al., 2019 ; Morgan et al., 2019 ; Muckli et al., 2015 ;

uek and Peelen, 2020 ; Smith and Muckli, 2010 ). However, without

ointly controlling for previous knowledge and incoming sensory in-

uts, it is difficult to disentangle the relative contribution of concurrent

nd time-distant information. In contrast, the present study was able

o analytically quantify the amount of contextual and mnemonic infor-

ation modulating activity in EVC. Rather than removing mnemonic

r concurrent influences by using aseptic stimuli ( Kok et al., 2020 ;

ok and Turk-Browne, 2018 ; Rademaker et al., 2019 ) or empty displays

 Bosch et al., 2014 ; Stokes et al., 2009 , 2012 ), our approach relied on

DMs to capture the different sources of modulation at the analysis stage

 Kriegeskorte et al., 2008b ; Nastase et al., 2020 ). By doing so, we showed

hat concurrent information biases activity in EVC more strongly than

nemonic information does, even when both are available: a result that

as initially obscured by the SVM analyses. Therefore, our study also

howcases the highly informative value of approaches relying on repre-

entational similarity with respect to classification-based methods when

ifferent sources of information are expected in the same brain region

oinciding in time. 
11 
.2. Feedback signals stemming from semantic and episodic access differ in 

ontent and neural substrates 

Following Tulving’s seminal definition, episodic memories are

hought to be richer in perceptual details than semanticised memories

hich, by means of abstraction, have lost representational distinctive-

ess in favour of generalizability ( Binder et al., 2009 ; Rosenbaum et al.,

016 ; Tulving, 1985 ). Here we show that the reinstatement of an ob-

ect’s representational pattern, under both episodic and semantic trials,

ook place in higher visual regions, namely LOC. The pattern is different

n V1 and V2. That is, during episodic trials the object-specific pattern

as successfully reinstated in non-stimulated subregions of V1 and V2;

n contrast, there was no (consistent) reinstatement during semantic tri-

ls. 

Our experimental design was set up to ensure that the set of tar-

et objects for the episodic and semantic trials was identical and that

he object that should be retrieved for each trial was non-ambiguous.

he exact location of each object was kept the same across the two dif-

erent rooms they were assigned to during the pre-training phase. By

his, during semantic trials, participants were likely to mentally repre-

ent the objects at the same spatial location in the occluded area. These

eatures rendered the semantic and episodic trials to be as comparable

s possible, other than how the information was accessed. However, it

s possible that reinstatement in the episodic trials was still more per-

eptually precise (e.g., higher spatial precision) than in semantic trials

ecause the retrieval was based on associative memory of the experi-

nced event. To provide tentative support for this idea, we ran addi-

ional exploratory analysis further decomposing the mnemonic variance
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l  
f episodic trials into two low-level components. Namely, position- and

olour-based information (see Supplementary Text and Fig. S3). The re-

ult of this analysis shows that the mnemonic modulation of feedback

ignals is compatible with a reinstatement of the low-level character-

stics of our stimuli. Hence, our interpretation is that the EVC is not

epresenting object identity detached from its low-level characteristics.

ather, it is re-instantiating (through feedback signals) the features of

he experienced events (e.g., position, color, frequency, etc.). Given that

pisodic memories tend to contain more perceptual information, their

etrievals are more likely to drive reinstatement and feedback in early

isual areas than semantic ones. To test this postulation, future stud-

es with episodic retrievals containing unprecise spatial information are

eeded. 

Complementing the observed asymmetric reinstatement of memory

ontent in EVC, our connectivity results indicate that semantic and

pisodic retrievals rely on different brain networks. The posterior pari-

tal cortex is considered to be part of a wider hippocampal memory net-

ork, which is particularly engaged when accessing temporally bound

emories ( Vincent et al., 2006 ). In addition, subdivisions of the pos-

erior parietal cortex have been shown to be recruited during the re-

rieval of specific detailed-rich memories but not of merely familiar

nes ( Silson et al., 2019 ). On the other hand, while semantic repre-

entations are assumed to be widely distributed over the cortex, ac-

ivity in some regions such as the fusiform gyrus has been related to

emantic tasks involving object selection ( Rogers et al., 2021 ), cate-

orization ( Binder et al., 2009 ), and non-specific recognition memory

 Garoff et al., 2005 ). Moreover, subregions of the fusiform gyrus have

lso been related to the representation of abstract concepts detached

rom low-level features ( Tsantani et al., 2021 ). The requirements of our

ask closely mimic these processes. In episodic trials, participants ac-

essed the unique room-object combinations learned in the study ses-

ion to retrieve the appropriate object; in semantic trials, to retrieve the

ppropriate object, participants had to correctly identify the room cate-

ory shown (e.g., bathroom) and mentally select the semantically fitting

bject (e.g., a bathtub) among four possible candidates. Accordingly, our

esults revealed that effective connectivity between LOC and the poste-

ior parietal cortex was enhanced during the episodic retrieval of room-

bject pairs. In contrast, we observed that LOC changed its functional

oupling from dorsal to ventral regions (i.e., fusiform gyrus) during se-

antic retrievals. This last finding, together with the lack of EVC rein-

tatement for semantic retrievals, is in line with previous work relating

ctivity in the left fusiform to gist-like recognition memory ( Garoff et al.,

005 ; Tsantani et al., 2021 ). Due to the lack of directionality in PPI anal-

sis, we cannot ascertain whether LOC was modulated by distant activ-

ty or vice versa. However, the differential crosstalk between an area

ngaged in active object reinstatement and a set of memory-related net-

orks is compatible with the idea that top-down predictions stem from

ifferent higher-order (memory) representations. 

It is important to note that our episodic and semantic trials do not

nequivocally refer to the access of pure episodic and semantic mem-

ry traces . On the one hand, using real-world stimuli makes it impossi-

le to entirely avoid their inherent semantic information. On the other

and, as the semantically retrieved objects were studied on the previ-

us day, these carried substantial episodic information. We acknowledge

hat these issues preclude the interpretation of our results as absolute

ifferences between episodic and semantic representations, but rather as

elative differences supported by the differential pattern of results be-

ween conditions. Moreover, our episodic and semantic conditions also

iffered regarding room-to-object congruency and familiarity with the

oom images (see Methods section on the rationale for this). However,

nd critically, during the occlusion task, the information that was ac-

ually accessed (i.e., the objects) was the same for both memory con-

itions. That is, during both types of trials participants had to access

ne object among the same four objects studied the previous day. This

quates exposure of the to-be-retrieved information across memory con-

itions, thus ruling out the interpretations based on stimulus familiarity.
12 
Therefore, we would rather interpret our results in relation to the op-

rations through which the content was accessed ( Cowell et al., 2019 ).

n particular, the environment may prompt the access of object rep-

esentations through semantic or episodic routes, and the operations

eeded in each situation would be different. For instance, entering the

ffice where you saw a colleague the day before will trigger episodic

emembering of her face. However, if you know that your colleague

witched offices, entering her new office will still trigger the memory

f your colleague’s face even if you have never visited that office be-

ore. In this latter case, remembering of her face will be accessed via

 semantic route, which links the concept of office and the knowledge

f the switch to his face. We argue that episodic and semantic trials

n our task require the use of different operations, which is supported

y the observed differential pattern of connectivity between dorsal and

entral regions, respectively. In addition, the episodic access from the

revious day would contain a wide variety of precise low-level features

e.g., where her desk was) which the semantic access would not. 

Several previous studies exploring EVC activation in the absence of

xternal stimuli did so in the context of mental imagery ( Albers et al.,

013 ; Kosslyn et al., 1995 ; Kosslyn and Thompson, 2003 ; Stokes et al.,

009 ). In addition, the relationship between mental imagery and mem-

ry has been the focus of research for a long time ( Albers et al., 2013 ;

lotnick et al., 2011 ). In our paradigm, the task participants were per-

orming closely resembles those traditionally used for mental imagery

i.e., to vividly visualize content that is not present) and indeed our re-

ults are compatible with previous imagery-based reports of top-down

odulations in EVC. Therefore, instead of drawing a rather artificial

ard boundary between imagery and memory retrieval, we argue that

he top-down influence of both constructs relies on a common imple-

entation mechanism (i.e., feedback signals) informed by mnemonic

ontent. This is in line with the “dynamic blackboard ” idea which con-

iders that the EVC can be recruited for top-down modulations stemming

rom internal models, regardless of whether these are either imagery- or

emory-based, ( Albers et al., 2013 ; Bullier, 2001 ; Slotnick et al., 2011 ).

Finally, a full characterization of the nature of feedback signals

cross the visual hierarchy would need to eventually include all the vi-

ual regions between LOC and V1. In the current study, we mainly focus

n the very early visual regions (V1 and V2), but our paradigm sets the

asis for an exhaustive exploration of the feedback content in the rest of

he visual hierarchy. In addition, our analysis approach would be rather

quivalent to applying a conventional multivariate analysis of variance

e.g., canonical variance analysis) with a two-factor design — where the

rst factor would be object identity, and the second factor would be in-

ormation type (concurrent versus mnemonic) Future studies extending

ur paradigm to other visual regions and replicating our results with

ifferent analysis pipelines would enable such full characterization. 

Taken together, our findings shed light on the role that memory plays

n generating predictions. The retrieval of pre-existing information can

erve as a source mechanism to inform visual prediction. Here we show

hat during active perception, feedback signals carry information about

he contextual surrounding and about long-term (episodic) memories. It

s this coexistence in space and time that sets the basis for the integra-

ion of sensory inputs, situational information, and previous knowledge

 Friston, 2005 ; Rao and Ballard, 1999a ; Stokes et al., 2012 ). However,

ur study did not fully resolve how such integration takes place neu-

ally ( Mumford, 1992 ; Rademaker et al., 2019 ; Rao and Ballard, 1999b ;

tokes et al., 2009 ). Here, laminar-specifc fMRI of the EVC may pro-

ide key insights by uncovering layer-specific profiles for concurrent

nd mnemonic feedback information. Specifically, mnemonic informa-

ion which presumably stems from higher-order structures may arrive

t the deep layers, while concurrent information, presumably originated

ithin nearby regions, may arrive at the superficial layers ( Markov et al.,

013 ). In addition, whereas in this study we have focused on the earli-

st visual processing areas (i.e., V1 and V2), a further exhaustive delin-

ation of all the subregions along the visual hierarchy could shed more

ight onto how this integration is instantiated at intermediate levels of
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he hierarchy (e.g., V3; ( Stokes et al., 2012 )). Future studies combining

igh-field fMRI and our experimental approach have the potential to

dvance our understanding of how different sources of feedback infor-

ation are integrated together with feedforward signals. 
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