10. Januar 2022

Lineare Algebra 1Prof. Dr. Martin Möller
Johannes Schwab

Übungsblatt 9

Aufgabe 1 (4 Punkte)

- (a) Sei V ein endlich-dimensionaler K-Vektorraum und $f: V \to V$ ein Endomorphismus. Zeigen Sie: f ist injektiv $\iff f$ ist surjektiv $\iff f$ ist bijektiv.
- (b) Gegeben sei ein Endomorphismus Φ von \mathbb{C}^3 , der in der Standardbasis durch die Abbildungsmatrix

$$A = \begin{pmatrix} 1 & i & -1 \\ -1 & 1 & -i \\ 1+i & 0 & -1 \end{pmatrix}$$

gegeben ist. Bestimmen Sie, ob Φ invertierbar ist und berechnen Sie gegebenenfalls die Abbildungsmatrix der Umkehrabbildung.

Aufgabe 2 (4 Punkte)

(a) Sei K ein Körper der Charakteristik p und sei $\varphi\colon\mathbb{Z}\to K$ der eindeutige Ringhomomorphismus.

Bestimmen Sie Kern φ .

(b) Für $a, b \in \mathbb{Z}$ sagen wir a teilt b und schreiben $a \mid b$, falls $\exists k \in \mathbb{Z} : ak = b$. Wir sagen $p \in \mathbb{Z} \setminus \{0, \pm 1\}$ ist eine Primzahl, falls $\forall a, b \in \mathbb{Z} : (p \mid ab \implies p \mid a \text{ oder } p \mid b)$.

Zeigen Sie: Ist K ein Körper der Charakteristik p, so ist p = 0 oder p ist eine Primzahl.

Aufgabe 3 (4 Punkte)

Sei K ein Körper, V ein K-Vektorraum und

- B die Menge der Bilinearformen,
- A die Menge der alternierenden Bilinearformen,
- S die Menge der symmetrischen Bilinearformen.

auf V. Zeigen Sie:

- (a) B ist ein Untervektorraum von $Abb(V \times V, K)$ und A, S sind Unterräume von B;
- (b) $B = A \oplus S$, falls die Charakteristik von K ungleich 2 ist;
- (c) $A \subseteq S$, falls die Charakteristik von K gleich 2 ist.

Aufgabe 4 (4 Punkte)

Sei K ein Körper mit Charakteristik ungleich 2.

- (a) Zeigen Sie, dass $\beta\colon K^n\times K^n\to K,\quad (x,y)\mapsto \beta(x,y)\coloneqq x^Ty$ eine symmetrische Bilinearform ist.
- (b) Zeigen Sie, dass

$$\Phi \colon \mathbb{Q}^3 \times \mathbb{Q}^3 \to \mathbb{Q}, \quad (x,y) \mapsto \Phi(x,y) := x^T \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} y$$

eine alternierende Bilinearform auf \mathbb{Q}^3 ist. Ist Φ symmetrisch?

(c) Sei $A \in K^{n \times n}$. Zeigen Sie, dass

$$\Phi \colon K^n \times K^n \to K, \quad (x,y) \mapsto \Phi(x,y) \coloneqq x^T A y$$

genau dann eine alternierende Bilinearform ist, wen
n ${\cal A}+{\cal A}^T=0.$